tf.math.minimum
Stay organized with collections
Save and categorize content based on your preferences.
Returns the min of x and y (i.e. x < y ? x : y) element-wise.
tf.math.minimum(
x: Annotated[Any, tf.raw_ops.Any
],
y: Annotated[Any, tf.raw_ops.Any
],
name=None
) -> Annotated[Any, tf.raw_ops.Any
]
Used in the notebooks
Used in the guide |
Used in the tutorials |
|
|
Both inputs are number-type tensors (except complex). minimum
expects that
both tensors have the same dtype
.
Examples:
x = tf.constant([0., 0., 0., 0.])
y = tf.constant([-5., -2., 0., 3.])
tf.math.minimum(x, y)
<tf.Tensor: shape=(4,), dtype=float32, numpy=array([-5., -2., 0., 0.], dtype=float32)>
Note that minimum
supports broadcast semantics for x
and y
.
x = tf.constant([-5., 0., 0., 0.])
y = tf.constant([-3.])
tf.math.minimum(x, y)
<tf.Tensor: shape=(4,), dtype=float32, numpy=array([-5., -3., -3., -3.], dtype=float32)>
The reduction version of this elementwise operation is tf.math.reduce_min
Args |
x
|
A Tensor . Must be one of the following types: bfloat16 , half , float32 , float64 , int8 , uint8 , int16 , uint16 , int32 , uint32 , int64 , uint64 .
|
y
|
A Tensor . Must have the same type as x .
|
name
|
A name for the operation (optional).
|
Returns |
A Tensor . Has the same type as x .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-04-26 UTC.
[null,null,["Last updated 2024-04-26 UTC."],[],[],null,["# tf.math.minimum\n\n\u003cbr /\u003e\n\nReturns the min of x and y (i.e. x \\\u003c y ? x : y) element-wise.\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.minimum`](https://www.tensorflow.org/api_docs/python/tf/math/minimum)\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.minimum`](https://www.tensorflow.org/api_docs/python/tf/math/minimum)\n\n\u003cbr /\u003e\n\n tf.math.minimum(\n x: Annotated[Any, ../../tf/raw_ops/Any],\n y: Annotated[Any, ../../tf/raw_ops/Any],\n name=None\n ) -\u003e Annotated[Any, ../../tf/raw_ops/Any]\n\n### Used in the notebooks\n\n| Used in the guide | Used in the tutorials |\n|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| - [Extension types](https://www.tensorflow.org/guide/extension_type) | - [Integrated gradients](https://www.tensorflow.org/tutorials/interpretability/integrated_gradients) - [Client-efficient large-model federated learning via \\`federated_select\\` and sparse aggregation](https://www.tensorflow.org/federated/tutorials/sparse_federated_learning) - [Neural machine translation with a Transformer and Keras](https://www.tensorflow.org/text/tutorials/transformer) |\n\nBoth inputs are number-type tensors (except complex). `minimum` expects that\nboth tensors have the same `dtype`.\n\n#### Examples:\n\n x = tf.constant([0., 0., 0., 0.])\n y = tf.constant([-5., -2., 0., 3.])\n tf.math.minimum(x, y)\n \u003ctf.Tensor: shape=(4,), dtype=float32, numpy=array([-5., -2., 0., 0.], dtype=float32)\u003e\n\nNote that `minimum` supports [broadcast semantics](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) for `x` and `y`. \n\n x = tf.constant([-5., 0., 0., 0.])\n y = tf.constant([-3.])\n tf.math.minimum(x, y)\n \u003ctf.Tensor: shape=(4,), dtype=float32, numpy=array([-5., -3., -3., -3.], dtype=float32)\u003e\n\nThe reduction version of this elementwise operation is [`tf.math.reduce_min`](../../tf/math/reduce_min)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `x` | A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `int8`, `uint8`, `int16`, `uint16`, `int32`, `uint32`, `int64`, `uint64`. |\n| `y` | A `Tensor`. Must have the same type as `x`. |\n| `name` | A name for the operation (optional). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `Tensor`. Has the same type as `x`. ||\n\n\u003cbr /\u003e"]]