tf.keras.layers.SpatialDropout1D
Stay organized with collections
Save and categorize content based on your preferences.
Spatial 1D version of Dropout.
Inherits From: Dropout
, Layer
, Operation
tf.keras.layers.SpatialDropout1D(
rate, seed=None, name=None, dtype=None
)
This layer performs the same function as Dropout, however, it drops
entire 1D feature maps instead of individual elements. If adjacent frames
within feature maps are strongly correlated (as is normally the case in
early convolution layers) then regular dropout will not regularize the
activations and will otherwise just result in an effective learning rate
decrease. In this case, SpatialDropout1D
will help promote independence
between feature maps and should be used instead.
Args |
rate
|
Float between 0 and 1. Fraction of the input units to drop.
|
Call arguments |
inputs
|
A 3D tensor.
|
training
|
Python boolean indicating whether the layer
should behave in training mode (applying dropout)
or in inference mode (pass-through).
|
|
3D tensor with shape: (samples, timesteps, channels)
|
Output shape: Same as input.
Reference:
Attributes |
input
|
Retrieves the input tensor(s) of a symbolic operation.
Only returns the tensor(s) corresponding to the first time
the operation was called.
|
output
|
Retrieves the output tensor(s) of a layer.
Only returns the tensor(s) corresponding to the first time
the operation was called.
|
Methods
from_config
View source
@classmethod
from_config(
config
)
Creates a layer from its config.
This method is the reverse of get_config
,
capable of instantiating the same layer from the config
dictionary. It does not handle layer connectivity
(handled by Network), nor weights (handled by set_weights
).
Args |
config
|
A Python dictionary, typically the
output of get_config.
|
Returns |
A layer instance.
|
symbolic_call
View source
symbolic_call(
*args, **kwargs
)
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-06-07 UTC.
[null,null,["Last updated 2024-06-07 UTC."],[],[],null,["# tf.keras.layers.SpatialDropout1D\n\n\u003cbr /\u003e\n\n|-------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/v3.3.3/keras/src/layers/regularization/spatial_dropout.py#L31-L68) |\n\nSpatial 1D version of Dropout.\n\nInherits From: [`Dropout`](../../../tf/keras/layers/Dropout), [`Layer`](../../../tf/keras/Layer), [`Operation`](../../../tf/keras/Operation) \n\n tf.keras.layers.SpatialDropout1D(\n rate, seed=None, name=None, dtype=None\n )\n\nThis layer performs the same function as Dropout, however, it drops\nentire 1D feature maps instead of individual elements. If adjacent frames\nwithin feature maps are strongly correlated (as is normally the case in\nearly convolution layers) then regular dropout will not regularize the\nactivations and will otherwise just result in an effective learning rate\ndecrease. In this case, `SpatialDropout1D` will help promote independence\nbetween feature maps and should be used instead.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|--------|-------------------------------------------------------------|\n| `rate` | Float between 0 and 1. Fraction of the input units to drop. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Call arguments -------------- ||\n|------------|------------------------------------------------------------------------------------------------------------------------------------|\n| `inputs` | A 3D tensor. |\n| `training` | Python boolean indicating whether the layer should behave in training mode (applying dropout) or in inference mode (pass-through). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Input shape ----------- ||\n|---|---|\n| 3D tensor with shape: `(samples, timesteps, channels)` ||\n\n\u003cbr /\u003e\n\nOutput shape: Same as input.\n\n#### Reference:\n\n- [Tompson et al., 2014](https://arxiv.org/abs/1411.4280)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Attributes ---------- ||\n|----------|------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `input` | Retrieves the input tensor(s) of a symbolic operation. \u003cbr /\u003e Only returns the tensor(s) corresponding to the *first time* the operation was called. |\n| `output` | Retrieves the output tensor(s) of a layer. \u003cbr /\u003e Only returns the tensor(s) corresponding to the *first time* the operation was called. |\n\n\u003cbr /\u003e\n\nMethods\n-------\n\n### `from_config`\n\n[View source](https://github.com/keras-team/keras/tree/v3.3.3/keras/src/ops/operation.py#L191-L213) \n\n @classmethod\n from_config(\n config\n )\n\nCreates a layer from its config.\n\nThis method is the reverse of `get_config`,\ncapable of instantiating the same layer from the config\ndictionary. It does not handle layer connectivity\n(handled by Network), nor weights (handled by `set_weights`).\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|----------|----------------------------------------------------------|\n| `config` | A Python dictionary, typically the output of get_config. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| A layer instance. ||\n\n\u003cbr /\u003e\n\n### `symbolic_call`\n\n[View source](https://github.com/keras-team/keras/tree/v3.3.3/keras/src/ops/operation.py#L58-L70) \n\n symbolic_call(\n *args, **kwargs\n )"]]