Saarland University Spoken Language Systems at the Slot Filling
Task of TAC KBP 2010

Grzegorz Chrupata Saeedeh Momtazi Michael Wiegand Stefan Kazalski
Fang Xu Benjamin Roth Alexandra Balahur Dietrich Klakow
Spoken Language Systems
Saarland University
D-66123 Saarbriicken, Germany
lsv_trec_ga@lsv.uni-saarland.de

Abstract

For the slot filling task of TAC KBP 2010 we de-
veloped as a system a simple pipeline architecture
whose main components are a two-stage retrieval
module and a relation extraction module. We use
word-cluster features in the system as a method of
achieving generalization by exploiting raw text.

In the relation extraction module we use distant
supervision in order to extract training examples
from a partially completed knowledge base. The
best-ranked run of the full system achieves an F-
score of 13.6% on the official test queries.

1 Introduction

In the slot filling task of TAC KBP 2010 the objective
is to develop a system which given an entity (person
or organization) fills in missing information about
it in a knowledge base. In this paper, we present
the overview of our submission. The main points
of interest of our system are that we (i) make lim-
ited use of task-specific external resources (ii) exper-
iment with the use of word clusters as useful features

at several stages of processing (iii) rely on distant su-
pervision in the relation extraction module.

Our system follows a simple pipeline architecture.
First, we retrieve documents related to the entity in
the input query using an off-the-shelf document re-
trieval component (Section 2.1). Second, we process
the documents, segmenting them into sentences, to-
kenizing and annotating them with named-entity la-
bels (Section 3). Third, we translate each missing
slot type (attribute) for this entity into a query and
perform sentence retrieval on the union of sentences
from the relevant documents (Section 2.2). Fourth,
we decide which named entities and other sentence
fragments in the retrieved sentences are plausible
fillers of the required slot type using a relation ex-
traction module. The relation extraction module is
trained on examples created by extracting entity-slot
pairs from the TAC knowledge base and retrieving
sentences in which they occur from the corpus (Sec-
tion 4).

The best-ranked run of the full system achieves an
F-score of 13.6%. We present and discuss the results
of the different configurations of our system in Sec-
tion 5.

2 Document and Sentence Retrieval

2.1 Document Retrieval

The task of document retrieval is an important part
of a slot filling system as it provides the input to sen-
tence retrieval and the relation extraction component.
Its purpose is to select relevant documents with re-
gard to a specific query from a large corpus. Thus,
the search space for subsequent modules is reduced
which is an important pre-requisite for more compu-
tationally intensive algorithms — as they are common
for relation extraction — to be used.

The document retrieval component of our slot fill-
ing system uses the INDRI toolkit' as a retrieval
engine which is part of the Lemur project. It im-
proves language model-based retrieval by including
inference networks. Our inference network includes
the target entity and chunks extracted from passages
with a mentioning of the entity in the reference doc-
ument. We estimated the weights in the inference
network with the dice-coefficient. This makes the
retrieval process more robust against noisy expan-
sion terms. Based on our experiments, we achieve
the best performance by retrieving the top 50 docu-
ments.

2.2 Sentence Retrieval

Although document retrieval is helpful to reduce the
search space, entire documents are still too large to
be processed by our relation extraction component.
Therefore, further irrelevant information within a
document is removed by applying sentence retrieval.
It re-ranks all sentences contained in the relevant
documents. The most highly ranked sentences are
then used as input for relation extraction. Based on
our experiments, we achieve the best performance by
retrieving the top 40 sentences.

"http://www.lemurproject.org/indri

We use a language model-based sentence retrieval
module for our slot filling system where the proba-
bility P(Q|S) of generating the query () conditioned
on the observation of the sentence S is first calcu-
lated, and thereafter sentences are ranked in descend-
ing order of this probability. P(Q|S) is estimated by
a unigram model based on the query terms [Ponte
and Croft, 1998]:

M

P(QIS) =[] P(alS)

=1

D

where M is the number of query terms and g; denotes
the i*" query term in Q = {q1,q2,...,qu}. The
query in our task consists of three elements:

o The target named entity: The target named
entity is the string denoting the entity of the tar-
get, i.e. either a person or an organization, as
provided by the input file of the slot filling task.
For example, when the system is to find the date
of birth of Albert Einstein, the target named en-
tity is “Albert Einstein”. By including that en-
tity in our query, we ensure to retrieve sentences
dealing with the target.

o The expected named entity: The named entity
tag of the slot value that is to be found is called
the expected named entity. In the above exam-
ple, “DATE” is the expected named entity. This
part of the query helps sentence retrieval to re-
trieve sentences which include the named entity
tag of the slot value. The named entity annota-
tion for each sentence is provided by a named
entity recognizer run on the output of document
retrieval prior to sentence retrieval.

e The expansion terms: The expansion terms
are predefined words that are predictive for spe-
cific slot types. In the above example, “born”

is one of the words that are very likely to ap-
pear in relevant sentences. As a result, sentence
retrieval assigns a higher rank to the sentences
that contain this predictive term.

We also found that the consideration of the docu-
ment from which each sentence originates can play
an important role for ranking the sentences. This is,
in particular, true for ties, i.e. different sentences
which receive the same score from sentence retrieval.
By also including the score from document retrieval
in sentence retrieval, we should (at least) be able to
discriminate between these sentences if they origi-
nate from different documents (as the ranking scores
from document retrieval should be different). Thus,
we compute the final score of sentence retrieval as
the product of the following two scores:

e P(Q|S) as described before

%, where R is the rank of the document that

contains sentence S.

3 Named Entity Recognition

Both the sentence retrieval and the relation extrac-
tion components of our system need access to named
entity (NE) labels specific to the slot filling task.
We thus develop a custom NE labeler which detects
the relevant types. As a starting point, we take the
BBN corpus as training data [Weischedel and Brun-
stein, 2005]. This resource consists of the Wall Street
Journal text from Penn Treebank labeled with a fine-
grained set of named entity and pronoun reference
labels. We map the BBN label set to the coarse-
grained set shown in Table 1. We then train a per-
ceptron sequence labeler [Collins, 2002] on the BBN
training data. We do not use features which rely on
a part-of-speech tagger or chunker. We do, however,
use word-cluster features, which have been shown

BBN-mapped labels

CARDINAL DATE

CITY COUNTRY

MONEY ORDINAL

PERCENT STATE-OR-PROVINCE
POLITICAL ORGANIZATION
PERSON QUANTITY

Extra labels

RELIGION JOB-TITLE

URL

Table 1: NE labels.

Precision ‘ Recall ‘ F-measure
91.18 | 92.15 | 91.66

Table 2: NER results on BBN section 22.

to be very useful for Named Entity Recognition
(NER) [Miller et al., 2004, Ratinov and Roth, 2009,
Chrupata and Klakow, 2010, Turian et al., 2010]. We
use the Brown et al. [1992] algorithm to create a flat
partition of word types from a 17-million-word por-
tion of the Reuters corpus? into 500 clusters. We then
use cluster ids in combination with standard contex-
tual and spelling features in the training of the NE
labeling model. The overall performance of the NE
labeler on section 22 of the BBN corpus is shown in
Table 2.

Additionally, we use simple heuristics to label
sentences with three additional labels for which we
do not have sufficient training data in order to in-
clude them in the statistical model. For RELIGION
and JOB-TITLE, we created gazetteers from online
resources, such as Wikipedia, and we use gazetteer
lookup in order to assign labels. We also label URLs
by matching a character pattern.

http://trec.nist.gov/data/reuters/
reuters.html

4 Relation Extraction

4.1 Distant Supervision

In the basic configuration of the relation extraction
module we used the distant supervision approach
presented in [Mintz et al., 2009]. In this scenario,
the positive training examples are pairs (entity, slot
value) present in the knowledge base (KB) while the
negative examples are such pairs which do not occur
in the KB.

Each example is converted to a feature vector us-
ing the following procedure. For a given (entity, slot
value) pair we retrieve the sentences which contain
mentions of both elements of the pair from the text
corpus (for speed we limit the sentences to those in
the first most relevant document as ranked by the
document retrieval component). From each occur-
rence of the pair in a sentence we extract a number
of local features (cf. Section 4.2); the global feature
vector is the sum of the local vectors extracted from
each sentences.

More formally, let the i‘" training example z; be
the triple (e;, s;, W;) where e; is the entity, s; is slot
value, and W; is the set of sentences in which they
both occur. The local feature function extracts fea-
tures from a single occurrence of e; and s; in the
sentence W;: ¢(e;, s;, w;). Thus the global feature
function is defined as:

(e, 54, Ws) = Z ¢(6i73iﬂwj)

w,; EW;

2)

We use the KB and the text corpus to create such
training examples for all the slot types. Then for slot
type 7; we train a binary linear classifier using all the
triples which instantiate relation 7; as positive exam-
ples, and the triples which instantiate other extrac-
tion 7; # 7; as negative examples.’

3For efficiency we limit the number of positive and negative

For training the classifiers we use the averaged
perceptron algorithm [Freund and Schapire, 1999,
Collins, 2002] with a constant learning rate of 0.01
which we run until training classification F-score
reaches 97.5%, for up to a maximum of 100 itera-
tions. We remove any features appearing in only one
example of the training data.

At test time, we retrieve sentences relevant to the
query entity and slot type, and use a manually cre-
ated mapping from slot types to named entity la-
bels in order to extract entity - candidate slot value
pairs. We aggregate all the sentences for a partic-
ular slot value and create test feature vectors as de-
scribed above. For single-value slots, we return them
as correct if they are classified as positive, otherwise
we return NIL. For list-valued slot types we rank the
candidate values in descending order of the score as-
signed to them by the classifier, and return the n best
items. For each list-valued slot type we set n., as
the maximum number of answers judged as correct
for any entity for slot type 7; in judgment files from
TAC KBP 2009 and development data for TAC KBP
2010.

We still need to choose the document id to re-
turn together with the slot value. We do this by
splitting the training example (e;, s;, W;) into as
many sub-examples as there are documents contain-
ing sentences in W;; that is for each document Dy
such that some sentence in W; is in Dy, we create
(€i,si,{wj|w; € Dy Aw; € W;}), and apply the
classifier to each of the sub-examples. We choose the
document id k£ which gives the highest score.

4.2 Features

We used a number of simple surface-based features.
In order to improve generalization, we used word-
cluster features, similar as for our NER component.

examples per classifier to a maximum of 3200 and 6400 respec-
tively.

In the case of relation extraction we used a hierarchi-
cal clustering of word types with 3200 classes at the
leaves of the hierarchy, trained on the same Reuters
news data.* Following previous practice [Ratinov
and Roth, 2009, Turian et al., 2010], we used clus-
ter id prefixes of lengths 2, 6, 10 and 20.

The local features ¢(e;, s;, w;) we used are:

e The conjunction of the direction of relation (left
if e; precedes s; in w, right otherwise)

e Log distance between target e; and slot value s;
in W

e Words in target entity e;, slot value s;, between
e; and s;, up to 3, words before and after them

e Brown cluster id prefix of length 2, 6, 10, 20 of
the above words

e Bigrams of Brown cluster ids as above

e Trigrams of Brown cluster ids of words between
target e; and slot value s;.

We used the basic configuration described above
in the first submitted run.

4.3 Using Annotated Data

In addition to using the KB as the source of training
data we also attempted to make use of the annotated
data provided by the organizers.

We used:

e Test data from the 2009 slot filling task
e Development data from the 2010 task

e Participant annotated data from the 2010 task.

“We used the hierarchical clustering made available by
J. Turian at http://metaoptimize.com/projects/
wordreprs/

The annotated data from 2009 consists of
queries associated with human judgments specifying
whether slot values for a slot type for a particular
entity extracted from a particular document is cor-
rect, inexact or incorrect. Judgment files from 2010
only list correct slot values together with the docu-
ment ids: in this case we assume that any slot value
not listed is incorrect. This data still does not pro-
vide sentence-level annotations but unlike the dis-
tant supervision scenario, it does provide document-
level judgments and we thus thought it would use-
fully complement the basic system configuration.

We create the training examples by first running
the system components up to sentence retrieval and
candidate slot value extraction using the queries from
the pertaining annotated dataset we want to use. At
this point we generate the training feature vectors
from the extracted candidate slot values in the re-
trieved sentences. We assign examples to the posi-
tive or negative set based on the judgments associ-
ated with the queries.

We then use the training examples generated in
this fashion either as the only source of supervision,
or jointly with the training data obtained from the KB
as described in Section 4.1. The joint training set up
was submitted as run 2.

5 Results

For the slot filling task of TAC KBP 2010 we con-
sidered the following configurations:

e KB - basic system configuration, with training
examples obtained from the KB

e An - system version using only training exam-
ples obtained from annotated data (Section 4.3)

o KB+An - system version using the union of the
training examples KB and annotated data

Model Run | Prec. Recall F-score
KB 1 20.07 10.34 13.65
An - 3148 04.93 08.53
KB+An 2 29.85 07.73 12.28
ET+KB+An 3 3292 07.73 12.52

Table 3: Scores of different system configurations on
the 2010 test data.

e ET+KB+An - same as KB+An, but additionally
sentence retrieval uses expansion terms (Sec-
tion 2.2).

Table 3 shows the scores obtained by four con-
figurations of our system on the official 2010 test
data. Three of those configurations were submitted
as runs.

The basic configuration KB achieved the best
overall performance. The other configurations trade
higher precision for much lower recall, resulting in a
lower F-score. Training only on examples from an-
notated data (An) resulted in an especially large drop
in recall. Somewhat surprisingly, combining KB
with An (KB+An) does not improve on KB alone.
It is not completely clear why this is the case, but we
suspect that part of the problem may be that we are
not optimizing F-score directly, but rather the clas-
sification accuracy, which makes it hard for the sys-
tem to maintain a proper balance between recall and
precision without manual tuning. Finally, adding ex-
pansion terms to KB+An improves precision with-
out harming recall and thus improves the F-score
slightly.

6 Conclusion

We have developed a slot filling system for TAC
KBP 2010 which uses a simple pipeline architecture
whose main components are a two-stage retrieval
module and a relation extraction module. We have

used word-cluster features in the system as a method
of achieving generalization by exploiting unlabeled
data. In the relation extraction module we used dis-
tant supervision in order to extract training examples
from a partially completed knowledge base.

Slot filling is a complex and difficult task, and it
is by no means trivial to achieve good performance
with shallow methods and while avoiding depen-
dence on external resources. In future, we would like
to investigate whether we can improve our system by
using linguistic analysis, such as dependency pars-
ing, and by implementing more sophisticated statisti-
cal models which take into account the dependencies
between different relation types.

References

P. F. Brown, R. L. Mercer, V. J. Della Pietra, and
J. C. Lai. Class-based n-gram models of natural
language. Computational Linguistics, 18(4):467—
479, 1992.

G. Chrupata and D. Klakow. A Named Entity La-
beler for German: exploiting Wikipedia and dis-
tributional clusters. In Proceedings of the Con-
ference on International Language Resources and

Evaluation (LREC), pages 552-556, 2010.

M. Collins. Discriminative training methods for
Hidden Markov Models: Theory and experiments
with perceptron algorithms. In Proceedings of the
Annual Meeting of the Association for Computa-
tional Linguistics (ACL), pages 1-8, 2002.

Y. Freund and R. E. Schapire. Large margin classi-
fication using the perceptron algorithm. Machine
learning, 37(3):277-296, 1999.

S. Miller, J. Guinness, and A. Zamanian. Name tag-
ging with word clusters and discriminative train-
ing. In Proceedings of the Human Language Tech-

nology Conference of the North American Chapter
of the ACL (HLT/NAACL), pages 337-342, 2004.

M. Mintz, S. Bills, R. Snow, and D. Jurafsky. Distant

L.

supervision for relation extraction without labeled
data. In Proceedings of the Joint Conference of
the Annual Meeting of the Association for Com-
putational Linguistics and the International Joint
Conference on Natural Language Processing of
the Asian Federation of Natural Language Pro-
cessing (ACL/IJCNLP), pages 1003—-1011, 2009.

. Ponte and W. B. Croft. A language modeling ap-

proach to information retrieval. In Proceedings of
the Annual International ACM SIGIR Conference
on Research and Development in Information Re-
trieval, pages 275-281, 1998.

Ratinov and D. Roth. Design challenges and mis-
conceptions in named entity recognition. In Pro-
ceedings of the Conference on Natural Language
Learning (CoNLL), pages 147-155, 2009.

J. Turian, L. Ratinov, and Y. Bengio. Word represen-

tations: A simple and general method for semi-
supervised learning. In Proceedings of the Annual
Meeting of the Association for Computational Lin-
guistics (ACL), pages 384-394, 2010.

R. Weischedel and A. Brunstein. BBN pronoun

coreference and entity type corpus. Linguistic
Data Consortium, 2005.

