Saturn News
SATURN DAILY
Titan's "magic islands" likely honeycombed hydrocarbon icebergs
Summary of the fate of simple and complex organics on Titan's surface (background image AI generated by X. Yu using Midjourney).
Titan's "magic islands" likely honeycombed hydrocarbon icebergs
by Staff Writers
Washington DC (SPX) Jan 08, 2024

Titan's "magic islands" are likely floating chunks of porous, frozen organic solids, a new study finds, pivoting from previous work suggesting they were gas bubbles. The study was published in Geophysical Research Letters, AGU's journal for high-impact, short-format reports with immediate implications spanning all Earth and space sciences.

A hazy orange atmosphere 50% thicker than Earth's and rich in methane and other carbon-based, or organic, molecules blankets Saturn's largest moon, Titan. Its surface is covered with dark dunes of organic material and seas of liquid methane and ethane. Stranger yet are what appear in radar imagery as shifting bright spots on the seas' surfaces that can last a few hours to several weeks or more.

Scientists first spotted these ephemeral "magic islands" in 2014 with the Cassini-Huygens mission and have since been trying to figure out what they are. Previous studies suggested they could be phantom islands caused by waves or real islands made of suspended solids, floating solids, or bubbles of nitrogen gas. Xinting Yu, a planetary scientist and lead author of the new study, wondered if a closer look at the relationship between Titan's atmosphere, liquid lakes, and the solid materials deposited on the moon's surface could reveal the cause of these mysterious islands.

"I wanted to investigate whether the magic islands could actually be organics floating on the surface, like pumice that can float on water here on Earth before finally sinking," Yu said.

A weird world of organics
Titan's upper atmosphere is dense with diverse organic molecules. The molecules can clump together, freeze, and fall onto the moon's surface - including onto its eerily smooth rivers and lakes of liquid methane and ethane, with waves only a few millimeters tall.

Yu and her team were interested in the fate of these organic clumps upon reaching Titan's hydrocarbon lakes. Would they sink or float?

To find the answer, the team first investigated whether Titan's organic solids would simply dissolve in the moon's methane lakes. Because the lakes are already saturated with organic particles, the team determined that the falling solids would not dissolve when they reached the liquid.

"For us to see the magic islands, they can't just float for a second and then sink," Yu said. "They have to float for some time, but not for forever, either."

Titan's lakes and seas are primarily methane and ethane, both of which have low surface tension, making it harder for solids to float. The models suggested that most of the frozen solids were too dense and the surface tension too low to create Titan's magic islands unless the clumps were porous like swiss cheese.

If the icy clumps were large enough and had the right ratio of holes and narrow tubes, the liquid methane could seep in slowly enough that the clumps could linger at the surface, the researchers found.

Yu's modeling suggested individual clumps are likely too small to float by themselves. But if enough clumps massed together near the shore, larger pieces could break off and float away, similar to how glaciers calve on Earth. With a combination of a bigger size and the right porosity, these organic glaciers could explain the magic island phenomenon.

In addition to the magic islands, a thin layer of frozen solids coating Titan's seas and lakes could explain the liquid bodies' unusual smoothness. Thus, the findings from this study could explain two of Titan's mysteries.

Research Report:"The Fate of Simple Organics on Titan's Surface"

Related Links
American Geophysical Union
Explore The Ring World of Saturn and her moons
Jupiter and its Moons
The million outer planets of a star called Sol
News Flash at Mercury

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
SATURN DAILY
Using eclipses to calculate the transparency of Saturn's rings
Lancaster UK (SPX) Nov 16, 2023
A Lancaster University PhD student has measured the optical depth of Saturn's rings using a new method based on how much sunlight reached the Cassini spacecraft while it was in the shadow of the rings. The optical depth is connected to the transparency of an object, and it shows how far light can travel through that object before it gets absorbed or scattered. The research, led by Lancaster University in collaboration with the Swedish Institute of Space Physics, is published in the Monthly N ... read more

SATURN DAILY
Ready for Contact Science: Sols 4062-4063

Sols 4059-4061: New Year, Old Challenges

Sols 4056-4058 Blog: "Ringing" in a New Year

Recent volcanism on Mars reveals a planet more active than previously thought

SATURN DAILY
NASA delays Artemis crewed launches, targets moon landing in 2026

First US private lunar lander mission fails

Privatised Moon landings: A new era of commercial lunar exploration

Rocket carrying American lunar lander arrives at launchpad

SATURN DAILY
Titan's "magic islands" likely honeycombed hydrocarbon icebergs

Dragonfly Rotorcraft Mission to Saturn's Titan Moves into Final Design Phase

Cassini's Grand Finale Unveils Variations in Saturn's D Ring influx

Using eclipses to calculate the transparency of Saturn's rings

SATURN DAILY
China begins 2024 with key Kuaizhou 1A satellite launch

Shenzhou XVII astronauts set for their first spacewalk

China's commercial space sector achieves milestones with series of successful launches

China's space programme: Five things to know

SATURN DAILY
New images reveal what Neptune and Uranus really look like

Researchers reveal true colors of Neptune, Uranus

The PI's Perspective: The Long Game

Webb rings in the holidays with the ringed planet Uranus

SATURN DAILY
Unlocking the secrets of a "hot Saturn" and its spotted star

Three iron rings in a planet-forming disk

Astronomers Discover Early Ring and Spiral Structures in Young Planetary Disks

COSMIC: The SETI Institute is unlocking the mysteries of the universe with breakthrough technology at the Karl G. Jansky Very Large Array

SATURN DAILY
SATURN DAILY
NASA, NOAA Launch NEON Program with SwRI-developed QuickSounder satellite

Sidus Marks Key Progress in AI sat tech ahead of LizzieSat-1 launch

Earth Blox delivers climate and nature analytics at scale through Google Cloud Marketplace

Spire Global to provide essential atmospheric data to NOAA

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.