
IIIT Hyderabad in Guided Summarization and Knowledge Base
Population

Vasudeva Varma, Praveen Bysani, Kranthi Reddy, Vijay Bharath Reddy, Sudheer Kovelamudi,
Srikanth Reddy Vaddepally, Radheshyam Nanduri, Kiran Kumar N, Santhosh Gsk, Prasad Pingali

International Institute of Information Technology, Hyderabad, India.

Abstract
In this report, we present details about the par-
ticipation of IIIT Hyderabad in Guided Summa-
rization and Knowledge Base Population tracks
at TAC 2010. This year, we enhanced our sum-
maization system with knowledge based mea-
sures and utilized domain and sentence tag
models to score sentences to suit guided sum-
marization track. We have used an external
tool, WikiMiner to identify key concepts in
the documents and extract important sentences.
We adopted an Information Retrieval based ap-
proach for the Entity Linking and Slot Filling
tasks. In Entity Linking we identified poten-
tial nodes from the Knowledge Base and then
identified the mapping node using tf-idf simi-
larity. We achieved very good performance in
the Entity Linking task. For Slot Filling task
we identified documents from the document col-
lection that might contain attribute information.
We extracted the attribute information using a
rule based approach.

Part I
Guided Summarization
Track
1 Introduction

The Summarization track at Document understand-
ing Conferences (DUC) and later at Text Analysis
Conferences(TAC) has introduced different flavors of
summarization like generic multi document summa-
rization, query focused multi document summariza-
tion, opinion summarization, and most recently up-
date summarization. This year the track has evolved
into a more challenging and interesting task, Guided
summarization. Unlike previous tasks, Guided sum-
marization task promotes summarization systems to
make a deeper linguistic and semantic analysis of
source documents to extract important information.
The guided summarization task is defined as to gener-
ate summaries for a set of newswire articles on a par-

ticular topic that is classified into a set of predefined
categories. Each category has a list of important as-
pects and the summary is expected to answer all these
aspects while it may also contain other relevant infor-
mation about the topic.

The term guided summarization is used for the first
time in literature, as the summary is guided by a tem-
plate of aspects for each category. The description
of the task is similar to the problem of information
extraction, where specific information from unstruc-
tured text is identified and consequently classified into
a set of semantic labels (templates) making the infor-
mation more suitable for other information processing
tasks. While information extraction (IE) systems se-
lect only specific information nuggets to fill the slots
of templates, a guided summarization system has to
produce a readable summary encompassing all the in-
formation about the templates. Coupling information
extraction techniques with summarization is a rela-
tively less explored area, making it hard to find any
relevant literature. Very few investigations have ex-
plored the potential of merging summarization with
information extraction techniques. RIPTIDES [11]
hypothesize that IE supported summarization will en-
able the generation of more accurate and targeted
summaries in specific domain than that is possible
with domain independent techniques. Authors com-
bine information extraction, extractive summarization
and natural language generation to support user di-
rected multi document summaries. RIPTIDES iden-
tify domain specific relations among relevant entities
in the text using a weakly supervised learning algo-
rithm, which are then used to extract slot fillers for the
domain. The extracted templates are then processed
by a summarizer, that merges templates into a event
oriented structure using heuristics and assigns score
to each sentence based on the frequency and member-
ship of each template. Finally the summary is gener-
ated from the resulting content pool using a combina-
tion of top-down, schema-like text building rules and
surface-oriented revisions. Similarly [2] built a news
event summarizer to provide consistent and succint
summaries about an event. They detect useful event
snippets based on language model learned from train-

ing corpus. Authors used fusion techniques to merge
information from multiple sources.

In this work, we generate guided summaries via in-
formation extraction measures. A sufficiently large
set of relevant articles are selected manually from
Wikipedia for each category. These articles are used
to build domain knowledge and extract important
sentences containing events mentioned in the tem-
plate. We also experimented with knowledge based
measures, through WikiMiner for extracting concepts
from documents and using them instead of simple
document words to estimate importance.

2 Approach

1. Domain model: Domain Knowledge is an es-
sential part of information extraction systems to
identify and extract the relationships between en-
tities. We built a domain knowledge model for
each topic category by collecting a set of relevant
Wikipedia articles for that category. A group
of indviduals are given the task of manually se-
lecting approximately 500 Wikipedia pages for
each category and then extracting the first pas-
sages from that article (the style of Wikipedia is
such that first paragraph of most articles serve
as a summary containing answers to most of the
questions in the template).

For example consider the following article about
“Bhopal Tragedy”1 that is categorised under Ac-
cidents/Disaster category,

The Bhopal disaster (also referred to as the
Bhopal gas tragedy) is the world’s worst in-
dustrial catastrophe. It occurred on the night
of December 2, 1984 at the Union Carbide In-
dia Limited (UCIL) pesticide plant in Bhopal,
Madhya Pradesh, India. A leak of methyl iso-
cyanate (MIC) gas and other chemicals from the
plant resulted in the exposure of several thou-
sands of people. Estimates vary on the death
toll. The official immediate death toll was 2,259
and the government of Madhya Pradesh has con-
firmed a total of 3,787 deaths related to the gas
release. Other government agencies estimate
15,000 deaths. Others estimate that 3,000 died
within weeks and that another 8,000 have since
died from gas-related diseases. A government
affidavit in 2006 stated the leak caused 558,125
injuries including 38,478 temporary partial and
approximately 3,900 severely and permanently
disabling injuries.

This excerpt from Wikipedia article has a sum-
mary of all the statistics about Bhopal gas
tragedy and its aftermath. Similar articles are

1 http://en.wikipedia.org/Bhopal_disaster

collected for each category and a domain knowl-
edge model is built over these articles using a
naive bayes classifier.

We have a multi class classifier built over all
the categories given in TAC 2010 task descrip-
tion. The confidence (probability) of a sentence
selected from the document of particular cate-
gory being classified into the same category is
regarded as the score of that particular sentence.
This normalized domain model score is consid-
ered as a feature in our experiments.

2. Sentence Annotation: The articles collected
from Wikipedia are split into sentences and an-
notated with appropriate template tags given in
the task description. These annotations include
both objective (when,where,who) and subjective
(how,why,countermeasures) tags. As any stan-
dard NER can only tag objective tags, we chose
to manually annotate all the articles with all pos-
sible tags. For example consider a sentence from
the “Bhopal Tragedy” article,

It occurred on <when> the night of December
23, 1984<when> at the <where>Union Carbide
India Limited (UCIL) pesticide plant in Bhopal,
Madhya Pradesh, India<where>. <how>A leak
of methyl isocyanate (MIC) gas and other chem-
icals from the plant resulted in the exposure of
several thousands of people<how>

A sentence is tagged with multiple tags if it has
more than one answer to the template. All the an-
notated sentences are used for building a model
by a multi class classifier (naive bayes classifier
is used in this work).

3. Concept Mining: Words are conventionally
considered to be the units of text to calculate im-
portance. Simple word counts and frequencies
in the document collection have proved to work
very well in the context of summarization [10].
This year we attempted to use semantic concepts
instead of simple word frequencies in computing
sentence importance.

Wikipedia is a vast, constantly evolving resource
of interlinked articles providing a giant multi-
lingual database of concepts and semantic re-
lations. It serves as a promising resource for
natural language processing and many other re-
search areas. Wikipedia Miner [5] is a freely
available toolkit for navigating and making use
of content of Wikipedia. It provides simplified,
object-oriented access to Wikipedia’s structure
and content and offers several services to help
users to search for entities, comparing the rela-
tion between entities and wikifying snippets of
texts. Assuming that each Wikipedia topic serves

as a semantic concept, we make use of Wikify
service of the toolkit to annotate the document
collection with links to relevant Wikipedia con-
cepts. Wikiminer also provides a semantic re-
latedness measure between two concepts using
category hierarchy and textual content of respec-
tive concepts. After the Wikification of the docu-
ment collection, we use the relatedness measure
(RM) of a concept with all other concepts in the
document collection as its importance measure.
Sentence score is calculated as the normalized
concept relatedness measure of all the concepts
it contains.
A detailed description of the process of linking
entities with Wikipedia and calculating the re-
latedness measure between two concepts can be
found in [7] and [6].

4. Role of prepositions in estimating sentence
importance: In English grammar, a preposition
is a part of speech that links nouns, pronouns to
other phrases in a sentence. A preposition gener-
ally represents the temporal, spatial or logical re-
lationship of its object to the rest of the sentence.
Observe the role of prepositions on,of,to,in,from
in the below sentences,

The book is on the table
President of India lives in delhi

The indian cricket team is travelling from
australia to new zealand

It is very interesting to observe how prepositions
are implicitly capturing the key elements in a
sentence. The preposition on in first sentence is
conveying that there is a book, a table and some
relation between them. Similarly, the other two
sentences have some key information about one
or more entities and connecting prepositions. To
the best of our knowledge, the role of preposi-
tions has never been explored before to calculate
sentence importance.
We propose using the frequency of a small set of
prepositions as a sentence scoring feature. The
frequency of prepositions is indirectly achieving
the effect of performing a Named Entity Recog-
nition (NER) on a sentence, but without any ad-
ditional cost of processing or using any POS tags.
Score of a sentence (s) calculated by PrepImp is
given as,

PrepImp(s) =

∑
wi∈s IsPrep(wi)

|s|

The list of prepositions used for calcu-
lating sentence importance are limited

Fig. 1: Summary Extraction Algorithm

to simple single word prepositions like
in,on,of,at,for,from,to,by,with, after a careful
observation over the data.

5. Sentence Ranking: After feature extraction, we
estimate a final rank of each sentence using a re-
gression model similar to our system of Update
summarization in TAC 2009 [10]. We modeled
sentence rank as a dependent variable that is es-
timated from a set of features. Each sentence
in the training phase is represented as a tuple
of sentence importance estimate and feature vec-
tor. The sentence importance is estimated as the
ROUGE 2 score of that sentence with the model
summaries. Final rank of the sentence is calcu-
lated as,

is = q(Fs)

where is is the sentence importance (rank) of
sentence s, q is the regression function and Fs

is the feature vector that comprises of all the ex-
tracted features.

6. Summary Extraction: Normally, during sum-
mary extraction a subset of ranked list of sen-
tences satisfying redundancy checks, length con-
straints and other conditions are selected for the
summary. To adapt to the requirements of guided
summarization, we modified our extraction al-
gorithm to Figure 1. Among the top ranked
sentences, as predicted by the regression model,
we select the sentence having maximum aspect
score (MaxAnnotation) for the summary. Once
an aspect of the template has been answered, we
select the next sentence with the maximum score
for the remaining aspects in the template. These
tag scores are predicted by the Sentence anno-
tation model we built over Wikipedia articles in
step 2.

3 Experiments and Results

The test dataset released by NIST composed of ap-
proximately 46 topics, divided into five categories:

• Accidents and Natural Disasters

• Health and Safety

• Attacks

• Endangered Resources

• Investigations and Trials

Each topic has a topic ID, category, title, and 20 rele-
vant documents which have been equally divided into
2 clusters A and B in chronological order. Summary
for cluster A is a normal multi document summary
while summary for cluster B is an update summary,
generated under the assumption that the user has al-
ready read the earlier articles (cluster A) about the
topic.

The information about the category and its aspects
already define what information the reader is looking
for and replaces the need of narrative in general query
focused summarization. Each of the above mentioned
categories had a template of aspects that the summary
had to answer. For example, the accident category has
the following template:

• WHAT: what happened

• WHEN: date, time, other temporal placement
markers

• WHERE: physical location

• WHY: reasons for accident

• WHO_AFFECTED: casualties (death, injury),
or individuals otherwise negatively affected by
the accident

• DAMAGES: damages caused by the accident

• COUNTERMEASURES: countermeasures, res-
cue efforts, prevention efforts

We used successful features from our earlier
work [10] and [3], Document Frequency Score
(DFS), Sentence Location1(SL1), PHAL, Kullback
Leibler divergence (KL) and Novelty Factor (NF) to
produce an initial run. The features described in the
previous section are used incrementally in this initial
experiment. The summaries are manually evaluated
by a group of indviduals and ranked on a scale of 1 to
5, with 5 being the highest quality. After analysing
these manual evaluations, the run that achieved
maximum consensus amongst the annotators was
selected. The final submission has two runs,

Run1 : PHAL, KL, DFS and SL1 are used as
sentence scoring features for cluster A and NF,
KL, SL1 as features for cluster B. Sentence rank is
estimated through regression model from the training
feature vectors build over TAC 2009 training data.

Run2 : Along with the sentence scoring fea-
tures used by Run1, PrepImportance is used as

an additional feature and the sentences are picked
with the modified summary extraction algorithm as
described in Section 2. The evaluation results of these
runs are provided in Table 1

The results shown in Table 1 are the average scores
over all the categories and all the aspects of the tem-
plate. A detailed analysis at the category and aspect
level of the results is provided in Table 2 and Table 3.
The Avg-pyramid and overall responsiveness scores
of Run1 are split by category. Interestingly, the scores
for Health and Safety category are much lower com-
pared to other categories.

With the availability of evaluation data after
the announcement of results, we had the chance
to experiment with all possible combinations of
our techniques. As we are succesful in producing
informative summaries for cluster A, we focused
our post-TAC experiment to improve the quality of
update summaries (cluster B). We carried out exper-
iments with combinations of techniques proposed in
Section 2 along with a new feature Hybrid Kullback
Leibler Information divergence (HKLID).

Hybrid Kullback-Leibler Information Diver-
gence (HKLID) : Kullback-Leibler Information di-
vergence (KLID) is a popular technique to measure
the difference between two probability distributions.
We used an extension of KLID to measure the diver-
gence between Hybrid Language Models (LM) of two
sentences that are built over clusterA and clusterB.
A hybrid language model is the combination of doc-
ument and sentence language models, for better di-
vergence calculations. HKLID between LM’s of two
sentences si in clusterB and sj in clusterA is calcu-
lated using,

∑
w∈si

P (w|si)P (w|clusterB)∗log P (w|si)P (w|clusterB)

P (w|sj)P (w|clusterA)

HKLID measures the importance of a sentence in
ndocs conditioned over the sentences in pdocs. So
more the divergence between these hybrid language
models, greater the novelty of that sentence. Average
HKLID between a sentence si in clusterB and all
the sentences in clusterA is used as its novelty score.
Probability distributions are smoothed using Dirich-
let principle [12].The results of the post-TAC experi-
ments on cluster B is provided in Table 4

4 Discussion

Evaluation results show that our Run1 has secured
first position in ROUGE-2, ROUGE-SU4 and Pyra-
mid scores and second position in terms of overall re-
sponsiveness. In spite of developing a more sophis-
ticated system by building a category model over re-

System ROUGE-2 ROUGE-SU4 Avg-Pyramid Score Overall Responsiveness

Run1(id: 22) 0.09574 (1/41) 0.13014 (1/41) 0.425 (1/41) 3.130 (2/41)

Run2 (id: 40) 0.0695 (23/41) 0.10788 (22/41) 0.347 (21/41) 2.804 (21/41)

Table 1: Evaluation results released by NIST for cluster A

Category Avg-Pyramid Score Overall Responsiveness
Accidents 0.445 3.429
Attacks 0.524 3.286

Health&Safety 0.300 2.583
Endangered resources 0.396 3.100

Investigations 0.520 3.500

Table 2: Pyramid and Overall Responsiveness scores of Run1 for each category

lated Wikipedia documents and manually annotating
template aspects for each sentence, the evaluation re-
sults of Run2 are not as good as Run1. As the lan-
guage model of Wikipedia is quite different from the
news articles, the Wikipedia domain model has not
produced desired results. We believe that the pro-
posed techniques would work better if the model was
built over a sufficiently large news corpus. A closer
look at the results reveals that the difficulty of task
varies with the type of category. The pyramid scores
and overall responsiveness for Accidents, Attacks and
Investigations are very high compared to Health and
Endangered Resources cateogories. Also, there is a
huge disparity between the pyramid scores of various
aspects. Guided summaries are able to answer ob-
jective questions like WHEN, WHERE, WHO with
more ease than subjective aspects like HOW, WHY,
and others. It is intutive that subjective questions are
more difficult to answer than the objective questions.
The new feature Preposition importance uses a simple
frequency of the prepositions in a sentence to estimate
the importance, and that did not perform well in Run2.
But, we strongly believe that the idea can be used in a
more sophisticated way to devise an effective sentence
scoring feature.

Since we focused on the guided summarization in
this submission, it resulted in relatively poor perfor-
mance in the update task. We used succesful tech-
niques from our previous work and also devised a
new feature HKLID to produce update summaries

Category What When Where Who Subjective
Accidents 0.621 0.468 0.33 0.457 0.289
Attacks 0.745 0 0.753 0.622 0.491
Health 0.322 – – 0.172 0.166

Endangered resources 0.52 – – – 0.128
Investigations – – – 0.785 0.371

Table 3: Average Pyramid scores of Run1 for each
aspect in the template

Experiment R-2 R-SU4
Run1 0.06998 (7/43) 0.11107 (4/43)
Run2 0.05894 (23/43) 0.10024 (20/43)
NF+SL1+HKLID 0.07899 0.12000
NF+SL1+
ConceptMining 0.07508 0.11746
NF+SL1+HKLID+
ConceptMining 0.07773 0.11822

Table 4: ROUGE scores of post-TAC experiments for
cluster B

for cluster B. During our post-TAC experiments we
evaluated different combinations of all the techniques
described in this work. The concepts mined from
Wikipedia using wikiminer enhanced the quality of
update summaries. We achieved significant improve-
ment in ROUGE scores of cluster B (around 9% in-
crease) during our post-TAC experiments.

Part II

Knowledge Base
Population (KBP)

1 Introduction

The rise of web 2.0 technology has provided a plat-
form to generate content on the web through blogs,
forums etc. This has lead to information overload and
users face difficulty in finding the information they
are looking for. Structured Knowledge Bases (KB)
like Wikipedia, act as a rich source of information.
The problem with Knowledge Bases like Wikipedia
is that they have to be created and maintained man-
ually. Manual effort is not only time consuming but
can also lead to erroneous values being fed, outdated
information and inconsistency. Automatically updat-
ing Knowledge Bases from news source, where the
latest information is available, is a possible solution.
The Knowledge Base Population (KBP) track at TAC-
2010 proposes the problem of automatically updating
Knowledge Bases from textual content. The task has
been broken down into 2 fundamental sub-problems:

1. Entity Linking : The task of Entity Linking
is to determine for each query entity, which
node is being referred to in the KB or if the
query entity is not present in the KB. The query
consists of a named entity and an associated
document from the Document Collection (DC)
using which we need to link the named entity to
it’s corresponding node in the KB, if any. The
purpose of the associated document is to provide
context that might be useful in linking it. We
need to return the node id if the query entity is
present in the KB else NIL.

2. Slot Filling : Slot Filling involves mining in-
formation about entities from textual content.
Slot Filling shares similarities with traditional
Information Extraction and Question Answering
tasks. Slot Filling involves learning a predefined
set of relationships and attributes for target en-
tities based on the documents in the Document
Collection. A query in the Slot Filling task con-
tain a name-string, doc-id, entity-type, node-id,
an optional list of slots to ignore. As in the En-
tity Linking task the doc-id is intended to provide
the context for the entity. We need to return the
slot name and slot value along with the document
in which it occurs.

2 Our approach to Entity Linking

For a given query entity, we identify a set of possible
nodes from the KB that can be linked with it. We
then use a Tf-idf ranking model to rank these set of
nodes and identify the correct mapping node. We
have broken down the task of entity linking into 3 sub
tasks:

a) Building a Knowledge Repository (KR) : Since
named entities can be referred using different forms
like nick names, alias names, acronyms and spelling
variations, we need to have a knowledge repository
which contains all these variations of the named en-
tities. Since Wikipedia has better coverage of named
entities[8], we used it to build this knowledge reposi-
tory. The features used are

• Redirect Pages : Redirect pages are an aid
to navigation in the Wikipedia. When a page
redirects to another, it simply means that both
the referred page and the referee page are
describing the same named entity. It is used to
identify synonyms and in addition also provides
information about abbreviations, scientific or
common terms and alternative spellings etc.

• Disambiguation pages : Disambiguation pages
have been specifically created for ambiguous
entities. They contain links to the pages which
describe a unique real world entity. They are
useful in homonym resolution and help in
extracting abbreviations etc.

• Bold text from first paragraph : The first para-
graph of a Wikipedia article in general is a sum-
mary of the entire article. It contains few phrases
which are written in bold. We observed that these
bold phrases, invariably are nick names, alias
names, full names etc.

b) Candidate List Identification : In this phase,
we identify all potential nodes from the KB that can be
linked to our query entity. First, we obtain all possible
variations of the query entity using different heuris-
tics. We use these variations to identify the potential
nodes from the KB. In order to identify NIL valued
queries we add documents from Wikipedia as well.
The heuristics used are

• We obtain all possible variations of the query
entity from the knowledge repository built in
the previous step i.e we have obtained all the
possible variations of the query entity present in
Wikipedia.

• We use Stanford Named Entity Recog-
nizer(NER), we identify other possible variations
of the query entity from the associated docu-
ment from the document collection. Here we
are using the contextual information present
surrounding our query entity to identify
further variations. Phrases tagged as “Per-
son/Location/Organization” by Stanford NER
and having our query entity present in it are also
considered as possible variations. For Example,
if Stanford NER tags “Columbus, Ohio” as a
location in the document associated with the
query entity “Columbus”, we consider it as a
variation.

• We give the query entity to the Google Search
engine and retrieve spell suggestions if any. This
heuristic helps us in identifying the spelling
variations of the query entity.

Once all the variations of our query entity have
been obtained, we use them to identify candidate
nodes by searching on the KB and Wikipedia ti-
tles. This is done by using token search. Since
we need to identify query entities that don’t have
an entry in the KB, we take the help of Wikipedia
articles. This addition of Wikipedia articles to
the candidate list helps us in identifying entities
that don’t have an entry in the KB i.e. if the query
entity is linked to Wikipedia article, it means that
the article isn’t present in the KB and hence we
return NIL.

c) Entity Linking using Ranking : Once the set
of candidate nodes are obtained, we rank them us-
ing Tf-idf[9]. The best ranked node is returned as the
mapping node for our query entity. Tf-idf is the most
popular weighting function used in the field of Infor-
mation Retrieval. Given a query Q={t1,t2...tn} and a
document D={w1,w2,...,wn}, the similarity between
them is given by

Similarity(D,Q) =
∑
tiinQ

tf(ti, D) ∗ idf(ti) (1)

where term frequency (tf) is simply the number
of times the term ti appears in the document D. The
inverse document frequency (idf) is a measure of the
general importance of the term.

We index the text of the candidate nodes using
Lucene. Lucene is a full-featured, open source text
search engine. We then form a boolean “OR” query
from the associated document given for our query
entity. Querying the index built using this “OR”

query, would return a ranked set of nodes.

We further re-rank these ranked documents, using
query expansion. We use pseudo relevance feedback
to expand the query. We consider the top “3” doc-
uments for query expansion and build an Hyperspace
Analogue to Language Model (HAL)[4]. We consider
only those tokens that are present within a window
size of four for the query entity present in the top “3”
documents. The intuition behind this is that named
entities derive their meaning from the accumulated
experience of the context in which they appear. The
HAL weighting for a term w and any other term w

′
is

given by:

HAL(w
′
/w) =

K∑
k=0

W (k)n(w, k, w
′
) (2)

where n(w, k, w
′
) is the number of times term w

′

occurs a distance k away from w, and W (k) = K − k
+ 1 denotes the strength of the relationship between
the two terms given k.

We search the Google using query “wiki” and the
query entity. We rank the snippets and title of the
results using the boolean “OR” query generated from
the associated document. We consider the top most
ranked title and snippet tokens for query expansion.

Once the query is expanded we re-rank the indexed
documents. The final relevance score for a candidate
document is a linear combination of the ranking score
and re-rank score. The equation is given by:

Final Score = λ∗RankingScore+(1−λ)∗Re−rankedScore
(3)

For all our experiment we set λ to 0.7 .

d) Description of Runs : We have submitted 3
runs for the Entity Linking task. The description of
each run is provided below

Run-1 : Without the web : For this run we used
the knowledge repository built and Stanford NER
for identifying candidate list documents. Once these
candidate documents are identified we rank them. We
also re-rank these documents using query expansion.

Run-2 : Using the web and phrase search : For
this run we used the knowledge repository, Stanford
NER and Google web search engine for identifying
the candidate list documents. We used Google for
spell suggestion for identifying incorrect spellings.
Using these variations we did a phrase search on
the titles of Wikipedia and KB nodes. All the nodes
whose titles exactly or partially match these phrases
are considered as candidate nodes. We then rank

these nodes using Tf-idf and re-rank using pseudo
relevance feedback. We use Google search results
snippet, title and HAL for query expansion. The final
relevance score for each node is a linear combination
of the rank and re-rank scores.

Run-3 : Using the web and token search : This
run is similar to above run, except that we do token
search on the titles of Wikipedia and KB to identify
candidate nodes. All those nodes whose titles contain
the variation tokens or have token variation and an
extra token are considered as candidate nodes. The
ranking and re-ranking is same as in run-2.

Table shows the micro-average score of our runs.

3 Entity Linking Optional Task

We have participated in the Entity Linking optional
task as well. In the primary task, the systems were
allowed to consult the text of the nodes present in
the KB, where the optional task involves linking the
query entity without using the text from the nodes
and use only the slot values.

Our approach towards optional task is similar to
what we used for the primary task. The only differ-
ence is that instead of indexing the text of the nodes
we index the slot values. We extracted the attribute
value pairs from Wikipedia infoboxes while indexing
them. The runs submitted for the optional task are the
same as for primary task. The results of optional task
are summarized in Table 2.

4 Our Approach to Slot Filling

Our Slot Filling model basically identifies documents
from the Document Collection that might contain
information about the query entity. We then pick
sentences from these documents that are likely to
contain attribute information relevant to the given
query entity. Once the sentences are obtained we
extract attribute information using a rule based
approach. We then filter and process the extracted
attribute information to address the requirements of
the task. We used training annotated data provided
by TAC-KBP-2010 for constructing our rules. We
have annotated training samples for 6 entities as
contribution to the community.

For the run submitted for TAC-2010 Slot Filling
task, we considered documents which contained par-
tial match of the query entity as well for extracting at-
tribute information. This has resulted in a lower preci-
sion score. In order to overcome this lower precision,
we considered only those documents which had the

exact query phrase in our post-TAC experiments. We
report our official scores obtained for the run submit-
ted for TAC-2010 and post-TAC results as well. Our
Slot Filling system can be broken down into the fol-
lowing modules

1. Pre-processing : Since the Document Collec-
tion and KB have documents in the order of
millions, we index them using Lucene to enable
search and fast retrieval of documents.

2. Document Retrieval : For every query entity,
we search the Document Collection index for
relevant documents. We select the documents
that satisfy the following conditions

• Only documents that contain exact phrase
match of the query entity.
• Documents that contain partial query entity

are also considered.

3. Sentence Retrieval : Once the relevant docu-
ments are obtained, we pick sentences from each
document that contain mapping words for a slot,
depending on the entity type.

For example, for the slot org:alternate_names,
we select the documents that contain the com-
plete name/partial-name of that organization.
We then pick the sentences that contain the
mapping-phrases like “also known as”, “also
called as”, “referred as”, “renamed as” etc.

4. Attribute information extraction : In this
phase our system extracts attribute information
from the sentences that are obtained in the
previous step. We use a “Rule-based Ordered
Co-occurrence”[1] strategy for extracting at-
tribute information. This method follows the
simple definition of the term Co-occurrence “an
event or situation that happens at the same time
as or in connection with another”. It seeks only
the existence of the query entity and keywords
in the same sentence.

We formed rules to extract attribute informa-
tion for each slot using syntactic structure of
sentences. These rules were formed using
the annotated training data. We used POS
tags, Named-Entities, sentence-window-length
and the order of occurrence of entities for con-
structing the rules. For example, for the slot
Org:alternate_names, patterns like

Run No. Heuristics Used Micro-Average Score
1 Entire Wikipedia in building KR 81.73
2 Entire Wikipedia in building KR + Stanford NER

+ Google Search + Phrase Search
83.60

3 Entire Wikipedia in building KR + Stanford NER
+ Google Search + Token Search

83.73

Table 5: Micro-average score for each run.

Run No. Heuristics Used Micro-Average Score
1 Entire Wikipedia in building KR 60.53
2 Entire Wikipedia in building KR + Stanford NER

+ Google Search + Phrase Search
65.16

3 Entire Wikipedia in building KR + Stanford NER
+ Google Search + Token Search

66.00

Table 6: Micro-average score for each run.

<org1, mapping-phrase, org2, [verb phrase],
[org|loc], EOS>

are matched with the sentences obtained from
the Document Retrieval phase with the help of
Stanford POS tagger and Stanford NER. For
the above example, if org1 is the query entity
then org2 is taken as the alternate name for
org1 and the corresponding org:alternate_names
slot is filled. Appropriate conditions to handle
the redundancy in list-valued slots, ignore
slots etc are also taken. Different patterns that
include dates, locations, entities and cardinal
numbers are formed to handle different slots
like per:date_of_birth, per:age, org:founded,
per:date_of_death, per:place_of_birth,
org:city_of_headquarters, etc.

For example, consider the slot per:age, if
there is no time window for that query, then
we have given the largest of all the cardinal
numbers that we found using our patterns for
age. Whenever there is a conflict in terms of
Location whether it is a city, state or coun-
try, we used lists of variations in names of
cities, states and countries. Similarly we re-
solved for the slots like per:country_of_birth,
per:stateorprovince_of_birth,
per:city_of_birth, org:city_of_headquarters,
org:stateorprovince_of_headquarters,
org:country_of_headquarters, etc.

5 Results

In our post-TAC experiments, we added a few new
rules and modified the existing ones. In our post-TAC
experiments we considered only the documents from
the Document Collection which have the exact phrase

Runs Precision recall f-score
Official Run 0.363 0.054 0.094
post-TAC experiments 0.76 0.098 0.174

Table 7: Results of official submission and post-TAC
experiments

of the query entity. For example, if the query entity
is “Samsung”, we gather all the documents that con-
tain the entity name Samsung by searching the index.
These documents can also contain the documents rele-
vant to “Samsung Semiconductors”. In our post-TAC
experiments we discarded all the documents related to
“Samsung Semiconductors” as both are not the same
organizations. Table 7, shows F-measure for our of-
ficial run and also post-TAC experiments. Statistics
for post-TAC experiments about the number of rules,
mappings etc are provided in Table 8.

Twelve new rules are added for the person entity
type which identified 8 additional slot values and cor-
rected 19 false positives. Two new rules are added for
the organization entity type also resulted in achiev-
ing better accuracy. Overall 46 new slots are correctly
filled and other 20 spurious slot responses are rectified
in the post-TAC experiments.

6 Conclusion

In this paper, we presented our attempt to develop
a system for automatically populating a structured
Knowledge Base. Our system for Entity Linking is
based on Information Retrieval approach. We iden-
tify a set of potential nodes for the KB that can be
linked to the query entity. We rank these potential
nodes using Tf-idf ranking model and re-rank them
using pseudo relevance feedback for query expansion.
The final score for a node is the a linear combination
of the ranking and re-rank score. Our system achieves

Total no. of Slots No. of Slots addressed Total no. of mappings used Total no. of rules used
42 35 82 70

Table 8: Statistics of mappings and rules

a very good performance and is scalable because of
the continuous development of Wikipedia, which is
used for building our Knowledge Repository.

Our approach to Slot Filling being a rule-based
model required a lot of human effort. The system is
able to achieve high precision because the rules writ-
ten are generalizable and intuitively correct. The re-
call of our system is low because we couldn’t write
rules for all the slots. With some minor tweaking and
addition of few more rules for frequently occurring
cases, our post-TAC score is above the median. Fac-
tors that limited our performance in KBP Slot Filling
2010 include sentence selection that was too broad,
noisy patterns, poorer domain models, low training
data for most of the slots, quality of the training an-
notated data. We plan to do boot strapping to identify
more rules automatically using the rules written man-
ually.

References
[1] R. Feldman, Y. Aumann, M. Finkelstein-Landau, E. Hurvitz,

Y. Regev, and A. Yaroshevich. A comparative study of informa-
tion extraction strategies. Computational Linguistics and Intelligent
Text Processing, pages 21–34, 2010.

[2] Y. Han, F. Li, K. Liu, and L. Liu. Template based chinese news
event summarization. Semantics, Knowledge and Grid, Interna-
tional Conference on, 0:53, 2006.

[3] J. Jagarlamudi, P. Pingali, and V. Varma. Query independent sen-
tence scoring approach to duc 2006. In In proceedings of DUC
2006. DUC, 2006.

[4] K. Lund and C. Burgess. Producing high-dimensional semantic
spaces from lexical co-occurrence. Behavior Research Methods,
Instruments, and Computers, (28):203–208, 1996.

[5] D. Milne. An open-source toolkit for mining wikipedia. 2009.

[6] D. Milne and I. H. Witten. An effective, low-cost measure of se-
mantic relatedness obtained from wikipedia links. 2008.

[7] D. Milne and I. H. Witten. Learning to link with wikipedia. In
CIKM ’08: Proceeding of the 17th ACM conference on Information
and knowledge management, pages 509–518, New York, NY, USA,
2008. ACM.

[8] M. Remy. Wikipedia: The free encyclopedia. Reference Reviews,
16(6):5, 2002.

[9] K. Sparck Jones. A statistical interpretation of term specificity and
its application in retrieval. pages 132–142, 1988.

[10] V. Varma, P. Bysani, K. Reddy, V. Bharat, S. GSK, K. Kumar,
S. Kovelamudi, K. K. N, and N. Maganti. iiit hyderabad at tac 2009.
Technical report, Gaithersburg, Maryland USA, 2009.

[11] M. White, T. Korelsky, C. Cardie, V. Ng, D. Pierce, and K. Wagstaff.
Multidocument summarization via information extraction. In HLT
’01: Proceedings of the first international conference on Human
language technology research, pages 1–7, Morristown, NJ, USA,
2001. Association for Computational Linguistics.

[12] C. Zhai and J. Lafferty. A study of smoothing methods for lan-
guage models applied to information retrieval. ACM Trans. Inf.
Syst., 22(2):179–214, 2004.

