[null,null,["Last updated 2024-04-26 UTC."],[],[],null,["# tf.linalg.eigvals\n\n\u003cbr /\u003e\n\n|------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.16.1/tensorflow/python/ops/linalg_ops.py#L414-L438) |\n\nComputes the eigenvalues of one or more matrices.\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.eigvals`](https://www.tensorflow.org/api_docs/python/tf/linalg/eigvals)\n\n\u003cbr /\u003e\n\n tf.linalg.eigvals(\n tensor, name=None\n )\n\n| **Note:** If your program backpropagates through this function, you should replace it with a call to tf.linalg.eig (possibly ignoring the second output) to avoid computing the eigen decomposition twice. This is because the eigenvectors are used to compute the gradient w.r.t. the eigenvalues. See _SelfAdjointEigV2Grad in linalg_grad.py.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|----------|-----------------------------------------|\n| `tensor` | `Tensor` of shape `[..., N, N]`. |\n| `name` | string, optional name of the operation. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|-----|---------------------------------------------------------------------------------------------------------------|\n| `e` | Eigenvalues. Shape is `[..., N]`. The vector `e[..., :]` contains the `N` eigenvalues of `tensor[..., :, :]`. |\n\n\u003cbr /\u003e"]]