
The Alyssa System at TAC QA 2008

Michael Wiegand Saeedeh Momtazi Stefan Kazalski
Fang Xu Grzegorz Chrupała Dietrich Klakow

Spoken Language Systems
Saarland University

D-66123 Saarbrücken, Germany
lsv trec qa@lsv.uni-saarland.de

Abstract

We present the Alyssa QA system which
participated in the TAC 2008 Question
Answering Track. The system consists of
two parallel streams: the blogger stream
which is used in order to deal with ques-
tions which ask for lists of blog authors,
and the main stream which processes other
opinion questions. We also use a named
entity detection component specialized to
the entertainment domain. Evaluation re-
sults show that our system exhibits sys-
tematically better performance on blogger
questions than on other rigid questions.

1 Introduction

In this paper we describe theAlyssaQA system
developed at Saarland University. We focus on
the modifications made to our system in order to
participate in the TAC 2008 Question Answering
Track.

The principal challenge in this year’s competi-
tion has been answering opinion questions based
on the corpus of blog posts (Blog06). Since our
system so far has been mostly aimed at answering
standard factoid questions, we needed to imple-
ment substantial additional components in order to
be able to deal with the new setting.

In spite of the heavy modifications of our last
year’s system at short notice, we still managed to
develop a system to place us third in the overall
evaluation.

Given the importance of detecting and classify-
ing opinion questions, we experimented with sev-
eral question polarity detection methods and as a
result chose a robust rule-based approach which
performed well on the TAC sample questions.

We noticed that many of the TAC sample ques-
tions need to list bloggers having a certain opin-
ion about a certain topic, and thus we developed a
whole separate stream devoted to detecting blog-
ger questions and answering them.

Based on inspection of the sample questions
and the Blog06 corpus, we suspected that detect-
ing named entities from the entertainment domain
would again prove useful to this year’s task, and
accordingly we gathered new resources and re-
engineered the dedicated component for detecting
such entities from last year’s system. The com-
plete system thus consists of two parallel process-
ing streams: the main stream answers standard
opinion questions, while the blogger stream is spe-
cialized to dealing with questions asking for lists
of blogger names.

The remainder of the paper is organized as fol-
lows: in Section 2 we present an overview of
the Alyssa 2008system. In Section 3 we present
the components developed or modified for this
year’s competition: question polarity classifica-
tion (Section 3.1), query expansion (Section 3.2),
named entity detection for the entertainment do-
main (Section 3.3), squishy list answer extraction
3.4), answer validation (Section 3.5), the blogger
stream (Section 3.6) and fusion (Section 3.7). In
Section 4 we describe the configuration for the
three submitted Alyssa runs and present the eval-
uation results for the complete task as well as for
the subset consisting of blogger questions. Finally
in Section 5 we conclude and discuss future work.

2 System Overview

For the TAC 2008 Question Answering Track, our
system Alyssa – which successfully participated
in last years’ competitions – has changed its fo-
cus from factoid questions to opinion questions.



Figure 1 shows the architecture of Alyssa. For
this year, we have defined two streams in our sys-
tem. The first stream is an adapted version of our
factoid stream from last year (Shen et al., 2007)
and the second stream is a completely new stream
which has been designed for the questions ask-
ing for bloggers. A rule-based component, blog-
ger question detection, classifies the questions into
two types. The questions asking for bloggers
run through both the main stream and the blog-
ger stream whereas the other questions only run
through the main stream.

In the main stream, we first perform a linguistic
analysis of the question. This encompasses syn-
tactic parsing and named entity tagging. This in-
formation is used later for answer extraction. The
semantic type of a question is determined in a sep-
arate step called semantic question typing. This
year we replace our previous classification mod-
ule using language modeling (LM) by a model us-
ing support vector machines (SVM). We decided
in favor of SVM since they produced a higher clas-
sification accuracy both on the sample questions
provided by NIST for this year’s TAC competition
and our own set of opinion questions.

Beside the semantic question typing, the polar-
ity of opinion questions is determined by the po-
larity question typing component. Then, a query is
constructed from the question, based on this anal-
ysis.

Following query construction, query expansion
techniques based onGoogleandWikipediaare ap-
plied. The expanded query is run against docu-
ment retrieval on the Blog06 corpus. A form of
dynamic document fetching (Shen et al., 2007) is
used to determine the number of retrieved docu-
ments according to the question type. The sen-
tence retrieval component retrieves the relevant
sentences based on language modeling.

In the next step, a new opinion sentence
retrieval module extracts opinionated sentences
from the retrieved sentences. Sentence polarity
classification is applied to the retrieved opinion-
ated sentences in order to classify the sentences
into positive and negative sentences. Which of
these groups is selected for further processing de-
pends on the result of polarity question typing.
The next step is answer extraction for squishy list
questions.

There are two types of linguistic processing
which may be applied to a rigid list question. If

the question asks for a named entity from the en-
tertainment domain, we automatically annotate the
retrieved documents with named entities of the ap-
propriate type. Otherwise, only the opinionated
retrieved sentences with the correct polarity are
annotated. The reason for document-level anno-
tation is that for entertainment-related rigid ques-
tions answer extraction on sentence level is not
feasible (see Section 3.3 for more details).

After the extraction of candidate answers from
the annotated documents or sentences, duplication
removal is applied. Our new answer validation
component re-ranks the resulting list of unique
candidate answers as the final answers to the rigid
list questions.

The blogger stream of Alyssa begins after doc-
ument fetching of the main stream. In the blog-
ger stream the retrieved documents undergo blog-
ger detection to split the document into smaller
segments and find the author/blogger of each seg-
ment. Each segment is assigned three scores de-
termined by three different components: topic rel-
evance ranking searches for the relevant segments
to the question, opinion classification computes
the degree of opinionatedness, and polarity classi-
fication measures how much the polarity of a seg-
ment overlaps with the polarity of its question. A
final score obtained by interpolating the scores of
the individual components is assigned to each seg-
ment. After that, the segments are ranked in the
blogger ranking according to that score. In the
fusion module, the result of blogger questions is
merged with the output of the main stream which
creates a unique list for blogger rigid list ques-
tions.

3 New Experiments

3.1 Question Polarity Classification

The task of this module is decide whether a TAC
question has a positive or negative polarity. Using
the sample questions for this year’s TAC QA com-
petition1, we tested three types of classifiers, one
trained on the MPQA corpus (Wiebe et al., 2003),
one trained on the English NTCIR data (Seki et al.,
2007), and one rule-based component using the
Subjectivity Lexicon (SL) by (Wilson et al., 2005).
MPQA and NTCIR were chosen as these corpora
contain annotation usable for sentence-level clas-
sification. SL was chosen as a polarity lexicon

1http://www.nist.gov/tac/tracks/2008/
qa/QA08 sample questions.xml.txt



Figure 1: Architecture ofAlyssa.



since it is one of the largest manually constructed
lexicons currently available in English. In addition
to the prior polarity of a lexical unit it contains the
strength of polarity2 and part-of-speech informa-
tion which may serve as basic word sense disam-
biguation. We made use of all this information in
our rule-based classifier.

From the MPQA corpus, we extracted all sen-
tences withdirect subjective elementsandexpres-
sive subjective elements(Wiebe et al., 2003) hav-
ing either positive or negative polarity. If a sen-
tence contained both positive and negative polar-
ity according to these elements, we manually an-
notated the sentence according to the overall po-
larity3. We trained two SVM-based classifiers on
this dataset: one trained on overall vocabulary of
the dataset, the other trained on all polarity expres-
sions from SL. Both classifiers employ stemming.
From the NTCIR corpus, we extracted all polar
sentences where at least two of the three judg-
ments agreed in labeling. Again we trained two
classifiers on this dataset analogous to the former
dataset.

The algorithm of the rule-based (unsupervised)
classifier is as follows:

1. Title Removal: Discard all words within
quotations4.

2. Normalization: Stem the question5 and nor-
malize case.

3. Feature Extraction with Crude Word
Sense Disambiguation:Look up all words
of the question in the lexicon. A word must
not only match the lexical form but also the
part-of-speech tag of an entry.

4. Negation Modeling: Scan the question for
negation expressions. In case a negation ex-
pression is found, reverse the polarity of all
subsequent polar expressions.

5. Score Assignment: Assign scores to each
polar expression. Assign0.5 to weak polar
expressions and1.0 to strong polar expres-
sions.

2eitherweakor strong
3Sentences with mixed overall polarity, such asPeter likes

the book while Mary hates it, were discarded.
4Consider questionWhy did people dislike the movie

“Good Night and Good Luck”?where taking the occurrences
of Goodinto account might cause the question to be wrongly
classified as positive.

5All entries in SL were stemmed as well.

6. Classification: Sum the scores for each po-
larity. Classify the question aspositive, if the
sum of scores of the positive expressions is
larger than the sum of scores of negative ex-
pressions. Otherwise classify the question as
negative.

The current version of the rule-based classifier
has a bias towards negative polarity. This is due to
the fact that negative polarity is more difficult to
detect6.

Table 1 displays the performance of the differ-
ent approaches on the sample questions for this
year’s TAC QA competition. Clearly, the data-
driven methods perform very poorly. Slight im-
provement is achieved by only using polar ex-
pressions as features. We found that this is more
effective than just removing question-specific in-
formation from the test data, such as interroga-
tive pronouns and question marks. We suspect
that the poor performance of the data-driven meth-
ods is due to a domain mismatch. The rule-based
method is significantly better than any other ap-
proach which is why we used this method for our
QA system.

3.2 Query Expansion

In this year’s system we replaced our existing re-
trieval component with a component more suit-
able for opinion retrieval. Whereas our old re-
trieval system merely considered terms from the
question and the target, the new retrieval includes
a relevance-based query expansion using the web
and a set of hand-selected opinion markers. We
also improved the sentence boundary detection
by adding heuristics for processing ungrammati-
cal sentences contained in blogs.

The query construction happens in three stages:

1. Extraction of Query Term Seeds: Noun
and verb phrases contained in the ques-
tion are identified by using Brill’s part of
speech tagger (Brill, 1992) and Abney’s
chunk parser (Abney, 1991). The target and
the phrases extracted from the question are
considered the set of query term seeds.

2. Retrieval of Feedback Terms: Each query
seed term is sent to different web search
engines7 and Wikipedia to create a set of
feedback documents. Feedback terms are

6even with the inclusion of negation modeling
7We used Google, MSN Live Search and Yahoo.



Corpus Method Feature Set Accuracy
MPQA data-driven in-domain vocabulary 57.58
MPQA data-driven Subjectivity Lexicon 60.61
NTCIR data-driven in-domain vocabulary 54.55
NTCIR data-driven Subjectivity Lexicon 63.64

— rule-based Subjectivity Lexicon 93.94

Table 1: Performance of Different Question Polarity Classifiers on TAC Sample Questions.

Queries Relevance Opinion
MAP P@10 MAP P@10

Old Retrieval – System of 2007
BLOG06 0.2737 0.720 0.1782 0.4540
BLOG07 0.2984 0.7000 0.2214 0.4480

New Retrieval – System of 2008
BLOG06 0.3668 0.7640 0.2490 0.5260
BLOG07 0.4292 0.7620 0.3225 0.5380

Table 2: Performance of Retrieval on TREC Blog
Topics.

extracted by applyingrelevance-based lan-
guage models(Lavrenko and Croft, 2001) on
the feedback documents.

3. Query Expansion: The final set of query
terms is the union of query seed terms, feed-
back terms and a pre-defined set of opinion
markers.

To further improve the performance of the retrieval
we changed our retrieval engine from Lemur8 to
Indri9. The inference network allowed us to flex-
ibly combine the phrases of the query and the ex-
pansion terms with weights and connectors. This
makes the retrieval more robust against noisy ex-
pansion terms.

3.3 Named Entity Detection for the
Entertainment Domain

We speculated that fine grained named entities
from the entertainment domain (e.g.actor names,
book names, song titles) would be highly relevant
for this year’s opinion task since a great propor-
tion of opinionated content in blogs covers items
from this domain. For virtually all of these types,
we are totally reliant on look-up lists since alterna-
tive methods to detect these entities, for example
by using linguistic cues are not effective. We ex-
tended last year’s typologies by a few categories.

8www.lemurproject.org
9www.lemurproject.org/indri

The current list of types along the corresponding
web sites from which we extracted these types is
displayed on Table 3.

A major problem of the newly extracted entity
lists is the large amount of noise. In particular,
the book list contains a fairly high proportion of
partial entries, entire abstracts rather than titles,
or just spurious entries. Due to time restrictions
we resorted to heuristic measures. We excluded
one-word entries since they fired far too often. In
order to remove highly ambiguous entries (e.g.
book titles which are also person names or loca-
tion names etc.), we used gazetteers from common
named entity types (dates, person names and loca-
tions) as a filter. The problem of noise is far from
solved. We assume that a more sophisticated treat-
ment of named entities would increase the overall
performance of our QA system.

The strategy of retrieving answers for
entertainment-related list questions was kept
fairly simple. We noted that named entities
from the entertainment domain are very sparsely
distributed among Blog06 documents. Since
our sentence retrieval hardly retrieved any sen-
tences with these types, we extracted entities
from retrieved documents. We did not factor in
any sentiment aspect into the retrieval of these
entities as the restrictiveness of potential polarity
modeling would have badly penalized the recall
of retrieval. We noted that there is usually a strong
bias towards a specific polarity given a particular
answer entity. Our attempts of classifying polarity
are obviously too unstable to remove this bias
while preserving an acceptable recall. For exam-
ple, a question likeList unpopular movies starring
Tom Hanksis very difficult to answer, since the
overwhelming majority of movie titles starring
the afore-mentioned actor found in the web are
popular movie titles. We found that for questions
like the one above mentioned answering the mere
factoid question, i.e. List movies starring Tom
Hanks, is more likely to produce correct answers



Named Entity Type Source
actors/actresses IMDB
authors IMDB
books Abebooks.com
musical artists Discogs.com
movie titles IMDB
song names Discogs.com
tv programs IMDB

Table 3: Named Entity Types from the Entertain-
ment Domain with their Web Sources.

than trying to additionally postulate a negative
polar context. Note that the opposite polar
question, i.e.List popular movies by Tom Hanks
would not require any opinion modeling, since in
this case topic relevance strongly correlates with
polarity relevance.

3.4 Squishy List Answer Extraction

For this year’s squishy list questions we exper-
imented with two different models, one stan-
dard model using sentence retrieval (Section 3.4.1)
and a refined model using passage retrieval (Sec-
tion 3.4.2).

3.4.1 Model I

The standard squishy list model uses the fac-
toid sentence retrieval from our last year’s sys-
tem (Shen et al., 2007) to extract topic relevant
sentences. Afterwards we remove all sentences
which do not have the polarity of the question
as classified by our polarity question typing (Sec-
tion 3.1).

The polarity filtering of the retrieved sentences
happens in two stages:

In the first stage all opinionated sentences are
extracted. Opinions are detected by a classifier
trained to distinguish between opinionated and
factual content. For this, we use an SVM classi-
fier trained on Wikipedia topics (for factual con-
tent) and Rate-It-All10 reviews (for opinionated
content). Rate-It-All seemed a preferable source
since it covers various domains, in particular those
which are relevant for previous TREC Blog Track
and TREC QA Track topics (i.e. politics, enter-
tainment, IT-products, and sports). For SVM we
employedχ2 feature selection (Yang and Peder-
son, 1997).

10http://www.rateitall.com

For polarity classification we built another clas-
sifier from a subset of the Rate-It-All data. Unlike
the question polarity classification (Section 3.1),
we deliberately decided against a rule-based clas-
sifier in this task, since we observed that current
polarity lexicons (which are the backbone of such
a classifier) have a poor coverage on blog data.
Since we did not have sufficient time to build a lex-
icon for the blog domain, we decided to use a data-
driven classifier trained on labeled in-domain data.
We only considered reviews with only one sen-
tence because larger reviews tend to have mixed
opinions and serve less well for sentence-level po-
larity classification.

3.4.2 Model II

Squishy list questions ask for the reasons peo-
ple like or dislike something. In most cases the
reason for the sentiment is not located within the
statement itself expressing the sentiment towards a
particular target but within some nearby sentence.
Our alternative squishy list question model tries to
account for this behavior.

The answer extraction for squishy questions in
our alternative model happens in two stages: First,
relevant segments with the correct polarity are
extracted with the segment retrieval components
used in segment ranking (Section 3.6.3). The text
segments are created by applying a form oftext
tiling (Hearst, 1997). Then, the most relevant sen-
tence and the nearby sentences are extracted. The
detection of the relevant sentences is done using
word frequencies of the query words. The rank-
ing of the result corresponds to the ranking of the
segments.

3.5 Answer Validation

Answer validation focuses on using the redun-
dancy of web data to further validate top-ranked
answer candidates returned by answer extraction.
The hypothesis for web validation is that the num-
ber of documents that can be retrieved from the
web in which the question and answer co-occur
is a significant clue to the validity of the an-
swer (Magnini et al., 2002b). Our answer valida-
tion component consists of the following steps:

1. Given a question, construct three different
kinds of queries: bag of words (BOW),
phrase chunk (CHK) and declarative form
(DEC) (Shen et al., 2007).



Question Type Input Snippet Output
Non-Blogger Rigid 15 20 15
Blogger Rigid 15 15 15
Squishy 15 15 15

Table 4: Parameter Settings for Answer Valida-
tion.

2. Remove duplicates and noisy data from the
results of answer extraction.

3. Combine each query with an answer candi-
date.

4. Submit the pair to the Google search en-
gine.11

5. Estimate thevalidity score (VS)from the re-
sults returned by the search engine.

Last year, we only used the frequency of the
candidates within the web data for the valid-
ity score for answer selection. This year, we
experimented with more complex validity met-
rics to select the N-best answers for list ques-
tions. We employed both Maximal Likelihood Ra-
tio (MLHR) (Dunning, 1993) and Co-occurrence
Weight (COW) (Magnini et al., 2002a). MLHR
makes use of the asymptotic distribution of the
generalized likelihood ratio, which allows com-
parisons to be made between the significance of
the occurrences of both rare and common textual
phenomena. This metric is practical for calculat-
ing word co-occurrence from sparse data resulting
from complex queries. COW measures the associ-
ation strength by the distance between a candidate
answer and keywords, and considers more contex-
tual information in each snippet.

The final validity score (VS) combining MLHR
and COW is calculated by the following formula:

VS= COWα
· MLHRβ (1)

For TAC list questions, we setα = 3 andβ = 1

2

based on experiments on TREC2006 list questions
(89 questions). In the new answer validation com-
ponent, we can set three parameters: number of
input answer candidates (Input), number of snip-
pets returned by Google (Snippet) and number of
output answers (Output). The parameter settings
are displayed in Table 4.

11The priority of query types is: DEC≻ CHK ≻ BOW

3.6 Blogger Stream

After inspecting the sample questions for this
year’s TAC QA competition, we noticed a recur-
ring question type among therigid list questions,
which we thought required separate processing.
These are opinion holder questions, i.e. questions
asking for persons who express an opinion con-
cerning a particular topic. Most of them do not
make any restriction towards the opinion holder,
such asWhat people have good opinions of Sean
Hannity? We found that the highest proportion
of correct answers to these questions areblogger
names.

Conventional approaches to extract opinion
holders from natural language text, i.e. either by
very shallow contextual features or linguistic fea-
tures encoding relations between opinion bearing
words and opinion holders, such as those used in
(Choi et al., 2005; Kim and Hovy, 2006), will not
work for blogger detection. This is due to the
fact bloggers are usually not mentioned within a
blog post or comment but either precede or follow
them. The remoteness of blogger names from the
topic relevant terms within blog posts and com-
ments also means that sentence retrieval is an inap-
propriate input for blogger detection. We therefore
came up with a rule-based solution which takes
as input entire blog documents, heuristically seg-
ments them and assigns blogger names to the re-
sulting segments.

3.6.1 Blogger Question Detection

The task of this module is to determine whether
a question asks for a blogger or not. We use a rule-
based classifier based on a small set of regular ex-
pressions. If an input question is classified as a
blogger question according to the rule-based clas-
sifier the question is processed by the main stream
and the blogger stream. All other questions are
only processed by the main stream.

3.6.2 Blogger Detection

The blogger detection component attempts to
segment the retrieved blog documents and assign
to each segment its author. A typical blog doc-
ument consists of a post by the blog owner, plus
a number of comments by the readers. Both the
blog owner and the commentators can sign their
contributions with their real names or nicknames.
In order to segment documents and find authors
for the segments we exploit two classes of com-
monly occurring patterns used to indicate author-



ship in many blogs. Thetext-then-authorpattern is
a chunk of text followed by an expression indicat-
ing the author, such as for example “TEXT posted
by AUTHOR on DATE”. In theauthor-then-text
variation the author name is followed by their con-
tribution, e.g. as in “AUTHOR said: TEXT”.

If none of the patterns from the above two
classes matches, we assign to the whole blog doc-
ument the default author string, which we try to
find in the document body, header or URL using
another set of patterns.

3.6.3 Blogger Ranking

In this component we combine three scores for
the retrieved segments in order to rank them. The
scores are topic relevance (s1), opinionatedness
score (s2), and polarity score (s3).

The topic relevance is computed by using
relevance-based language models(Lavrenko and
Croft, 2001) (RLM). We decided in favor of RLM
in this ranking task, since standard language mod-
eling performed worse on this task using the TAC
sample questions. In our initial experiments on
these data we also found thatconditional sam-
pling outperformedi.i.d. samplingwhich is why
we used it for the official evaluation.

The opinion detection we used for this module
is identical with the one used in Model I of the
squishy list answer extraction (Section 3.4.1).

Polarity was classified by another SVM-based
classifier. We extracted those data from labeled
Rate-It-All reviews. Unlike the polarity classifica-
tion within the basic model of squishy list answer
extraction (Section 3.4.1), we did not confine our-
self to reviews being only one sentence but consid-
ered any possible length. The output value of the
SVM classifier is normalized in such a way that it
is high if the polarity of the segment agrees with
the polarity of the question and low otherwise.

The output of each subcomponent was used to
rank the blog segments. In order to come up with
scores from the subcomponents which can be rea-
sonably combined, we used inverted ranks as the
individual scores:s1, s2, ands3. The final scores
is a simple linear interpolation:

s = λ1s1 + λ2s2 + (1 − λ1 − λ2)s3. (2)

We tried a few different weight combinations on
the TAC 2008 sample questions and found that set-
ting eachλ uniformly to 1

3
gave one of the best re-

sults, and thus we used this configuration for the
submitted runs.

3.7 Fusion

For some blogger and entertainment-related list
questions from the sample TAC question set, we
retrieved too few answer entities from the pertain-
ing modules which exclusively retrieve correct an-
swer types. In order to be able to always pro-
vide a fixed number of answer entities for each list
question we add entities retrieved from our factoid
answer extraction in case the entity type specific
modules retrieved too little output.

4 Results

We carried out our TREC experiments on three
nodes part of a Linux Beowulf cluster. The perfor-
mance (F-score) of these three runs we submitted
are shown in Table 5.

The configuration variations of our runs are as
follows: the first run uses a new version of answer
validation (Section 3.5). The squishy answer gen-
eration in this run is based on text tiling, i.e. Model
II (Section 3.4.2).

In the second run, the squishy answer genera-
tion is based on standard sentence retrieval with
opinion and polarity classification, i.e. Model I
(Section 3.4.1). In the second run we also used
an alternative version of polarity question typing
(we changed the default polarity for ties12). The
answer validation is the same as the one used at
TREC 2007 (Shen et al., 2007).

The third run uses an alternative version of
named entity recognition (we used a less aggres-
sive filter for the look-up dictionaries); otherwise,
the settings are as in the second run.

As the numbers show, there is no considerable
difference between the three runs. The median
average for rigid list questions computed over 17
runs is 0.063; and the median average for squishy
list questions computed over the same number of
runs is 0.091. These results show that in rigid list
task, our performance is significantly better than
median; but in squishy list task, we are in the me-
dian.

Since we have developed a new stream in our
system, i.e. the blogger stream (Section 3.6), we
are very interested in its impact on our results.
With the current version of our system, the blog-
ger questions are processed by the blogger stream
and the non-blogger questions are processed by

12I.e. if the scores for positive and negative polarity are
equal, we consider the polarity of the question to bepositive
instead ofnegative(Step 6 in Section 3.1).



Run ID F-score F-score F-score
Rigid List Squishy List All

Alyssa1 0.097 0.087 0.094
Alyssa2 0.103 0.091 0.102
Alyssa3 0.106 0.090 0.104

Table 5: LSV Group Runs and Results Submitted
to TREC 2008.

the main stream. The blogger questions only use
the main stream as a back-off. For evaluating
this new stream, we computed the F-score exclu-
sively for the blogger questions. Our classifica-
tion of the rigid list question is based on the out-
put of the blogger question detection. According
to this module, there are 56 blogger questions and
34 non-blogger questions among 90 rigid ques-
tions13. Table 6 shows the results of the three runs
on blogger questions and non-blogger questions.
The numbers show that on every run the perfor-
mance on blogger questions is significantly better
than on the remaining rigid list questions.

Run ID F-score F-score F-score
Rigid List Rigid List Rigid List

Blogger Non-Blogger All

Alyssa1 0.126 0.049 0.097
Alyssa2 0.134 0.051 0.103
Alyssa3 0.144 0.044 0.106

Table 6: LSV Group Results on Blogger and Non-
Blogger Questions.

5 Conclusion & Future Work

We have presented our modified QA system
Alyssa for the TAC 2008 QA Track. The great-
est challenge of this year’s competition has been
the development of an opinion-based QA system
without almost any training data. Some compo-
nents could only be built at short notice due to the
late release of some sample questions just a few
weeks before the submission deadline. Though
the official results clearly show that there is con-
siderable room for improvement, the last-minute
construction of components, such as the blogger
stream, proved beneficial for the overall perfor-
mance of the system.

In future work, we would like to carry out a

13According to our own evaluation, the accuracy of classi-
fication is approximately95%.

thorough error analysis using this year’s evalua-
tion results and thus identify and rectify bottle-
necks of the system. We assume that a more so-
phisticated opinion/polarity ranking for all ques-
tions will be vital in achieving this goal. A com-
prehensive opinion-holder detection beyond the
identification of bloggers might also be worth-
while. Last but not least, the judgments files from
the TAC QA competition should allow us to opti-
mize the parameter settings of various components
of our system.

Acknowledgements

Michael Wiegand was funded by the German research

council DFG through the International Research Training

Group “IRTG” between Saarland University and University

of Edinburgh.

Saeedeh Momtazi and Fang Xu were funded by the German

research council DFG through the Partnership for Research

and Education “PIRE” between Saarland University, Charles

University, Brown Laboratory for Linguistic Information

Processing, and The Johns Hopkins University Center for

Language and Speech Processing.

Grzegorz Chrupała was funded by the BMBF project

NL-Search under contract number 01IS08020B.

References

Steven Abney. 1991. Parsing by Chunks. In Robert
Berwick, Steven Abney, and Carol Tenny, editors,
Principle-Based Parsing, Dordrecht. Kluwer Aca-
demic Publishers.

Eric Brill. 1992. A Simple Rule-based Part of Speech
Tagger. InProceedings of the Third Conference on
Applied Natural language processing (ANL), Trento,
Italy.

Yejin Choi, Claire Cardie, Ellen Riloff, and Siddharth
Patwardhan. 2005. Identifying Sources of Opinions
with Conditional Random Fields and Extraction Pat-
terns. InProceedings of the Conference on Human
Language Technology and Empirical Methods in
Natural Language Processing (HLT/EMNLP), Van-
couver, BC, Canada.

Ted Dunning. 1993. Accurate Methods for the Statis-
tics of Surprise and Coincidence.Computational
Linguistics, 19(1).

Marti A. Hearst. 1997. TextTiling: Segmenting Text
into Multi-Paragraph Subtopic Passages.Computa-
tional Linguistics, 23(1).

Soo-Min Kim and Eduard Hovy. 2006. Extracting
Opinions, Opinion Holders, and Topics Expressed



in Online News Media Text. InProceedings of the
44th Annual Meeting of the Association for Compu-
tational Linguistics (ACL), Sydney, Australia.

Victor Lavrenko and W. Bruce Croft. 2001.
Relevance-Based Language Models. InProceed-
ings of the Annual ACM Conference on Research
and Development in Information Retrieval (SIGIR),
New Orleans, LA, USA.

Bernardo Magnini, Matteo Negri, Reberto Prevete, and
Hristo Tanev. 2002a. Comparing Statistical and
Content-based Techniques for Answer Validation on
the Web. InProceeding of the VIII Convegno AI*IA,
Siena, Italy.

Bernardo Magnini, Matteo Negri, Reberto Prevete, and
Hristo Tanev. 2002b. Is It the Right Answer? Ex-
ploiting Web Redundancy for Answer Validation.
In Proceeding of the 40th Annual Meeting of the
Association for Computational Linguisitcs (ACL),
Philadelphia, PA, USA.

Yohei Seki, David Kirk Evans, Lun-Wei Ku, Hsin-Hsi
Chen, Noriko Kando, and Chin-Yew Lin. 2007.
Overview of Opinion Analysis Pilot Task at NTCIR-
6. InProceedings of the 6th NTCIR Workshop Meet-
ing, Tokyo, Japan.

Dan Shen, Michael Wiegand, Andreas Merkel, Ste-
fan Kazalski, Sabine Hunsicker, Jochen L. Leidner,
and Dietrich Klakow. 2007. The Alyssa System at
TREC QA 2007: Do We Need Blog06? InProceed-
ings of the 16th Text Retrieval Conference (TREC),
Gaithersburg, MD, USA.

Janyce Wiebe, Theresa Wilson, and Claire Cardie.
2003. Annotating Expressions of Opinions and
Emotions in Language.Language Resources and
Evaluation, 1:2.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing Contextual Polarity in Phrase-
level Sentiment Analysis. InProceedings of Human
Language Technologies Conference/Conference on
Empirical Methods in Natural Language Processing
(HLT/EMNLP), Vancouver, BC, Canada.

Yiming Yang and Jan Pederson. 1997. A Comparative
Study on Feature Selection in Text Categorization.
In Proceedings the 14th International Conference on
Machine Learning (ICML), Nashville, TN, USA.


