tf.keras.utils.CustomObjectScope
Stay organized with collections
Save and categorize content based on your preferences.
Exposes custom classes/functions to Keras deserialization internals.
tf.keras.utils.CustomObjectScope(
custom_objects
)
Under a scope with custom_object_scope(objects_dict)
, Keras methods such
as keras.models.load_model()
or
keras.models.model_from_config()
will be able to deserialize any
custom object referenced by a saved config (e.g. a custom layer or metric).
Example:
Consider a custom regularizer my_regularizer
:
layer = Dense(3, kernel_regularizer=my_regularizer)
# Config contains a reference to `my_regularizer`
config = layer.get_config()
...
# Later:
with custom_object_scope({'my_regularizer': my_regularizer}):
layer = Dense.from_config(config)
Args |
custom_objects
|
Dictionary of {str: object} pairs,
where the str key is the object name.
|
Methods
__enter__
View source
__enter__()
__exit__
View source
__exit__(
*args, **kwargs
)
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-06-07 UTC.
[null,null,["Last updated 2024-06-07 UTC."],[],[],null,["# tf.keras.utils.CustomObjectScope\n\n\u003cbr /\u003e\n\n|--------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/v3.3.3/keras/src/saving/object_registration.py#L10-L61) |\n\nExposes custom classes/functions to Keras deserialization internals.\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.keras.utils.custom_object_scope`](https://www.tensorflow.org/api_docs/python/tf/keras/utils/CustomObjectScope)\n\n\u003cbr /\u003e\n\n tf.keras.utils.CustomObjectScope(\n custom_objects\n )\n\nUnder a scope `with custom_object_scope(objects_dict)`, Keras methods such\nas [`keras.models.load_model()`](../../../tf/keras/models/load_model) or\n`keras.models.model_from_config()` will be able to deserialize any\ncustom object referenced by a saved config (e.g. a custom layer or metric).\n\n#### Example:\n\nConsider a custom regularizer `my_regularizer`: \n\n layer = Dense(3, kernel_regularizer=my_regularizer)\n # Config contains a reference to `my_regularizer`\n config = layer.get_config()\n ...\n # Later:\n with custom_object_scope({'my_regularizer': my_regularizer}):\n layer = Dense.from_config(config)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|------------------|------------------------------------------------------------------------------|\n| `custom_objects` | Dictionary of `{str: object}` pairs, where the `str` key is the object name. |\n\n\u003cbr /\u003e\n\nMethods\n-------\n\n### `__enter__`\n\n[View source](https://github.com/keras-team/keras/tree/v3.3.3/keras/src/saving/object_registration.py#L49-L56) \n\n __enter__()\n\n### `__exit__`\n\n[View source](https://github.com/keras-team/keras/tree/v3.3.3/keras/src/saving/object_registration.py#L58-L61) \n\n __exit__(\n *args, **kwargs\n )"]]