tf.keras.ops.tile
Stay organized with collections
Save and categorize content based on your preferences.
Repeat x
the number of times given by repeats
.
tf.keras.ops.tile(
x, repeats
)
If repeats
has length d
, the result will have dimension of
max(d, x.ndim)
.
If x.ndim < d
, x
is promoted to be d-dimensional by prepending
new axes.
If x.ndim > d
, repeats
is promoted to x.ndim
by prepending 1's to it.
Args |
x
|
Input tensor.
|
repeats
|
The number of repetitions of x along each axis.
|
Returns |
The tiled output tensor.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-06-07 UTC.
[null,null,["Last updated 2024-06-07 UTC."],[],[],null,["# tf.keras.ops.tile\n\n\u003cbr /\u003e\n\n|-------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/v3.3.3/keras/src/ops/numpy.py#L5060-L5083) |\n\nRepeat `x` the number of times given by `repeats`.\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.keras.ops.numpy.tile`](https://www.tensorflow.org/api_docs/python/tf/keras/ops/tile)\n\n\u003cbr /\u003e\n\n tf.keras.ops.tile(\n x, repeats\n )\n\nIf `repeats` has length `d`, the result will have dimension of\n`max(d, x.ndim)`.\n\nIf `x.ndim \u003c d`, `x` is promoted to be d-dimensional by prepending\nnew axes.\n\nIf `x.ndim \u003e d`, `repeats` is promoted to `x.ndim` by prepending 1's to it.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-----------|---------------------------------------------------|\n| `x` | Input tensor. |\n| `repeats` | The number of repetitions of `x` along each axis. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| The tiled output tensor. ||\n\n\u003cbr /\u003e"]]