tf.keras.ops.all
Stay organized with collections
Save and categorize content based on your preferences.
Test whether all array elements along a given axis evaluate to True
.
tf.keras.ops.all(
x, axis=None, keepdims=False
)
Args |
x
|
Input tensor.
|
axis
|
An integer or tuple of integers that represent the axis along
which a logical AND reduction is performed. The default
(axis=None ) is to perform a logical AND over all the dimensions
of the input array. axis may be negative, in which case it counts
for the last to the first axis.
|
keepdims
|
If True , axes which are reduced are left in the result as
dimensions with size one. With this option, the result will
broadcast correctly against the input array. Defaults to False .
|
Returns |
The tensor containing the logical AND reduction over the axis .
|
Examples:
x = keras.ops.convert_to_tensor([True, False])
keras.ops.all(x)
array(False, shape=(), dtype=bool)
x = keras.ops.convert_to_tensor([[True, False], [True, True]])
keras.ops.all(x, axis=0)
array([ True False], shape=(2,), dtype=bool)
keepdims=True
outputs a tensor with dimensions reduced to one.
>>> x = keras.ops.convert_to_tensor([[True, False], [True, True]])
>>> keras.ops.all(x, keepdims=True)
array([[False]], shape=(1, 1), dtype=bool)
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-06-07 UTC.
[null,null,["Last updated 2024-06-07 UTC."],[],[],null,["# tf.keras.ops.all\n\n\u003cbr /\u003e\n\n|-----------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/v3.3.3/keras/src/ops/numpy.py#L198-L232) |\n\nTest whether all array elements along a given axis evaluate to `True`.\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.keras.ops.numpy.all`](https://www.tensorflow.org/api_docs/python/tf/keras/ops/all)\n\n\u003cbr /\u003e\n\n tf.keras.ops.all(\n x, axis=None, keepdims=False\n )\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `x` | Input tensor. |\n| `axis` | An integer or tuple of integers that represent the axis along which a logical AND reduction is performed. The default (`axis=None`) is to perform a logical AND over all the dimensions of the input array. `axis` may be negative, in which case it counts for the last to the first axis. |\n| `keepdims` | If `True`, axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array. Defaults to `False`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| The tensor containing the logical AND reduction over the `axis`. ||\n\n\u003cbr /\u003e\n\n#### Examples:\n\n x = keras.ops.convert_to_tensor([True, False])\n keras.ops.all(x)\n array(False, shape=(), dtype=bool)\n\n x = keras.ops.convert_to_tensor([[True, False], [True, True]])\n keras.ops.all(x, axis=0)\n array([ True False], shape=(2,), dtype=bool)\n\n`keepdims=True` outputs a tensor with dimensions reduced to one. \n\n \u003e\u003e\u003e x = keras.ops.convert_to_tensor([[True, False], [True, True]])\n \u003e\u003e\u003e keras.ops.all(x, keepdims=True)\n array([[False]], shape=(1, 1), dtype=bool)"]]