
Priority in Process Algebras

Rance Cleaveland

Department of Computer Science, State University of New York at Stony Brook,

Stony Brook, NY 11794, USA, rance@eos.ncsu.edu

Gerald L�uttgen

Institute for Computer Applications in Science and Engineering (ICASE),

NASA Langley Research Center, Hampton, VA 23681, USA, luettgen@icase.edu

V. Natarajan

Networking Hardware Division, IBM Corporation,
Research Triangle Park, NC 27709, USA, nataraj@raleigh.ibm.com

Abstract

This chapter surveys the semantic rami�cations of extending traditional process
algebras with notions of priority that allow for some transitions to be given prece-
dence over others. The need for these enriched formalisms arises when one wishes to
model system features such as interrupts, prioritized choice, or real-time behavior.

Approaches to priority in process algebras can be classi�ed according to whether
the induced notion of pre-emption on transitions is global or local and whether
priorities are static or dynamic. Early work in the area concentrated on global pre-
emption and static priorities and led to formalisms for modeling interrupts and
aspects of real-time, such as maximal progress, in centralized computing environ-
ments. More recent research has investigated localized notions of pre-emption in
which the distribution of systems is taken into account, as well as dynamic priority
approaches, i.e., those where priority values may change as systems evolve. The lat-
ter allows one to model behavioral phenomena such as scheduling algorithms and
also enables the e�cient encoding of real-time semantics.

Technically, this chapter studies the di�erent models of priorities by presenting
extensions of Milner's Calculus of Communicating Systems (CCS) with static and
dynamic priority as well as with notions of global and local pre-emption. In each
case the operational semantics of CCS is modi�ed appropriately, behavioral theories
based on strong and weak bisimulation are given, and related approaches for di�erent
process-algebraic settings are discussed.

Key words: priority, pre-emption, bisimulation.

This article was processed using Elsevier's elsart.cls �le. 1 June 1999

Contents

1 Introduction 1

1.1 Classi�cation of Approaches to Priority 2

1.2 Summary of this Chapter 3

1.3 Organization of this Chapter 4

2 Basic Language and Notation 4

3 Static Priority and Global Pre-emption 6

3.1 Operational Semantics 7

3.2 Semantic Theory Based on Strong Bisimulation 7

3.3 Semantic Theory Based on Weak Bisimulation 9

3.4 Example 14

3.5 Prioritization and Deprioritization Operators 15

3.6 Extension to Multi-Level Priority Schemes 18

3.7 Concluding Remarks and Related Work 20

4 Static Priority and Local Pre-emption 20

4.1 Locations 22

4.2 Operational Semantics 23

4.3 Semantic Theory Based on Strong Bisimulation 25

4.4 Semantic Theory Based on Weak Bisimulation 28

4.5 Example 31

4.6 Discussion on the Alteration of Some Design Decisions 32

4.7 Extension to Multi-Level Priority Schemes 34

4.8 Camilleri and Winskel's Approach 37

4.9 Relating Both Priority Approaches 39

4.10 Concluding Remarks and Related Work 40

5 Dynamic Priority and Global Pre-emption 41

5.1 Real-Time Semantics 42

5.2 Dynamic Priority Semantics 44

5.3 Relating Dynamic Priority and Real-Time Semantics 46

5.4 Concluding Remarks and Related Work 47

6 Priority in Other Process-Algebraic Frameworks 48

7 Conclusions and Directions for Future Work 50

8 Sources and Acknowledgments 53

References 53

1 Introduction

Traditional process algebras [7,39,42,56] provide a framework for reasoning
about the communication potential of concurrent and distributed systems.
Such theories typically consist of a simple calculus with a well-de�ned op-
erational semantics [1,67] given as labeled transition systems; a behavioral
equivalence is then used to relate implementations and speci�cations, which
are both formalized as terms in the calculus. In order to facilitate composi-
tional reasoning, in which systems are veri�ed on the basis of the behavior of
their components, researchers have devoted great attention to the de�nition
of behavioral congruences, which allow the substitution of \equals for equals"
inside larger systems.

Although many case studies (see, e.g., [3]) prove the utility of the process-
algebraic approach to system modeling and veri�cation, many systems in prac-
tice cannot be modeled accurately within this framework. One reason is that
traditional process algebras focus exclusively on expressing the potential non-
determinism that the interplay of concurrent processes may exhibit; they do
not provide any means for encoding di�ering levels of urgency among transi-
tions that might be enabled from a given system state. Typical examples of
urgency include:

� interrupts, where non-urgent transitions at a state are pre-empted when-
ever an interrupt is raised;

� programming language constructs, such as the PRIALT construct in
occam [43], that impose an order on transitions;

� real-time behavior that is semantically founded on the well-known syn-
chrony hypothesis [13] or maximal progress assumption [78]; and

� scheduling algorithms which also rely on the concept of pre-emption.

In each of these cases urgency provides a means for restricting nondetermin-
ism. This mechanism is simply ignored in traditional process algebras. As a
consequence, the resulting system models are often not faithful since they
contain spurious paths that cannot be traversed by the real-world systems
themselves [16,30].

As a simple example of the need for integrating concepts of urgency in process
algebra consider the interrupt-based system depicted in Figure 1. It consists of
two processes, A that
ips back and forth between two states andB that checks
if A is running properly. Whenever B receives a check message it requests
status information from A via interrupt port i, which in turn responds by ok.
In the absence of an indication that a communication on i is more urgent than
one on back and forth, the process A can ignore a check request inde�nitely.

1

back

forth

i
check

A B
ok

Fig. 1. Back-and-forth example

1.1 Classi�cation of Approaches to Priority

A number of approaches have been proposed for introducing sensitivity to as-
pects of priority [5,12,16,22{24,27,29,30,33,35,37,45,46,52,53,62,63,69,72,73].
One may classify these approaches according to the following two criteria.

Static vs. dynamic priority:

In static approaches transitions are assigned priority values that do not
change as the system under consideration evolves. These schemes �nd ap-
plication in the modeling of interrupts or prioritized choice constructs. In
the former case, interrupts have a �xed urgency level associated with them;
in the latter priorities of transitions are �xed by the static program syn-
tax. Almost all priority approaches to process algebra published so far deal
with static priorities. The exceptions are [16,22], which present models that
allow priority values of transitions to change as systems evolve. Such dy-
namic behavior is useful in modeling scheduling algorithms and real-time
semantics.

Global vs. local pre-emption:

This criterion refers to the scope of the priority values. In the case of cen-
tralized systems, priorities generally have a global scope in the sense that
transitions in one process may pre-empt transitions in another. We refer to
this kind of pre-emption, which has been advocated by Baeten, Bergstra,
and Klop [5] and by Cleaveland and Hennessy [27] in the late eighties, as
global pre-emption. In contrast, in a distributed system containing several
sites, transitions should only be allowed to pre-empt those at the same site
or location. This kind of pre-emption, which was �rst studied by Camilleri
and Winskel [24] in the early nineties, is called local pre-emption.

Based on this classi�cation scheme, the body of this chapter investigates the
following di�erent semantics for a prototypical process-algebraic language:

2

static/ global, static/local, and dynamic/global. Only the combination of dy-
namic priority and local pre-emption is omitted, since research has not yet
been carried out on this topic.

Some caveats about terminology are in order here. Other process algebra re-
searchers have used the term \pre-emption" in a setting without priorities [17];
in their usage pre-emption occurs when the execution of one transition removes
the possibility of another. In our priority-oriented framework, we say that pre-
emption occurs when the presence of one transition disables other transitions.
Berry [12] refers to this latter notion as must pre-emption and to the former
as may pre-emption. In this chapter, whenever we speak of \pre-emption," we
mean \must pre-emption." It should also be noted that our concept of global
pre-emption and dynamic priority di�ers from the notion of globally dynamic
priority found in [72]; as the distinction is somewhat technical we defer further
discussion on this point to later in the chapter.

1.2 Summary of this Chapter

This chapter surveys existing work on priority in process algebras. In order to
focus on some of the technical issues involved with priority and pre-emption,
we introduce a simple framework for their illustration. This framework extends
Milner's Calculus of Communicating Systems (CCS) [56] and its bisimula-
tion-based semantic theory by attaching priority values to actions. Although
familiarity with CCS is not a prerequisite for reading this chapter, some knowl-
edge of it would be advantageous since not all standard de�nitions and nota-
tions are re-stated here. For our language three di�erent semantics are given:
one re
ecting static priorities and global pre-emption, one for static priorities
and local pre-emption, and one capturing dynamic priorities. The common
language allows for a detailed comparison of the semantic concepts; in ad-
dition, the classi�cation scheme presented above helps us to categorize most
published approaches to priority. These have been proposed for a variety of
well-known process algebras, such as the already mentioned CCS, the Algebra
of Communicating Processes (ACP) [9], Communicating Sequential Processes
(CSP) [42], the Calculus of Broadcasting Systems with Priorities (PCBS) [69],
Synchronous CCS (SCCS) [56], and Asynchronous Communicating Shared Re-
sources (ACSR) [23].

Technically, for the process algebras with static priority to be presented in
this chapter we develop a semantic theory based on the notion of bisimu-
lation [56,65]. Our aim is to carry over the standard algebraic results from
CCS [56], including abstractness results as well as axiomatic, logical, and al-
gorithmic characterizations. More precisely, we investigate both strong and
weak bisimulations that are based on naive adaptations of the standard de�-

3

nitions as given by Milner; we especially characterize the largest congruences
contained in these relations. These abstractness results indicate that the be-
havioral relations are semantically adequate and useful for formally reason-
ing about concurrent and distributed systems. Moreover, we present sound
and complete axiomatizations for the obtained strong bisimulations with re-
spect to �nite processes, i.e., those which do not contain recursion. These
axiomatizations testify to the mathematical tractability of the semantic theo-
ries presented here. We also characterize the attendant notions of prioritized
strong and weak bisimulations as standard bisimulations on alternative tran-
sition relations so that well-known partition-re�nement algorithms [26,48,64]
for their computation become applicable. This also allows for establishing log-
ical characterizations of the behavioral relations by adapting Hennessy-Milner
logic [19,56]. In the case of the dynamic priority semantics, we prove a one-to-
one correspondence with traditional real-time semantics [10,59,78] in terms
of strong bisimulation. Because of this close relationship, semantic theories
developed for real-time process algebras can be carried over to the dynamic
priority setting.

1.3 Organization of this Chapter

The remainder of this chapter is organized as follows. The next section intro-
duces our language, de�nes some formal notation used throughout the chapter,
and discusses some basic design decisions we have taken. Section 3 presents
a semantics of the language based on static priority and global pre-emption;
Section 4 then develops a semantics based on static priority and local pre-
emption. A dynamic priority approach is illustrated in Section 5. Related
work is referred to in each of the last three sections, while Section 6 surveys
several priority approaches adopted for di�erent process-algebraic frameworks.
Section 7 contains our conclusions and suggestions for future work. The �nal
section points to the sources of the research compiled in this chapter.

2 Basic Language and Notation

As mentioned above, the language considered here is an extension of Milner's
CCS [56], a process algebra characterized by handshake communication and
interleaving semantics for parallel composition. Syntactically, CCS includes
notations for visible actions, which are either sends or receives on ports, and
a distinguished invisible, or internal action. The semantics of CCS is then
given via a transition relation that labels execution steps with actions. When a
sender and receiver synchronize, the resulting action is internal. Consequently,
transitions labeled by visible actions can be seen as representing only \po-

4

tential" computation steps, since in order for them to occur they require a
contribution from the environment. Transitions labeled by internal actions
describe complete synchronizations and, therefore, should be viewed as \real"
computation steps.

In order to capture priorities, the syntax of our language di�ers from CCS
in that the port set exhibits a priority scheme, i.e., priorities are attached
to ports. Our notion of pre-emption then stipulates that a system cannot
engage in transitions labeled by actions with a given priority, whenever it is
able to perform a transition labeled by an internal action of higher priority.
In this case we say that the lower-priority transition is pre-empted by the
higher-priority internal transition. In accordance with the above discussion
visible actions never have pre-emptive power over actions of lower priority,
because visible actions only indicate the potential for execution. An algebraic
justi�cation of this design decision can be found in Section 3.5.

Technically, priority values are taken from some �nite domain together with
a strict order. For the sake of simplicity we use �nite initial intervals N of
the natural numbers N in what follows. We adopt the convention that smaller
numbers mean higher priorities; so 0 is the highest priority. Intuitively, vis-
ible actions represent potential communications that a process may be will-
ing to engage in with its environment. Formally, let f�k j k 2 Ng denote an
N -indexed family of countably in�nite, disjoint sets of ports. Intuitively, �k

contains the ports with priority k that processes may synchronize over. Then
the set of actions Ak with priority k may be de�ned by Ak =df �k[�k[f�kg,
where �k =df f�k j�k 2 �kg and �k =2 �k. An action �k 2 �k may be thought
of as representing the receipt of an input on port � that has priority k, while
�k 2 �k constitutes the deposit of an output on �. The invisible action �k
represent internal computation steps with priority k. For better readability
we write � :k, if �k 2 �k, � :k, if �k 2 �k, and � :k for �k. The sets of
all ports �, all complementary ports �, and all actions A are de�ned byS
f�k j k 2 Ng,

S
f�k j k 2 Ng, and

S
fAk j k 2 Ng, respectively. In what fol-

lows, we use � :k; � :k; : : : to range over A and a :k; b :k; : : : to range over
� [�. We also extend � to all visible actions a :k by a :k =df a :k. Finally, if
L � � [� then L = fa :k j a :k 2 Lg. The syntax of our language is de�ned
by the following BNF.

P ::= 0 j x j � :k:P j P + P j P jP j

P [f] j P n L j �x:P

Here, f is a �nite relabeling, i.e., a mapping on A with f(� :k) = � :k for all
k 2 N , f(a :k) = f(a :k) for all a :k 2 �[�, and jf� :k j f(� :k) 6= � :kgj<1.
Moreover, a relabeling preserves priority values, i.e., for all a :k 2 � [� we
have f(a :k) = b :k for some b :k 2 �k [�k. Furthermore, the restriction set

5

L is a subset of � [�, and x is a variable taken from a set V . Sometimes

it is convenient to write C
def
= P for �C:P , where identi�er C is interpreted

as variable. We adopt the standard de�nitions for sort of a process, free and
bound variables, open and closed terms, guarded recursion, and contexts [56].
We refer to closed and guarded terms as processes and use P;Q;R; : : : to range
over the set P of processes. Finally, we denote syntactic equality by �.

Although our framework allows for multi-level priority schemes we often re-
strict ourselves to a two-level priority framework, i.e. we choose N = f0; 1g.
The reason is that even in this simple setting most semantic and technical
issues regarding the introduction of priority to process algebra can be illus-
trated. However, we also discuss how the obtained results can be carried over
to multi-level priority schemes. In order to improve readability within the two-
level priority scheme we often write � for the \prioritized" action � :0, � for
the \unprioritized" action � :1, A for A0, and A for A1. Moreover, we let � and

 represent elements taken from A [A. Finally, we want to emphasize again
that � and � are considered to be di�erent ports; i.e., the priority value is
part of a port. Thus, in a CCS-based framework only complementary actions
having the same priority value can engage in a communication. We discuss the
consequences of lifting this restriction in Section 3.7 for frameworks involving
global pre-emption and in Section 4.6 for those involving local pre-emption. It
should be noted that the dynamic priority approach presented in Section 5 also
di�ers in its interpretation of ports, actions, and priority values. Finally, our
language does not provide any means for changing priority values of actions.
However, we will discuss in Section 3.5 the e�ect of introducing additional op-
erators, called prioritization and deprioritization, which increase and decrease
the priority values of actions, respectively.

3 Static Priority and Global Pre-emption

In this section we introduce a semantics of our language, restricted to a two-
level priority scheme, based on static priority and global pre-emption. We refer
to this language as CCSsg (CCS with static priority and global pre-emption)
and develop its semantic theory along the lines mentioned in Section 1.2.
The organization of this section is as follows. Section 3.1 formally introduces
the operational semantics for CCSsg. The following two sections show how
to adapt the notions of strong bisimulation and observational congruence to
CCSsg, respectively. Section 3.4 applies the semantic theory to our introduc-
tory back-and-forth example. The consequences of adding prioritization and
deprioritization operators to CCSsg are discussed in Section 3.5. Finally, Sec-
tion 3.6 comments on the extension of CCSsg to multi-level priority schemes,
whereas Section 3.7 presents our concluding remarks and related work.

6

3.1 Operational Semantics

The semantics of a process P 2 P is given by a labeled transition system
hP;A;�!; P i, where P is the set of states, A is the alphabet, �!� P�A�P

is the transition relation, and P is the start state. We write P

�! P 0 instead

of hP;
; P 0i 2�! and say that P may engage in action
 and thereafter

behave like process P 0. Moreover, we let P

�! stand for 9P 0 2 P: P

�! P 0.

The presentation of the operational rules requires prioritized initial action sets
I(P) which are de�ned as the least sets satisfying the equations in Table 1.
Intuitively, I(P) denotes the set of all prioritized actions in which P can
initially engage. For convenience, we also write II(P) for I(P) n f�g.

Table 1
Prioritized initial action sets for CCSsg

I(�:P) = f�g I(�x:P) = I(P [�x:P=x])

I(P +Q) = I(P) [I(Q) I(P jQ) = I(P) [I(Q) [f� j I(P) \ I(Q) 6= ;g

I(P [f]) = ff(�) j� 2 I(P)g I(P n L) = I(P) n (L [L)

The rules in Plotkin-style notation [67] in Table 2 formally de�ne the tran-
sition relation and capture the following operational behavior. Process
:P
may engage in action
 and then behave like P . The summation operator
+ denotes nondeterministic choice. Process P + Q may behave like process
P (Q) if Q (P) does not pre-empt an unprioritized transition by performing
a prioritized internal transition. P [f] behaves exactly as process P with the
actions renamed with respect to relabeling f . Process P jQ stands for the
parallel composition of P and Q, according to an interleaving semantics with
synchronized communication on complementary actions on the same priority
level, resulting in the internal action � or � . However, if Q (P) is capable
of engaging in a prioritized internal transition, then unprioritized transitions
of P (Q) are pre-empted. The restriction operator nL prohibits in P n L the
execution of transitions labeled by actions in L [L and, thus, permits the
scoping of actions. Finally, �x:P denotes a recursively de�ned process that is
a distinguished solution to the equation x = P .

3.2 Semantic Theory Based on Strong Bisimulation

The semantic theory for CCSsg is based on the notion of bisimulation [56,65].
First, strong bisimulation [56] is adapted from CCS to our setting as follows;
we refer to this relation as prioritized strong bisimulation.

7

Table 2
Operational semantics for CCSsg

Act
��

�:P
�
�! P

Act
��

�:P
�
�! P

Sum1
P

�
�! P 0

P +Q
�
�! P 0

Sum1
P

�
�! P 0

P +Q
�
�! P 0

� =2 I(Q)

Sum2
Q

�
�! Q0

P +Q
�
�! Q0

Sum2
Q

�
�! Q0

P +Q
�
�! Q0

� =2 I(P)

Com1
P

�
�! P 0

P jQ
�
�! P 0 jQ

Com1
P

�
�! P 0

P jQ
�
�! P 0 jQ

� =2 I(P jQ)

Com2
Q

�
�! Q0

P jQ
�
�! P jQ0

Com2
Q

�
�! Q0

P jQ
�
�! P jQ0

� =2 I(P jQ)

Com3
P

a
�! P 0 Q

a
�! Q0

P jQ
�
�! P 0 jQ0

Com3
P

a
�! P 0 Q

a
�! Q0

P jQ
�
�! P 0 jQ0

� =2 I(P jQ)

Rel
P

�
�! P 0

P [f]
f(�)
�! P 0[f]

Rel
P

�
�! P 0

P [f]
f(�)
�! P 0[f]

Res
P

�
�! P 0

P n L
�
�! P 0 n L

� =2 L [L Res
P

�
�! P 0

P n L
�
�! P 0 n L

� =2 L [L

Rec
P [�x:P=x]

�
�! P 0

�x:P
�
�! P 0

Rec
P [�x:P=x]

�
�! P 0

�x:P
�
�! P 0

De�nition 3.1 (Prioritized Strong Bisimulation)
A symmetric relation R � P �P is called a prioritized strong bisimulation if
for every hP;Qi 2 R and
 2 A the following condition holds.

P

�! P 0 implies 9Q0: Q

�! Q0 and hP 0; Q0i 2 R :

We write P ' Q if hP;Qi 2 R for some prioritized strong bisimulation R.

8

Table 3
Axiomatization of '

(A1) t+ u = u+ t (A2) t+ (u+ v) = (t+ u) + v

(A3) t+ t = t (A4) t+ 0 = t

(E) Let t =
P

i
i:ti and u =
P

j �j :uj : Then

t ju =
P

i
i:(ti ju) +
P

j �j :(t juj)+
P

i��j
f� :(ti juj) j
i 2 Ag) +

P

i��j

f�:(ti juj) j
i 2 Ag)

(Res1) 0 n L = 0 (Rel1) 0[f] = 0

(Res2) (
:t) n L = 0 (
 2 L [L) (Rel2) (
:t)[f] = f(
):(t[f])

(Res3) (
:t) n L =
:(t n L) (
 =2 L [L) (Rel3) (t+ u)[f] = t[f] + u[f]

(Res4) (t+ u) n L = (t n L) + (u n L) (P) � :t+ �:u = � :t

It is easy to see that ' is an equivalence and that it is the largest prioritized
strong bisimulation. The following result, which enables compositional reason-
ing, can be proved straightforwardly using standard techniques [1,27,76].

Theorem 3.2 ' is a congruence.

An axiomatization of ' for �nite processes, i.e., guarded and closed CCSsg

terms not containing recursion, can be developed closely along the lines of [27].
We write ` t = u if process term t can be rewritten to u using the axioms in
Table 3. These axioms correspond to the ones presented in [56], except that
Axiom (P) dealing with global pre-emption is added. In Expansion Axiom (E)
the symbol

P
stands for the indexed version of + , where the empty sum

denotes the inaction process 0. The next theorem states that our equations
characterize prioritized strong bisimulation for �nite CCSsg processes. Its proof
can be found in [27]; it uses techniques described in [56].

Theorem 3.3 Let t; u be �nite processes. Then t ' u if and only if ` t = u.

3.3 Semantic Theory Based on Weak Bisimulation

The behavioral congruence developed in the previous section is too strong for
verifying systems in practice, as it requires that two equivalent terms match
each other's transitions exactly, even those labeled by internal actions. In pro-
cess algebra one remedies this problem by developing a semantic congruence

9

that abstracts from internal transitions. We start o� with the de�nition of a
naive prioritized weak bisimulation which is an adaptation of Milner's obser-
vational equivalence [56].

De�nition 3.4 (Naive Prioritized Weak Transitions)

(1) �̂ =df �̂ =df �, â =df a, and â =df a

(2)
�

=)�=df (
�
�! [

�
�!)�

(3)

=)�=df
�

=)� �

�! �

�
=)�

Observe that this transition relation ignores priority levels for
�

=)�. This is in
accordance with the fact that a priority value is part of an action and, thus,
unobservable for internal actions.

De�nition 3.5 (Naive Prioritized Weak Bisimulation)
A symmetric relation R � P � P is a naive prioritized weak bisimulation if
for every hP;Qi 2 R, and
 2 A the following condition holds.

P

�! P 0 implies 9Q0: Q

̂
=)� Q0 and hP 0; Q0i 2 R :

We write P ��Q if hP;Qi 2 R for a naive prioritized weak bisimulation R.

Naive prioritized weak bisimulation can be shown to be an equivalence. Un-
fortunately, �� is not a congruence for CCSsg with respect to parallel com-
position, summation, and recursion. Whereas the compositionality defect for
summation and recursion is similar to the one for CCS [56], the defect with
respect to parallel composition is due to pre-emption. As an example consider

the processes P
def
= a:0+ b:0 and Q

def
= a:0+ �:(a:0+ b:0). It is easy to see that

P ��Q. However, when composing these processes in parallel with process b:0
then Q j b:0

a
�! 0 j b:0 whereas P j b:0 6

a
=)�, i.e., P j b:0 6��Q j b:0. Therefore,

one has to be more careful when de�ning the prioritized weak transition rela-
tion. Transitions labeled by visible actions may turn into internal transitions
when composed with an environment and, thus, may gain pre-emptive power.
An adequate notion of weak transitions must take the processes' potential of
engaging in visible prioritized transitions into account.

3.3.1 Prioritized Weak Bisimulation

Despite the lack of compositionality, the de�nition of �� re
ects an intuitive
approach to abstracting from internal computation. For handling the congru-
ence problem one may consider the following fact from universal algebra.

Proposition 3.6 For an equivalenceR in an algebra < the largest congruence
R+ � R exists and R+ = fhP;Qi j 8<-contexts C[X]: hC[P]; C[Q]i 2 Rg.
Here, a <-context C[X] is a term in < with one free occurrence of variable X.

10

Consequently, we know that �� contains a largest congruence �+
� for CCSsg

and devote the rest of this section to characterizing this congruence. We �rst
de�ne a new weak transition relation which takes pre-emption into account.

De�nition 3.7 (Prioritized Weak Transitions) Let L � A n f�g.

(i) �̂ =df �, �̂ =df �, â =df a, and â =df a (iv)
�

=)
L

=df (
�
�! [

�
�!
L
)�

(ii) P
�
�!
L
P 0 if P

�
�! P 0 and II(P) � L (v)

�
=) =df

�
=) �

�
�! �

�
=)

(iii)
�

=) =df (
�
�!)� (vi)

�
=)
L

=df
�

=)
L
�

�
�!
L
�

�
=)

Intuitively, we have made the transition relation sensitive to pre-emption by
introducing conditions involving prioritized initial action sets and by preserv-
ing priority levels of internal actions. In the remainder, we show that prior-
itized initial action sets are an adequate means for measuring pre-emption
potentials. In this light, P

�
�!
L
P 0 states that P can evolve to P 0 by performing

the unprioritized action �, if the environment does not o�er any prioritized
communication on some port in L.

De�nition 3.8 (Prioritized Weak Bisimulation)
A symmetric relation R � P � P is a prioritized weak bisimulation if for
every hP;Qi 2 R, � 2 A, and � 2 A the following conditions hold.

(1) � =2 I(P) implies 9Q0: Q
�

=)
L
Q0; II(Q0) � L where L = II(P);

� =2 I(Q0), and hP;Q0i 2 R.

(2) P
�
�! P 0 implies 9Q0: Q

�̂
=) Q0, and hP;Q0i 2 R.

(3) P
�
�! P 0 implies 9Q0: Q

�̂
=)
L
Q0; where L = II(P); and hP 0; Q0i 2 R.

We write P �Q if hP;Qi 2 R for some prioritized weak bisimulation R.

This new version of weak bisimulation is algebraically more robust than the
naive one. Condition (1) of De�nition 3.8 is necessary for achieving composi-
tionality with respect to parallel composition.

Proposition 3.9 The equivalence � is a congruence with respect to pre�xing,
parallel composition, relabeling, and restriction. Moreover, � is characterized
as the largest congruence contained in ��, in the sub-algebra of CCSsg induced
by these operators and recursion.

Although � is itself not a congruence, this relation provides the basis for
obtaining a congruence, as is made precise in the next section.

11

3.3.2 Prioritized Observational Congruence

The compositionality defect of � with respect to summation is handled by
the following notion of prioritized observational congruence. Unfortunately, the
summation �x presented in [56], which requires an initial internal transition to
be matched by a nontrivial internal weak transition, is not su�cient in order
to achieve a congruence based on prioritized weak bisimulation. To see why, let

D
def
= � :E and E

def
= �:D. Now de�ne P

def
= �:D and Q

def
= � :E. By De�nition 3.8

we may observe P �Q, but P + a:0 6� Q+ a:0 since the former can perform
an a-transition whereas the latter cannot. It turns out that we have to require
that observationally congruent processes must possess the same initial action
sets; a requirement which is stronger than Condition (1) of De�nition 3.8.

De�nition 3.10 De�ne P �lQ if for all � 2 A and � 2 A the following
conditions and their symmetric counterparts hold.

(1) I(P) � I(Q)

(2) P
�
�! P 0 implies 9Q0: Q

�
=) Q0 and P 0�Q0.

(3) P
�
�! P 0 implies 9Q0: Q

�
=)
L
Q0; where L = II(P); and P 0�Q0.

The following theorem states the desired algebraic result for �l.

Theorem 3.11 �l is the largest congruence contained in ��, i.e., �
l = �+

�.

Whereas the proof of the congruence property of �l is standard (cf. [56]), the
\largest" part is proved by using the following fact from universal algebra.

Proposition 3.12 Let R1 and R2 be equivalences in an algebra < such that
R+

1 � R2 � R1. Then R
+
1 = R+

2 .

For the purposes of this section, we choose R1 = �� and R2 = �. The
following theorem, which establishes R+

2 = �l, can be proved along the lines
of a corresponding theorem in [56]; for details see [53].

Theorem 3.13 �l is the largest congruence contained in �.

In order to apply Proposition 3.12, �+
� � � � �� needs to be established.

The inclusion � � �� immediately follows from the de�nition of the naive
prioritized weak and the prioritized weak transition relations. Thus, one is
left with �+

� � �. This inclusion turns out to be di�cult to show directly.
Therefore, the auxiliary relation �a =df fhP;Qi jCPQ[P]��CPQ[Q]g is de-
�ned, which lies in between. Using the abbreviation S for the union of the

12

�nite prioritized sorts of P and Q, we de�ne CPQ[X]
def
=X jHPQ and

HPQ
def
= c:0 +

X

L � S;

b 2 S

� :

0
B@

dL;b:HPQ+
DL + e:HPQ+

b:HPQ

1
CA :

Moreover, DL is de�ned as
P

�2L �:0. The actions c; dL;b; e for all L � S and
b 2 S, and their complements, are supposed to be \fresh" actions, i.e., not in
S [S. By Proposition 3.6 we may conclude �+

� � �a. The other necessary
inclusion �a � � is established by showing that �a is a prioritized weak
bisimulation. Summarizing, Theorem 3.11 is a consequence of Proposition 3.12
when assembling our results as illustrated in Figure 2, where an arrow from
relation R1 to relation R2 stands for R1 � R2.

��

�

�a

�l�+
�

6

�
���

�
���

6

-�

Fig. 2. Proof sketch of Theorem 3.11

3.3.3 Operational Characterization

The aim of this section is to show how prioritized weak bisimulation can
be computed by adapting standard partition-re�nement algorithms [26,48,64]
developed for strong bisimulation [56]. To this end, we provide an operational
characterization of prioritized weak bisimulation as strong bisimulation by
introducing an alternative prioritized weak transition relation.

De�nition 3.14 Let P; P 0 2 P, � 2 A, and � 2 A.

(1)
�̂

=)� =df

�̂
=) and

(2) P
�̂

=)� P
0 if 9P 00: � =2 I(P 00) and P

�
=) P 00 �̂

=)
L
P 0 for L = II(P 00).

Observe that the alternative prioritized weak transition relation is not param-
eterized by prioritized initial action sets. It can be computed e�ciently by
using dynamic programming techniques.

13

De�nition 3.15 A symmetric relation R � P � P is called an alternative
prioritized weak bisimulation if for all hP;Qi 2 R and
 2 A the following
condition holds.

P

̂

=)� P
0 implies 9Q0: Q

̂
=)� Q

0 and hP 0; Q0i 2 R :

We write P ��Q if hP;Qi 2 R for some alternative prioritized weak bisimu-
lation R.

Theorem 3.16 (Operational Characterization) � = ��.

The proof of this characterization result is straightforward [53]. It should be
mentioned that the presented characterization may also serve as a basis for
de�ning a Hennessy-Milner logic for prioritized weak bisimulation along the
lines of [56].

3.4 Example

As a simple example, we return to the back-and-forth system introduced in

Section 1, which can be formalized in CCSsg as follows: Sys
def
=(A jB) n fig

where A
def
= back:A0+ i:�:ok:i:A, A0 def= forth:A+ i:�:ok:i:A0, and B

def
= check:i:i:B.

Intuitively, i is an internal interrupt, and thus prioritized and restricted (via
nfig), which is invoked whenever check is executed. Hence, in such a state
process A cannot engage in a transition labeled by back or forth according to
our pre-emptive operational semantics, but must accept the communication
on prioritized port i. One can think of the � -action in the de�nition of process
A as representing some internal activities determining the current status of
the system. The CCSsg semantics of Sys is shown in Figure 3.

ττ

ττ

τ τ

back

forth

ok ok

checkcheck

Fig. 3. Semantics of Sys

In the sequel, we prove that Sys meets its speci�cation Spec, which is given by

Spec
def
= back:Spec0 + check:ok:Spec

Spec0
def
= forth:Spec + check:ok:Spec0 :

14

First, the validity of Sys � Spec is proved by the relation presented in Ta-
ble 4, whose symmetric closure is a prioritized weak bisimulation that contains
hSys; Speci.

Table 4
A relation whose symmetric closure is a prioritized weak bisimulation

f hSys ; Spec i ; h (A0 jB) n fig ; Spec0 i ;

h (A j i:i:B) n fig ; ok:Spec i ; h (�:ok:i:A j i:B) n fig ; ok:Spec i ;

h (ok:i:A j i:B) n fig ; ok:Spec i ; h (i:A j i:B) n fig ; Spec i ;

h (A0 j i:i:B) n fig ; ok:Spec0 i ; h (�:ok:i:A0 j i:B) n fig ; ok:Spec i ;

h (ok:i:A0 j i:B) n fig ; ok:Spec0 i ; h (i:A0 j i:B) n fig ; Spec0 i g

In addition, both processes only possess visible initial actions, and their pri-
oritized initial action sets are identical. Hence, we may conclude Sys �l Spec.

3.5 Prioritization and Deprioritization Operators

There are several other language constructs worth considering when dealing
with priority. Of particular interest are the unary operators introduced by
Cleaveland and Hennessy in [27] which correspond to the prioritization of a
visible unprioritized action, written da for a 6� � , and to the deprioritization
of a visible prioritized action, written ba for a 6� � . The operational semantics
of these operators is formally de�ned in Table 5. Their presence requires that
(i) every prioritized port a corresponds one-to-one to an unprioritized port a,
(ii) every relabeling f satis�es f(a) = f(a), and (iii) every restriction set L
obeys the property \a 2 L if and only if a 2 L." Intuitively, P da prioritizes
all a-transition which P can perform, while P ba deprioritizes all a-transitions
in which P can engage, provided the newly deprioritized transition is also
available to P . Note that the notion of priority is still static and not dynamic
since the prioritization and deprioritization operators are static operators.
Thus, the change of priority values a�ects a process in its whole and is not
limited to its initial behavior.

Including prioritization and deprioritization operators with CCSsg does not
have any consequences for prioritized strong bisimulation since it is composi-
tional with respect to these operators [27]. The axiomatization of prioritized
strong bisimulation for �nite processes can also be extended to cover the new
operators. The necessary additional axioms are stated in Table 6.

The presence of the prioritization and the deprioritization operator allows us
to formally justify the design decision that only prioritized internal actions
have pre-emptive power over unprioritized actions. For this purpose assume

15

Table 5
Semantics for the prioritization and the deprioritization operator

Prio1
P

a
�! P 0

P da
a
�! P 0da

� =2 I(P) Deprio1
P

a
�! P 0

P ba
a
�! P 0ba

� =2 I(P)

Prio2
P

a
�! P 0

P da
a
�! P 0da

� 2 I(P) Deprio2
P

a
�! P 0

P ba
a
�! P 0ba

� 2 I(P)

Prio3
P

�! P 0

P da

�! P 0da

 6� a Deprio3
P

�! P 0

P ba

�! P 0ba

 6� a

Table 6
Axioms for the prioritization and the deprioritization operator

(Prio1) 0da = 0

(Prio2) (a:t)da = a:(tda)

(Prio3) (
:t)da =
:(tda)
 6� a

(Prio4) (t+ � :u+ b:v)da = (t+ � :u)da+ b:(vda)

(Prio5) (t+ �:u+
:v)da = (t+ �:u)da + (t+
:v)da �;
 2 A n f�g

(Deprio1) 0ba = 0

(Deprio2) (a:t)ba = a:(tba)

(Deprio3) (
:t)ba =
:(tda)
 6� a

(Deprio4) (t+ � :u+ b:v)ba = (t+ � :u)ba+ b:(vba)

(Deprio5) (t+ �:u+
:v)ba = (t+ �:u)ba + (t+
:v)ba �;
 2 A n f�g

that (i) pre-emption is not encoded in the side conditions of the operational
rules but, equivalently, in the notion of bisimulation [27] and that (ii) the naive
view of pre-emption gives all prioritized actions pre-emptive power. Thus, a
naive bisimulation�n demands the following condition for equivalent processes
P �n Q and unprioritized actions � 2 A:

(P
�
�! P 0 ^ 6 9�: P

�
�!) implies (9Q0: Q

�
�! Q0 ; 6 9�:Q

�
�! ^P 0�n Q

0)

and vice versa. The condition for prioritized actions can be adopted from stan-
dard strong bisimulation. Regarding the properties of �n, it turns out that it

16

is not a congruence; e.g., a:0 + b:0�n b:0 but (a:0 + b:0) n fbg 6�n (b:0) n fbg
since the former process can engage in an a-transition while the latter is dead-
locked. Thus, the question arises what the largest congruence contained in
�n is; it turns out that it is prioritized strong congruence as de�ned before
(see [27] for a formal treatment). This shows that in a pre-emptive semantics
only prioritized internal actions may pre-empt unprioritized actions. However,
the above algebraic result is only correct if we include the deprioritization op-
erator in our language. A non-trivial characterization of the largest congruence
contained in �n with respect to our original language is still an open problem.

For the language extended by the prioritization and the deprioritization op-
erator, an observational congruence together with an axiomatic characteri-
zation with respect to �nite processes has been developed in [62,63], which
is brie
y reviewed here. For this purpose, we need to re�ne the prioritized
weak transition relation. First, we re-de�ne

a
=) to

�
=) �

a
�! �

�
=), i.e., a

weak unprioritized a-transition consists of an a-transition that is preceded and
trailed by prioritized internal transitions only. Moreover, we replace II(P) by
II(P)[II(P) in the de�nition of

�
=) since one has to take into account that

unprioritized actions may turn into prioritized ones when applying the prior-
itization operator. Finally, we write P

�
=)
L
P 0 whenever P

�
=)
L
P 0 and P 6� P 0.

Consequently, visible weak unprioritized transitions only abstract from pri-
oritized internal actions. The reason for this restriction is that, otherwise,
prioritized weak bisimulation would not be compositional with respect to the
prioritization and the deprioritization operator. In contrast, the original pri-
oritized weak transition relation allows an �-transition to be preceded by any
sequence of � - and � -transitions (satisfying a condition on prioritized initial
action sets) and only to be trailed by � -transitions.

The notions of prioritized weak bisimulation and prioritized observational con-
gruence are de�ned in [62,63] as follows, where P + stands for 9P 0: P

�
=) P 0

and P 0 6
�
�!.

De�nition 3.17 A symmetric relation R � P�P is an extended prioritized
weak bisimulation if for every hP;Qi 2 R,
 2 Anf�g the following conditions
hold.

(1) P + implies Q +.

(2) P

�! P 0 implies 9Q0: Q

̂
=) Q0, and hP;Q0i 2 R.

(3) P
�
�! P 0 implies 9Q0: Q

�
=)
L
Q0; L = II(P) [II(P); and hP 0; Q0i 2 R.

We write P �pd Q if there exists an extended prioritized weak bisimulation R
such that hP;Qi 2 R.

De�nition 3.18 We de�ne P �l
pdQ if for all
 2 A n f�g the following con-

ditions and their symmetric counterparts hold.

17

Table 7
Axioms for the � -laws

(�1)
:(1:t + t) =
:t 1 2 f�; �g

(�2) � :t = � :t+ t

(�3)
:(t+ � :u) =
:(t+ � :u) +
:u

(�1) t+ �:(u+ �:v) = t+ �:(u+ �:v) + �:v `I tvi v

Table 8
Axiomatization of vi (Axioms I)

(iC1) �:tvi �:u (iC2) 0vi
:t
 2 A n f�g (iC3) �:tvi 0

(1) P

�! P 0 implies 9Q0Q

=) Q0 and P 0�pdQ

0.

(2) P
�
�! P 0 implies 9Q0: Q

�
=)
L
Q0; where L = II(P)[II(P); and P 0�pdQ

0.

The observational congruence �l
pd possesses nice algebraic properties for our

language extended by the prioritization and the deprioritization operator, in-
cluding a largest congruence result similar to Theorem 3.11 and a sound and
complete axiomatization for �nite processes. For the latter, the axiomatiza-
tion for prioritized strong bisimulation is augmented with suitable � -laws as
shown in Table 7 (cf. [56]). The relation vi, occurring in the side condition
of Axiom (�1), is the pre-congruence on �nite processes generated by the ax-
ioms presented in Table 8 using the laws of inequational reasoning. We write
`I tvi u if t can be related to u by Axioms (iC1), (iC2), and (iC3). Intu-
itively, `I tvi u holds, whenever (i) � 2 I(t) if and only if � 2 I(u) and
(ii) II(t) � II(u).

Finally, it should be noted that applications underline the importance of the
additional freedom of abstracting from internal transitions, which is gained
by leaving out the prioritization and the deprioritization operator. In fact, the
observational congruence �l

pd does not relate the processes Sys and Spec of
our back-and-forth example. This is due to the presence of the unprioritized
internal action in Sys.

3.6 Extension to Multi-Level Priority Schemes

We now remark on the extension of CCSsg to a multi-level priority scheme. To
do so, we �rst alter the de�nition of prioritized initial action sets to capture
the priority-level of actions. We de�ne sets Ik(P) for process P with respect
to priority value k as shown in Table 9.

18

Table 9
Potential initial action sets for CCSsg

Ik(� : l:P) = f� : l j l = kg Ik(P [f]) = ff(� : l) j� : l 2 Ik(P)g

Ik(�x:P) = Ik(P [�x:P=x]) Ik(P+Q) = Ik(P) [Ik(Q)

Ik(P n L) = Ik(P)n(L [L) Ik(P jQ) = Ik(P) [Ik(Q) [f� :k j Ik(P) \ Ik(Q) 6= ;g

Using this de�nition of initial action sets and the convention \� =2 I<k(P) if
6 9l < k: � : l 2 Il(P)," the operational semantics depicted in Table 2 can be
re-stated as follows, as exemplarily shown for Rule (Com3).

Com3
P

a:k
�! P 0 Q

a:k
�! Q0

P jQ
� :k
�! P 0 jQ0

� =2 I<k(P jQ)

Observe that the sets Ik(P) may contain actions in which P cannot initially
engage, since their de�nition does not consider pre-emption. In fact, the set
Ik(P) of actions with priority value k, in which P can indeed initially engage
is given by f� :k 2 Ik(P) j � : l =2 Il(P) for all l < kg. However, it is easy to
show that � =2 I<k(P) if and only if � =2 I<k(P) [53]. Thus, the side condition
of Rule (Com3) captures our intuition that P jQ cannot engage in a more
urgent internal transition.

Table 10
Prioritized weak transition relation

�:0
=)=df (

� :0
�!)� P

�:k
�!
L
P 0 if P

�:k
�! P 0 and IIl(P) � L for all l < k

�:k
=)
L

=df (f
� :l
�!
L
j l � kg)�

�:k
=)
L

=df
�:k
=)
L
�

�:k
�!
L
�

�:0
=)

The re-development of the bisimulation-based semantic theory proceeds along
the lines of the above sections and does not raise any new semantic issues.
For example, the notion of prioritized observational congruence is de�ned as
follows, where (i) the prioritized weak transition relation is given by the rules in
Table 10, (ii) IIk(P) =df Ik(P)nf� :kg, (iii) the relation �ml is the adaption of
prioritized weak bisimulation to the multi-level priority scheme, (iv) I(P) =dfS
fIk(P) j k 2 Ng, and (v) II<k(P) =df I<k(P) n f� : l j l < kg.

De�nition 3.19 Processes P and Q are prioritized observational congruent
if for all actions � :k the following conditions and their symmetric counterparts
hold.

(1) I(P) � I(Q)

(2) P
�:k
�! P 0 implies 9Q0: Q

�:k
=)
L
Q0; where L = II<k(P); and P 0�mlQ

0

Details of this extension of CCSsg can be found in [53].

19

3.7 Concluding Remarks and Related Work

We conclude by �rst commenting on the design decision that priority values
are considered to be part of ports, which implies that only complementary
actions having the same priority can synchronize. Lifting this design decision
by allowing a :k and a : l, where k 6= l, to synchronize leads to the question of
which priority value to assign to the resulting � . One can imagine several obvi-
ous choices for this function, e.g., maximum or minimum. In addition, [35,37]
recommend to use the sum of the priority values of the actions involved. Un-
fortunately, while a speci�c function may be suitable for certain examples, it
is di�cult to motivate for general applications. In the next section we will see
that such a function is super
uous when dealing with local pre-emption.

Regarding related work, Gerber and Lee developed a real-time process algebra,
the Calculus of Communicating Shared Resources (CCSR) [34], that explic-
itly takes the availability of system resources into account. Semantically, syn-
chronizations between processes are modeled in an interleaving fashion using
instantaneous transitions, whereas the access of resources is truly concurrent
and consumes time. In CCSR a priority structure may be de�ned over re-
sources in order to indicate their importance, e.g., for ensuring that deadlines
are met. The underlying concept of priority is similar to that of CCSsg in that
priorities are static and pre-emption is global. In [35] a resource-based pri-
oritized (strong) bisimulation for CCSR, together with axiomatizations with
respect to several classes of processes [21] is presented.

Prasad also extended his Calculus of Broadcasting Systems (CBS) [68] for
dealing with a notion of static priority [69]. He refers to the priority calculus
as PCBS. For PCBS nice semantic theories based on Milner's strong and
weak bisimulation [56] have been developed. Remarkably, these theories do
not su�er from the technical subtleties which have been encountered for CCSsg,
although the concept of pre-emption is basically the same. The reason is that
PCBS uses a much simpler model for communication which is based on the
principle of broadcasting. In this setting, priority values are only attached to
output actions, which cannot be restricted or hidden as in traditional process
algebras. Finally, it should be mentioned that PCBS contains an operator,
called translate, which allows for the prioritization and the deprioritization of
actions.

4 Static Priority and Local Pre-emption

This section provides a new semantics for our language, subsequently referred
to as CCSsl (CCS with static priority and local pre-emption), which is distin-

20

guished from the one developed in the previous section by the design decision
that it only allows actions to pre-empt others at the same \location" and,
therefore, captures a notion of localized precedence. This constraint re
ects
an essential intuition about distributed systems, namely, that the execution
of a process on one processor should not a�ect the behavior of a process on
another processor unless the designer explicitly builds an interaction, e.g., a
synchronization, between them.

Appl

Bench1 Bench2

dma dma

fetch1 fetch2

Fig. 4. Example system

The following example demonstrates the necessity to consider locations when
reasoning about priority within distributed systems. The example system con-
sists of an application that manipulates data from two memory benches (cf.
Figure 4). In order to improve the e�ciency in the computer system, each
bench, Bench1 and Bench2, is connected to a direct-memory-access (DMA)
controller. To overcome the low speed of most memory modules, application
Appl works alternately with each memory bench. We model Appl in CCSsl by

Appl
def
= fetch1:fetch2:Appl. Each memory bench, Bench1 and Bench2, is con-

tinuously able to serve the application or to allow the external DMA con-
troller to access the memory via channel dma. However, if a memory bench
has to decide between both activities, then it chooses the former since the
progress of the application is considered more important. Consequently, we

de�ne Bench1
def
= fetch1:Bench1 + dma:Bench1 and Bench2

def
= fetch2:Bench2 +

dma:Bench2. The overall system Sys is given by

Sys
def
=(Appl jBench1 jBench2) n ffetch1; fetch2g :

Since the application uses the memory cells alternately, the DMA is expected
to be allowed to access the memory bench which is currently not serving the
application. However, when using the approach to priority involving global pre-
emption presented in Section 3, all dma-transitions in the labeled transition
system of Sys are pre-empted since the application can inde�nitely engage in
a prioritized communication, i.e., direct-memory-access is never granted.

Generally speaking, one would expect that priorities at di�erent sites of a
distributed system do not in
uence the behavior of each other, i.e., priorities
at di�erent sites are supposed to be incomparable. The semantics given in

21

Section 3 does not permit this distinction to be made; the net e�ect is that
some computations that one would expect to �nd in a distributed system
are improperly suppressed. It has been proposed to remedy this shortcoming
regarding distributed systems by introducing local pre-emption [24,29].

The remainder of this section is organized as follows. The next section intro-
duces a notion of locations that is used in Section 4.2 for the de�nition of the
operational semantics of CCSsl for a two-level priority scheme. Sections 4.3
and 4.4 develop the semantic theories based on strong and weak bisimulation,
respectively, while Section 4.5 re-considers the direct-memory-access example.
The consequences of lifting some design decisions in CCSsl are discussed in Sec-
tion 4.6. After extending CCSsl to a multi-level priority scheme in Section 4.7
and presenting another approach to priority taken from [24] in Section 4.8,
a formal comparison of the two approaches is given in Section 4.9. Finally,
Section 4.10 concludes with some additional remarks and with comments on
related work.

4.1 Locations

We now introduce the notion of location, which will be used in the next section
in the operational semantics for CCSsl as a basis for deciding when one tran-
sition pre-empts another. Intuitively, a location represents the \address(es)"
of subterm(s) inside a larger term; when a system performs an action, CCSsl

semantics will also note the location of the subterm(s) that \generate(s)" this
action. Observe that because of the potential for synchronization more than
one subterm may be involved in an action. The account of locations closely
follows that of [29,60].

Formally, let Aaddr =df fL;R; l; rg be the address alphabet, and let � be a
special symbol not in Aaddr. Then, Addr =df f�s j s 2 A�

addrg represents the
set of (process) addresses ranged over by v; w. Intuitively, an element of Addr
represents the address of a subterm, with � denoting the current term, l (r)
representing the left (right) subterm of + , and L (R) the left (right) subterm
of j . For example, in the process (a:0 j b:0) + c:0 the address of a:0 is �Ll,
of b:0 is �Rl, and of c:0 is �r. If �s1 and �s2 are addresses, then we write
�s1 � �s2 = �s1s2 to represent address concatenation (where s1s2 represents
the usual concatenation of elements in A�

addr). Further, if V � Addr and
� 2 Aaddr, then we write V � � for fv � � j v 2 V g. Occasionally, we omit � from
addresses.

As mentioned in the previous section, we want to adopt the view that pro-
cesses at di�erent sides of the parallel composition operator are logically {
not necessarily physically { executed on di�erent processors. Thus, priorities

22

on di�erent sides of the parallel composition operator are distributed and,
therefore, should be incomparable. However, priorities on di�erent sides of
the summation operator should be comparable since argument processes of
summation are logically scheduled on the same processor. This intuition is
formalized in the following location comparability relation on addresses which
is adapted from [37].

De�nition 4.1 (Location Comparability Relation)
The location comparability relation ./ on addresses is the smallest re
exive
and symmetric subset of Addr �Addr such that for all v; w 2 Addr:

(1) hv � l; w � ri 2 ./, and
(2) hv; wi 2 ./ implies hv � �; w � �i 2 ./ for � 2 Aaddr.

In the sequel we write v ./ w instead of hv; wi 2 ./. If v 2 Addr then we use [v]
to denote the set fw 2 Addr j v ./ wg. Note that the location comparability
relation is not transitive, e.g., we have Ll ./ r and r ./ Rl, but Ll 6./ Rl, since
L 6./ R.

We may now de�ne the set Loc of (transition) locations as Addr [(Addr �
Addr). Intuitively, a transition location records the addresses of the compo-
nents in a term that participate in the execution of a given action. In our
language, transitions are performed by single processes or pairs of processes
(in the case of a synchronization). We de�ne hv; wi � � =df hv � �; w � �i and
[hv; wi] =df [v] [[w] where v; w 2 Addr and � 2 Aaddr. We use m;n; o; : : : to
range over Loc in what follows.

4.2 Operational Semantics

The operational semantics of a CCSsl process P is given by a labeled transition
system hP;Loc�A;�!; P i. The transition relation �!� P�(Loc�A)�P
with respect to unprioritized actions is de�ned in Table 12 using Plotkin-style
operational rules [67] whereas for prioritized actions the same rules as for
CCSsg apply (see Table 2). We write P m;���!P 0 if hP; hm;�i; P 0i 2�! and
� 2 A, and say that P may engage in action � o�ered from location m and
thereafter behave like process P 0.

The presentation of the operational rules requires distributed prioritized initial
action sets which are de�ned as the least sets satisfying the rules in Table 11.
Intuitively, Im(P) denotes the set of all prioritized initial actions of P from
locationm. Note that these sets are either empty or contain exactly one initial
action. Im(P) = ; means that eitherm is not a location of P or P is incapable
of performing a prioritized action at locationm. Additionally, let us denote the
set
S
fIm(P) jm 2 Mg of all distributed prioritized initial actions of P from

23

Table 11
Distributed prioritized initial action sets for CCSsl

Im(�x:P) = Im(P [�x:P=x]) I�(�:P) = f�g

Im�l(P +Q) = Im(P) In�r(P +Q) = In(Q)

Im(P [f]) = ff(�) j� 2 Im(P)g Im(P n L) = Im(P) n (L [L)

Im�L(P jQ) = Im(P) In�R(P jQ) = In(Q)

Ihm�L;n�Ri(P jQ) = f� j Im(P) \ In(Q) 6= ;g

Table 12
Operational semantics for CCSsl

Act
��

�:P �;���!P
Sum1

P m;���!P 0

P +Q m�l;����!P 0
� =2 I(Q)

Rel
P m;���!P 0

P [f] m;f(�)����!P 0[f]
Sum2

Q n;���!Q0

P +Q n�r;����!Q0
� =2 I(P)

Res
P m;���!P 0

P n L m;���!P 0 n L
� =2 L [L Com1

P m;���!P 0

P jQ m�L;����!P 0jQ
II[m](P) \ II(Q) = ;

Rec
P [�x:P=x] m;���!P 0

�x:P m;���!P 0
Com2

Q n;���!Q0

P jQ n�R;����!P jQ0
II[n](Q) \ II(P) = ;

Com3
P m;a��!P 0 Q n;a��!Q0

P jQ hm�L;n�Ri;��������!P 0jQ0

II[m](P) \ II(Q) = ;^

II[n](Q) \ II(P) = ;

locationsM � Loc by IM(P) and the set ILoc(P) of all distributed prioritized
initial actions of P by I(P). We also de�ne analogue sets restricted to visible
actions: IIM(P) =df IM(P) n f�g and II(P) =df I(P) n f�g, respectively.

The side conditions of the operational rules guarantee that a process does
not perform an unprioritized action if it can engage in a prioritized synchro-
nization or in internal computation, i.e., a � -transition, from a comparable
location. In contrast to the global notion of pre-emption de�ned in Section 3,
the local notion here is much weaker since II [m](P) � II(P) for all m 2 Loc
and P 2 P . In other words, local pre-emption does not pre-empt as many tran-
sitions as global pre-emption does. The di�erence between CCSsl and CCSsg

semantics arises by the side conditions of the rules for parallel composition

24

with respect to unprioritized transitions. Since locations on di�erent sides of
parallel composition P jQ are incomparable, � 's arising from a location of P
(Q) cannot pre-empt the execution of a transition, even an unprioritized one,
of Q (P). Only if P (Q) engages in a prioritized synchronization with Q (P)
can unprioritized actions from a comparable location of P (Q) be pre-empted.

4.3 Semantic Theory Based on Strong Bisimulation

Just as in Section 3, we present an equivalence relation for CCSsl processes
that is based on bisimulation [65]. Our aim is to characterize the largest con-
gruence contained in the \naive" adaptation of strong bisimulation [56] to our
framework obtained by ignoring location information.

De�nition 4.2 (Naive Distributed Prioritized Strong Bisimulation)
A symmetric relation R � P�P is called naive distributed prioritized strong
bisimulation if for every hP;Qi 2 R and
 2 A the following condition holds.

P
�!P 0 implies 9Q0: Q
�!Q0 and hP 0; Q0i 2 R :

We write P ' Q if hP;Qi 2 R for some naive distributed prioritized strong
bisimulation R.

Although ' is an equivalence, it is unfortunately { in contrast to Section 3.2 {
not a congruence. The lack of compositionality is demonstrated by the follow-
ing example, which embodies the traditional view that \parallelism = non-
determinism." We have a:b:0 + b:a:0 ' a:0 j b:0 but (a:b:0 + b:a:0) j b:0 6'
(a:0 j b:0) j b:0, since the latter process can perform an a-transition, while the
corresponding a-transition of the former is pre-empted because the right pro-
cess in the summation can engage in a prioritized communication. The above
observation is not surprising since the distribution of processes in
uences the
pre-emption of transitions and, consequently, the bisimulation. However, we
know by Proposition 3.6 that ' includes a largest congruence '+ for CCSsl.

4.3.1 Distributed Prioritized Strong Bisimulation

In the remainder we develop a characterization of '+ . To do so, we need to
take local pre-emption into account.

De�nition 4.3 A symmetric relation R � P �P is a distributed prioritized
strong bisimulation if for every hP;Qi 2 R, � 2 A, � 2 A, and m 2 Loc the
following conditions hold.

(1) P ��!P 0 implies 9Q0: Q ��!Q0 and hP 0; Q0i 2 R.

25

(2) P m;���!P 0 implies
9Q0; n: Q n;��!Q0 ; II [n](Q) � II [m](P) ; and hP

0; Q0i 2 R.

We write P 'lQ if hP;Qi 2 R for some distributed prioritized strong bisimu-
lation R.

Intuitively, the distributed prioritized initial action set of a process with re-
spect to some location is a measure of the pre-emptive power of the process
relative to that location. Thus, the second condition of De�nition 4.3 states
that an unprioritized action � from some location m of process P must be
matched by the same action from some location n of Q and that the pre-
emptive power of Q relative to n is at most as strong as the pre-emptive
power of P relative to m. The next theorem is the main result of this section.

Theorem 4.4 'l is the largest congruence contained in '.

We refer for the proof to [53]; the context needed in the largest congruence
proof is similar to the one used in Section 3.3.

4.3.2 Axiomatic Characterization

In this section we present an axiomatization of 'l for �nite processes, for
which we introduce a new binary summation operator� to the process algebra
CCSsl. This operator is called distributed summation and is needed for giving
an Expansion Axiom (cf. Axiom (E) in Table 13). Its operational semantics
is de�ned below and di�ers form the nondeterministic choice operator + in
that a location in its left argument is never comparable to one in its right
argument.

dSum1
t ��! t0

t� u ��! t0
dSum1

t m;���! t0

t� u m�L;����! t0

dSum2
u ��!u0

t� u ��!u0
dSum2

u n;���!u0

t� u n�R;����! u0

It can easily be checked that 'l is compositional with respect to �.

Now, we turn to the axiom system for distributed prioritized strong bisimu-
lation. We write `E t = u if term t can be rewritten to u using the axioms
in Tables 13 and 14 as well as Axioms (A1){(A4), Axioms (Res1){(Res4), Ax-
ioms (Rel1){(Rel3), and Axiom (P) from Table 3. Axioms (Ic1), (D1), (S2),
and (S3) involve side conditions. Regarding Axiom (Ic1), we introduce the
unary predicate \ over processes (of the form

P
j2J
j:tj for some nonempty

index set J) together with the following proof rules: (i) \�:t and (ii) \t and \u
implies \(t+ u). Intuitively, \(

P
j2J
j:tj) if and only if
j 2 A for all j 2 J . The

26

Table 13
Axiomatization of 'l (Axioms E)

(iA1) t� u = u� t (iA2) t� (u� v) = (t� u)� v

(iA3) t� t = t (iA4) t� 0 = t

(E) t �
L

i

P
j
ij :tij and u �

L
k

P
l �kl:ukl implies t ju =

L
i

P
j(
ij :(tij j u) +

P
k

P
lf�:(tij jukl) j
ij � �kl;
ij ; �kl 2 Ag

+
P

k

P
lf� :(tij jukl) j
ij � �kl;
ij ; �kl 2 Ag) �

L
k

P
l(�kl:(t j ukl) +

P
i

P
jf�:(tij jukl) j
ij � �kl;
ij ; �kl 2 Ag

+
P

i

P
jf� :(tij jukl) j
ij � �kl;
ij; �kl 2 Ag)

(iRes4) (t� u) n L = (t n L)� (u n L) (iRel3) (t� u)[f] = t[f]� u[f]

Table 14
Axioms E (continued)

(D1) (t� t0) + (u� u0) = ((t� t0) + u0)� ((u� u0) + t0)

(`I tvi t
0 ; `I uvi u

0)

(D2) (t� u) + �:v = (t+ �:v)� (u+ �:v)

(Ic1) t� �:u = t+ �:u (\t)

(Ic2) (�:t+ u) = (�:t+ u)� �:t

(S1) (t+ �:u)� (t0 + �:u0) = (t+ �:u+ �:u0)� (t0 + �:u0)

(S2) (t+ �:v) � (u+ �:v) = (t+ �:v) � u (`I tvi u)

(S3) t� u = t+ u (`I t=i u)

relationvi is de�ned as in Section 3.5 (see Table 8). The axioms in Table 13 are
basically those given in Table 3 and augmented with the corresponding axioms
for the distributed summation operator. Moreover, the Expansion Axiom has
been adapted for our algebra (cf. Axiom (E), where

P
is the indexed version of

+, and
L

is the indexed version of �). Note that parallelism in CCSsl cannot
be resolved in nondeterminism by using operator + only, since priorities on
di�erent sides of j are incomparable, but priorities on di�erent sides of + are
comparable. This is the motivation for introducing operator � . The axioms
in Table 14 are new and show how we may \restructure" locations. They deal
with the distributivity of the summation operators (Axioms (D1) and (D2)),
the interchangeability of the summation operators (Axioms (Ic1) and (Ic2)),
and the saturation of locations (Axioms (S1), (S2), and (S3)), respectively.

27

Theorem 4.5 Let t; u be �nite processes. Then `E t = u if and only if t'l u.

The proof of this theorem can be found in [29,53].

4.3.3 Operational Characterization

The following de�nition introduces an equivalence '� which characterizes 'l

as standard strong bisimulation [53]. It uses the notation P
�
�!
L
P 0 for P; P 0 2 P ,

� 2 A, and L � Anf�g whenever 9m 2 Loc: P m;���!P 0 and II [m](P) � L. Note
that these enriched transitions take local pre-emption potentials into account,
thereby avoiding the explicit annotation of transitions with locations.

De�nition 4.6 A symmetric relation R � P�P is an alternative distributed
prioritized strong bisimulation if for every hP;Qi 2 R, � 2 A, � 2 A, and
L � A n f�g the following conditions hold.

(1) P ��!P 0 implies 9Q0: Q ��!Q0 and hP 0; Q0i 2 R.
(2) P

�
�!
L
P 0 implies 9Q0: Q

�
�!
L
Q0 and hP 0; Q0i 2 R.

We write P '�Q if hP;Qi 2 R for some alternative distributed prioritized
strong bisimulation R.

Similar to Section 3.3.3 we obtain an operational characterization of our be-
havioral relation.

Theorem 4.7 (Operational Characterization) 'l = '�.

4.4 Semantic Theory Based on Weak Bisimulation

As for CCSsg, we develop a coarser bisimulation-based congruence by abstract-
ing from internal actions. We start o� with the de�nition of a naive distributed
prioritized weak bisimulation which is an adaptation of observational equiva-
lence [56].

De�nition 4.8 (Naive Distributed Prioritized Weak Transitions)

(1)
̂ =df �, if
 2 f� ; �g, and
̂ =df
, otherwise
(2)

�
=)�=df (

��! [
S
f m;���! jm 2 Locg)�

(3)
�

=)�=df
�

=)� �
��!�

�
=)�

(4)
m;�
=)�=df

�
=)� �

m;���!�
�

=)�

In the following we write P
�

=)� P 0 for 9m 2 Loc: P
m;�
=)� P 0.

28

De�nition 4.9 (Naive Distributed Prioritized Weak Bisimulation)
A symmetric relation R � P � P is a naive distributed prioritized weak
bisimulation if for every hP;Qi 2 R and
 2 A the following condition holds.

P
�!P 0 implies 9Q0: Q

̂

=)� Q0 and hP 0; Q0i 2 R :

We write P ��Q if hP;Qi 2 R for some naive distributed prioritized weak
bisimulation R.

It is fairly easy to see that �� is not a congruence for CCSsl. One compo-
sitionality defect arises with respect to parallel composition and is similar to
the one mentioned for naive distributed prioritized strong bisimulation. An-
other defect, which is carried over from CCS, is concerned with the summation
operators.

4.4.1 Distributed Prioritized Weak Bisimulation

We devote the rest of this section to characterizing the largest congruence
contained in naive distributed prioritized weak bisimulation. To do so, we �rst
re-de�ne the weak transition relation.

De�nition 4.10 (Distributed Prioritized Weak Transitions)
For L;M � A n f�g we de�ne the following notations.

(1) �̂ =df �, â =df a, �̂ =df �, and â =df a

(2) P
m;�
�!
L
P 0 if P m;���!P 0 and II [m](P) � L

(3)
�

=)=df (
��! [

S
f
m;�
�!
;
jm 2 Locg)�

(4)
�

=)=df

�
=) � ��!�

�
=)

(5)
�

=)
L

=df (
��! [

S
f
m;�
�!
L
jm 2 Locg)�

(6) P
m;�
=)
L;M

P 0 if 9P 00; P 000: P
�

=)
L
P 00 m;�

�!
L
P 000 �

=) P 0 and II(P 00) � M .

Intuitively, these de�nitions are designed to re
ect constraints that a process
environment must satisfy in order for the given transition to be enabled. Thus,
P

m;�
�!
L
P 0 means that P can engage in action � at locationm to P 0 provided that

the environment does not o�er a prioritized communication involving actions
in L. If the environment were to o�er such a communication, the result would
be a � at a comparable location to m in P , which would pre-empt the �. In a
similar vein, P

�
=) P 0 holds if P can evolve to P 0 via a nonpre-emptable se-

quence of internal transitions, regardless of the environment's behavior. These
internal transitions should therefore involve either � , which can never be pre-
empted, or � , in which case no prioritized actions should be enabled at the
same location. Likewise, P

�
=)
L
P 0 means that, so long as the environment does

not o�er to synchronize with P on a prioritized action in L, process P may
engage in a sequence of internal computation steps and become P 0. Finally,

29

the M -parameter in
m;�
=)
L;M

provides a measure of the pre-emptive impact that a

process has on its environment. From the de�nition, P
m;�
=)
L;M

P 0 is true if P can

engage in some internal computation followed by �, so long as the environment
refrains from synchronizations in L, and then engage in some nonpre-emptable
internal computation to arrive at P 0. In addition, the state at which � is en-
abled should only o�er prioritized communications in M .

Note that the de�nition of P
�

=)
L
P 0 is in accordance with our intuition that

internal actions, and therefore their locations, are unobservable. Moreover, the
environment of P is not in
uenced by internal actions performed by P , since
priorities arising from di�erent sides of the parallel composition operator are
incomparable. Therefore, the parameter M is unnecessary in the de�nition of
the relation

�
=)
L
. Finally, for notational convenience

m;�
=)
L;M

is interpreted as
�

=)
L
.

De�nition 4.11 (Distributed Prioritized Weak Bisimulation)
A symmetric relation R � P�P is a distributed prioritized weak bisimulation
if for every hP;Qi 2 R, � 2 A, � 2 A, and m 2 Loc the following conditions
hold.

(1) 9Q0; Q00: Q
�

=) Q00 �
=) Q0; II(Q00) � II(P); and hP;Q0i 2 R.

(2) P ��!P 0 implies 9Q0: Q
�̂

=) Q0 and hP 0; Q0i 2 R.
(3) P m;���!P 0 implies

9Q0; n: Q
n;�̂
=)
L;M

Q0; L = II [m](P); M = II(P); and hP 0; Q0i 2 R.

We write P �Q if hP;Qi 2 R for some distributed prioritized weak bisimula-
tion R.

Condition (1) of De�nition 4.11 guarantees that distributed prioritized weak
bisimulation is compositional with respect to parallel composition. Its neces-

sity is best illustrated by the following example. The processes P
def
= � :a:0 and

Q
def
= a:0 would be considered equivalent if Condition (1) were absent. However,

the context C[X]
def
= X j(a:0+ b:0) distinguishes them. The following proposi-

tion is the CCSsl equivalent of Proposition 3.9.

Proposition 4.12 The equivalence relation � is a congruence with respect
to pre�xing, parallel composition, relabeling, and restriction. Moreover, � is
characterized as the largest congruence contained in �� , in the sub-algebra
of CCSsl induced by these operators and recursion.

4.4.2 Distributed Prioritized Observational Congruence

Analogue to Section 3, the summation �x presented in [56] is not su�cient in
order to achieve a congruence relation.

30

De�nition 4.13 We de�ne P �lQ if for all � 2 A, � 2 A, and m 2 Loc the
following conditions and their symmetric counterparts hold.

(1) I(P) � I(Q)

(2) P ��!P 0 implies 9Q0: Q
�

=) Q0 and P 0�Q0.

(3) P m;���!P 0 implies 9Q0; n: Q
n;�
=)
L;M

Q0; L = II [m](P);M = II(P); and P 0�Q0.

Now, we can state the main result of this section, which can be proved by
using the technique already presented in Section 3.3.2; see [53] for details.

Theorem 4.14 �l is the largest congruence contained in ��.

4.4.3 Operational Characterization

We now characterize distributed prioritized weak bisimulation as standard
bisimulation over an appropriately de�ned transition relation. To begin with,
we introduce a family of relations =)

M
on processes, where M � A n f�g, by

de�ning P =)
M
P 0 if 9P 00: P

�
=) P 00 �

=) P 0 and II(P 00) � M . Moreover, we

write P
�̂

=)
L;M

P 0 whenever there exists some m 2 Loc such that P
m;�̂
=)
L;M

P 0.

De�nition 4.15 A symmetric relation R � P � P is an alternative dis-
tributed prioritized weak bisimulation if for every hP;Qi 2 R, � 2 A, � 2 A,
and L;M � A n f�g the following conditions hold.

(1) P =)
M
P 0 implies 9Q0: Q =)

M
Q0 and hP 0; Q0i 2 R.

(2) P
�̂

=) P 0 implies 9Q0: Q
�̂

=) Q0 and hP 0; Q0i 2 R.

(3) P
�̂

=)
L;M

P 0 implies 9Q0: Q
�̂

=)
L;M

Q0 and hP 0; Q0i 2 R.

We write P ��Q if hP;Qi 2 R for some alternative distributed prioritized
weak bisimulation R.

Theorem 4.16 (Operational Characterization) � = ��.

The interested reader can �nd the proof of this theorem in [53].

4.5 Example

We now return to the direct-memory-access example system introduced in
Section 4. The CCSsl semantics of Sys, which corresponds to our intuition
regarding distributed systems, is given in Figure 5 where we abstract away
the locations.

31

τ

τ

dmadma

Fig. 5. Semantics of the dma-system

As stated before, the application uses the two memory cells alternately. Thus,
the DMA is expected to be allowed to access the free memory bench. Accord-

ingly, the speci�cation of the system can be formalized by Spec
def
= dma:Spec.

It is easy to see that the symmetric closure of

fhSpec; Sysi; hSpec; (fetch2:Appl jBench1 jBench2) n ffetch1; fetch2gig

is a distributed prioritized weak bisimulation. Therefore, Spec � Sys as ex-
pected, i.e., system Sys meets its speci�cation Spec.

4.6 Discussion on the Alteration of Some Design Decisions

Up to now we have restricted the number of priority levels in CCSsl to two and
communication to complementary actions having the same priority. In this
section we study the implications of the removal of these restrictions, which
leads to a new version of CCSsl, called CCSslml (CCS

sl with a multi-level priority
scheme), that is formally de�ned in the next section.

Allowing communication between unprioritized actions and complementary
prioritized actions raises the question of whether the resulting internal action
should be � or � . When dealing with local pre-emption, this decision has no
important consequences for sequential communicating processes, i.e., those in
standard concurrent form [56]; however, it is of obvious importance for pro-
cesses like (a:0 j a:0) + b:0 in which one has to decide if the b-transition is
enabled. One reasonable view is that a communication should be pre-empted
whenever one communication partner is pre-empted, i.e., it cannot engage in
a communication. This implies that the minimal priority of the complemen-
tary actions ought to be assigned to the internal action. To re
ect this in the
operational semantics, one could replace Rules (Com1), (Com2), and (Com3)
for parallel composition by the ones presented in Table 15 plus their sym-
metric counterparts. The side conditions involve sets II(P) that include all
unprioritized visible actions in which P can initially engage.

It turns out that the largest congruence results concerning distributed priori-
tized strong bisimulation and distributed prioritized observational congruence
can be carried over to the new calculus. However, the new semantics has alge-
braic shortcomings since parallel composition is not associative, as illustrated

32

Table 15
Modi�ed operational rules

Com1
P m;���!P 0

P jQ m�L;����!P 0jQ
II[m](P) \ (II(Q) [II(Q)) = ;

Com3a
P m;a��!P 0 Q n;a��!Q0

P jQ hm�L;n�Ri;��������!P 0jQ0

II[m](P) \ (II(Q) [II(Q)) = ; ^

II [n](Q) \ (II(P) [II(P)) = ;

Com3b
P m;a��!P 0 Q n;a��!Q0

P jQ hm�L;n�Ri;��������!P 0jQ0
II [n](Q) \ (II(P) [II(P)) = ;

by the following example. Consider process (b:0+ a:0) j(a:0+ c:0) j c:0. When
computing the semantics in a left-associative manner, the initial b-transition
is pre-empted according to Rule (Com1) since a may potentially communicate
with a. However, when �rst composing the second and third parallel com-
ponents, the a-transition is pre-empted, and consequently the b-transition is
enabled by Rule (Com1). The reason for this problem is that transitions are
pre-empted because the considered process can potentially engage in a higher
prioritized communication from a comparable location. However, this poten-
tial communication cannot take place if the communication partner is itself
pre-empted. The same problem also arises when extending CCSsl to multiple
priority levels, even if communication is only allowed on complementary ac-
tions of the same priority, as can be observed by using a slight adaptation of
the previous example: (b :2:0 + a :1:0) j(a :1:0+ c :0:0) j c :0:0.

One can imagine two approaches to �xing the problems with the �rst (and
second) alteration to the theory. One is to change the operational semantics;
in particular, the side conditions could be weakened such that an unprioritized
transition is only pre-empted when a prioritized action from a comparable lo-
cation can actually engage in a communication. This approach has not been
investigated in the literature, yet. The second solution follows an approach de-
veloped in [24] for a di�erent setting and involves the use of a syntax restriction
on processes prohibiting output actions, i.e., actions in �, from occurring as
initial actions that are in the scope of +. Hence, all potential communication
partners are also actual ones, and the standard side conditions for parallel
composition are su�cient to encode the desired notion of pre-emption. It is
important to mention that the proposed syntax restriction still allows one
to specify many practically relevant examples within the calculus. Indeed, a
similar restriction may be found in the programming language occam [43].

33

4.7 Extension to Multi-Level Priority Schemes

For CCSslml we allow a multi-level priority scheme and communication between
complementary actions having potentially di�erent priorities. As seen in the
previous section, both of these relaxations yield a semantics for which parallel
composition is not associative. However, we have also argued that this prob-
lem vanishes if the syntax is restricted such that output actions can never
be pre-empted. We adapt the syntax restriction proposed by Camilleri and
Winskel [24], which states that initial actions in the scope of a comparable
summation operator must be input actions. Therefore, input and output ac-
tions are explicitly distinguished in CCSslml; the internal action � is also treated
as input action. In the following, we let a; b; : : : range over the set � of input
ports and a; b; : : : over the set � of output ports. Moreover, we let
 stand for
any input action and let � range over A =df �[�[f�g. Since in the restricted
syntax priority values of output actions need never be compared with other
priority values, there are no priority values associated with output actions at
all. The syntax of CCSslml is formally de�ned by the following BNF for P .

I ::= 0 j x j
 :k:I j I + I j I � I j I j I j I[f] j I n L j �x:I

P ::= 0 j x j � :k:P j I + I j P � P j P jP j P [f] j P n L j �x:P

Here, f is an injective, �nite relabeling, L � �[� is a restriction set, and x is a
variable taken from a countable domain V. A relabeling satis�es the properties
f(�) � �, f(�) � �, f(�) = � , and f(a) = f(a). Thus, in addition to the
requirements of a �nite relabeling in CCS, relabelings in CCSslml may only map
input ports to input ports and output ports to output ports. Since actions
attached with di�erent priority values do not represent di�erent ports here,
relabelings and restriction sets do not deal with priority values. Especially,
the priority value of a relabeled transition remains the same, i.e., there is
no explicit or implicit mechanism for prioritization or deprioritization (cf.
Section 3.5). In the remainder, we let Psl

ml denote the set of all CCS
sl
ml processes.

Table 16
Initial output action sets for CCSslml

II(�x:P) = II(P [�x:P=x]) II(a:P) = fag

II(P jQ) = II(P) [II(Q) II(P �Q) = II(P) [II(Q)

II(P [f]) = ff(a) j a 2 II(P)g II(P n L) = II(P) n (L [L)

The semantics of CCSslml processes are again labeled transition systems whose
transition relations are speci�ed by operational rules. Since transitions labeled
by output actions cannot get pre-empted they do not need to take account of
locations. We �rst present two auxiliary sets which are useful for presenting

34

the operational rules: (i) initial output action sets II(P) of a process P and
(ii) initial input action sets Ikm(P) of P with respect to a priority value k and
a location m, which are de�ned to be the least sets satisfying the equations
presented in Tables 16 and 17, respectively. For technical convenience we re-
move the complement of output actions in the de�nition of II(�), and we use
the following four abbreviations: (i) I<kM (P) =df

S
fIlm(P) jm 2 M; l < kg,

(ii) II<kM (P) =df I
<k
M (P) n f�g, (iii) I(P) =df

S
fIlm(P) jm 2 Loc; l 2 Ng, and

(iv) II(P) =df I(P) n f�g.

Table 17
Initial input action sets for CCSslml

Ikm(�x:P) = Ikm(P [�x:P=x]) Ik�(
 : l:P) = f
 j k = lg

Ikm�l(P +Q) = Ikm(P) Ikm�L(P �Q) = Ikm(P)

Ikn�r(P +Q) = Ikn(Q) Ikn�R(P �Q) = Ikn(Q)

Ikm(P [f]) = ff(
) j
 2 Ikm(P)g I
k
m�L(P jQ) = Ikm(P) [f� j I

k
m(P) \ II(Q) 6= ;g

Ikm(P n L) = Ikm(P) n (L [L) Ikn�R(P jQ) = Ikn(Q) [f� j I
k
n(Q) \ II(P) 6= ;g

Table 18
Operational semantics for CCSslml wrt. output transitions

Act
��

a:P a�!P
iSum1

P a�!P 0

P �Q a�!P 0
Com1

P a�!P 0

P jQ a�!P 0 jQ

Rel
P a�!P 0

P [f] f(a)��!P 0[f]
iSum2

Q a�!Q0

P �Q a�!Q0
Com2

Q a�!Q0

P jQ a�!P jQ0

Rec
P [�x:P=x] a�!P 0

�x:P a�!P 0
Res

P a�!P 0

P n L a�!P 0 n L
a =2 L [L

The operational rules for CCSslml semantics are formally stated in Table 18 for
output transitions and in Table 19 for input transitions. As expected, the rules
for output transitions coincide with the ones for plain CCS [56], whereas the
rules for input transitions take local pre-emption into account, thereby using
location and priority value information in their side conditions. It is worth
taking a closer look at the side conditions of Rules (Sum1) and (Sum2) which
di�er in principle from the corresponding ones in CCSsl. They guarantee that
an initial
 : l-transition of a process P is also pre-empted whenever there exists
a higher prioritized initial
 :k-transition of P , i.e., if k < l. This additional
kind of pre-emption re
ects that output transitions can communicate with a
complementary input transition regardless of its priority value; i.e., if more

35

Table 19
Operational semantics for CCSslml wrt. input transitions

Act
��

 :k:P �;
:k���!P
Sum1

P m;
:k���!P 0

P +Q m�l;
:k����!P 0
�;
 =2 I<k(Q)

iSum1
P m;
:k���!P 0

P �Q m�L;
:k����!P 0
Sum2

Q n;
:k���!Q0

P +Q n�r;
:k����!Q0
�;
 =2 I<k(P)

iSum2
Q n;
:k���!Q0

P �Q n�R;
:k����!Q0
Com1

P m;
:k���!P 0

P jQ m�L;
:k����!P 0 jQ
II<k[m](P) \ II(Q) = ;

Rel
P m;
:k���!P 0

P [f] m;f(
):k�����!P 0[f]
Com2

Q n;
:k���!Q0

P jQ n�R;
:k����!P jQ0
II<k[n] (Q) \ II(P) = ;

Rec
P [�x:P=x] m;
:k���!P 0

�x:P m;
:k���!P 0
Com3

P m;a:k���!P 0 Q a�!Q0

P jQ m�L;� :k����!P 0 jQ0
II<k[m](P) \ II(Q) = ;

Com4
P a�!P 0 Q n;a:k���!Q0

P jQ n�R;� :k����!P 0 jQ0
II<k[n] (Q) \ II(P) = ;

Res
P m;
:k���!P 0

P n L m;
:k���!P 0 n L

 =2 L [L

than one communication partner o�ering the matching input transition is
available from a comparable location, then the one having the highest priority
is taken. This kind of pre-emption requires relabelings to be restricted to
injective ones, as is pointed out in [24].

The behavioral relations de�ned for CCSsl can be adapted to CCSslml in a
straightforward fashion, as we demonstrate by the notion of distributed pri-
oritized strong bisimulation.

De�nition 4.17 A symmetric relation R � P�P is a distributed prioritized
strong bisimulation for CCSslml if for every hP;Qi 2 R, a 2 �,
 2 � [f�g,
k 2 N , and m 2 Loc, the following conditions hold.

(1) P a�!P 0 implies 9Q0: Q a�!Q0 and hP 0; Q0i 2 R, and
(2) P m;
:k���!P 0 implies

9Q0; l; n: Q n;
:l��!Q0; II<l[n](Q) � II<k[m](P); and hP
0; Q0i 2 R.

36

We write P 'ml Q if hP;Qi 2 R for some distributed prioritized strong bisim-
ulation R for CCSslml.

Proposition 4.18 The relation 'ml is compositional with respect to all op-
erators except summation.

The proof can be done by applying standard techniques [56] and, therefore, is
omitted here. The reason for the compositionality lack with respect to sum-
mation is illustrated by the following example: a :0:0 'ml a :1:0 holds, but
a :0:0 + � :0:0 6'ml a :1:0 + � :0:0 since the former process can engage in a
transition labeled by action a whereas the latter cannot. This defect can eas-
ily be repaired (note the analogy with weak bisimulation [56]) but is not of
importance for the purposes of this chapter.

4.8 Camilleri and Winskel's Approach

In this section we brie
y review the framework of Camilleri and Winskel's
approach to priority [24] which we refer to as CCScw (CCS with priority due
to Camilleri and Winskel). In contrast to the approaches considered so far,
this process algebra with priority does not assign priority values to actions.
Instead, there exists a special summation operator +i in CCScw, called priori-
tized choice, which favors its left over its right argument. The syntax of CCScw

terms is given by the following BNF for P .

I ::= 0 j x j
:I j I +i I j I + I j I j I j I[f] j I n L j �x:I

P ::= 0 j x j �:P j I +i I j P + P j P jP j P [f] j P n L j �x:P

Here, the action
, the injective, �nite relabeling f , and the restriction set
L satisfy the constraints mentioned in the previous section. Again, closed
and guarded terms determine the set Pcw of CCScw processes. Further, we
introduce initial output and input action sets as depicted in Tables 20 and 21,
respectively, and write IIcw(P) for Icw(P) n f�g.

Table 20
Initial output action sets for CCScw

II
cw
(a:P) = fag II

cw
(�x:P) = II

cw
(P [�x:P=x])

II
cw
(P jQ) = II

cw
(P) [II

cw
(Q) II

cw
(P +Q) = II

cw
(P) [II

cw
(Q)

II
cw
(P [f]) = ff(a) j a 2 II

cw
(P)g II

cw
(P n L) = II

cw
(P) n (L [L)

The semantics of a CCScw process is given by a labeled transition system
whose transition relation possesses transitions of the form `cw

M P
�
! P 0, where

37

Table 21
Initial input action sets for CCScw

Icw(
:P) = f
g Icw(�x:P) = Icw(P [�x:P=x])

Icw(P +iQ) = Icw(P) [Icw(Q) Icw(P +Q) = Icw(P) [Icw(Q)

Icw(P [f]) = ff(
) j
 2 Icw(P)g Icw(P n L) = Icw(P) n (L [L)

Icw(P jQ) = Icw(P) [Icw(Q) [f� j Icw(P) \ II
cw
(Q) 6= ;g

Table 22
Operational semantics for CCScw

Act
��

`cw; �:P
�
! P

Res
`cwM P

�
! P 0

`cw
Mn(L[L)

P n L
�
! P 0 n L

� =2 L [L

Sum1
`cwM P

�
! P 0

`cwM P +iQ
�
! P 0

Sum2
`cwN Q

�
! Q0

`cw
N[IIcw(P) P +iQ

�
! Q0

�; � =2 Icw(P)

iSum1
`cwM P

�
! P 0

`cwM P +Q
�
! P 0

Com1
`cwM P

�
! P 0

`cwM P jQ
�
! P 0 jQ

M \ II
cw
(Q) = ;

iSum2
`cwN Q

�
! Q0

`cwN P +Q
�
! Q0

Com2
`cwN Q

�
! Q0

`cwN P jQ
�
! P jQ0

N \ II
cw
(P) = ;

Rel
`cwM P

�
! P 0

`cw
f(M) P [f]

f(�)
! P 0[f]

Com3
`cwM P

a
! P 0 `cw; Q

a
! Q0

`cwM P jQ
�
! P 0 jQ0

M \ II
cw
(Q) = ;

Rec
`cwM P [�x:P=x]

�
! P 0

`cwM �x:P
�
! P 0

Com4
`cw; P

a
! P 0 `cwN Q

a
! Q0

`cwN P jQ
�
! P 0 jQ0

N \ II
cw
(P) = ;

M � �. Intuitively, process P can engage in an �-transition to P 0 whenever the
environment does not o�er communications on ports inM . Despite notational
di�erences, this is the same underlying principle as for the transition relations
de�ned in the previous sections, which are parameterized by initial action sets.
Note that � 2 � implies M = ;. The CCScw transition relation is formally
de�ned in Table 22, where f(M) stands for ff(m) jm 2 Mg. Recall that the
initial actions of P in P +iQ are given preference over the initial actions of Q.
As expected, a prioritized � , i.e., an internal action in which the left argument

38

of +i can initially engage, has pre-emptive power over unprioritized actions,
i.e., actions in which the right argument of +i can initially engage. Thus, the
prioritized choice operator +i in CCScw corresponds to the summation operator
+ in CCSslml. In [24] the operator + stands for nondeterministic choice where
priorities arising from the left and the right argument are incomparable. This
operator is matched by the distributed summation operator � in CCSslml. We
further investigate the correspondence of these operators in the next section.

Camilleri and Winskel also developed a bisimulation-based semantic theory
for CCScw. Their notion of strong bisimulation for CCScw, as de�ned below, is
shown to be a congruence [24].

De�nition 4.19 A symmetric relation R � P�P is a distributed prioritized
strong bisimulation for CCScw if for every hP;Qi 2 R, � 2 A, and M � � the
following condition holds:

`cwM P
�
! P 0 implies 9Q0; N: `cwN Q

�
! Q0; N �M; and hP 0; Q0i 2 R :

We write P 'cwQ if hP;Qi 2 R for some distributed prioritized strong bisim-
ulation R for CCScw.

4.9 Relating Both Priority Approaches

We show that the algebras CCSslml and CCScw are closely related by providing
an embedding of CCScw in CCSslml. For this purposes we de�ne N =df f0; 1g

�

and the strict order < on priority values to be the lexicographical order on N ,
where 1 is less than 0.

Table 23
Translation function

�k(0) =df 0 �k(P +Q) =df �
k(P)� �k(Q) �k(P n L) =df �

k(P) n L

�k(x) =df x �k(P +iQ) =df �
k0(P) + �k1(Q) �k(P [f]) =df �

k(P)[f]

�k(
:P) =df
 :k:�
�(P) �k(P jQ) =df �

k(P) j �k(Q) �k(�x:P) =df �x:�
k(P)

�k(a:P) =df a:�
�(P)

We now introduce the translation function �(�) : Pcw �! Psl
ml by de�ning

�(P) =df �
�(P), which maps CCScw terms to CCSslml terms. The functions �k(P),

for k 2 N , are inductively de�ned over the structure of CCScw processes as
shown in Table 23. We note that the translation function is not surjective,
e.g., consider process (a :0:0 + b :2:0) + c :1:0 on which no CCScw process is
mapped. This example also shows that the notion of compositionality in CCScw

39

is more restrictive than the one in CCSslml, since a comparable summation can
only be extended by summands which have a higher or a lower priority than
the already considered summands. The following theorem, which is proved
in [53], makes the semantic relationship between a CCScw process P and its
embedding �(P) precise.

Theorem 4.20 Let P;Q 2 Pcw. Then P 'cwQ if and only if �(P) 'ml �(Q).

As a consequence, distributed prioritized strong bisimulation for CCSslml is also
compositional with respect to summation in the sub-calculus of CCSslml induced
by CCScw.

4.10 Concluding Remarks and Related Work

A local concept of pre-emption is also considered by Hansson and Orava in [37],
where CSP [42] is extended with priority by assigning natural numbers to ac-
tions. As for CCSsl, they equipped their operational semantics with a notion of
location and introduced a sensitivity to locations when de�ning pre-emption.
Indeed, their work served as an inspiration for CCSsl. However, the authors
only conjecture that their version of strong bisimulation is a congruence, and
they provide neither an axiomatization for their behavioral relation nor a the-
ory for observational congruence. One may also criticize their semantics as not
truly re
ecting distributed computation. In particular, despite having a local
pre-emptive semantics they compute a global priority for synchronizations.

After stressing the strong similarity of CCSsl to the process algebra CCScw in
the previous section, we focus on the algebraic results established in these
frameworks. In [24,46] the transition relation is directly annotated with pre-
emption potentials. By plugging this transition relation into the de�nition of
standard strong bisimulation one immediately obtains a congruence. In con-
trast, [29] starts o� by de�ning naive distributed prioritized strong bisimula-
tion using the naive transition relation and considering pre-emption potential
subsequently (by introducing the distributed prioritized initial action set con-
dition). Then it is shown that the resulting congruence is the largest congru-
ence in the naive equivalence. Similarly, Jensen [46] de�nes a naive distributed
prioritized weak bisimulation based on the above-mentioned annotated transi-
tion relation. His naive weak transition relation corresponds to the distributed
prioritized weak transition relation in CCSsl if the parameter M is dropped.
Because of the di�erence in the naive transition relations the abstraction result
presented here is somewhat stronger than Jensen's, although the observational
congruences appear to coincide.

One may wonder about the relationship between CCSsl and CCSsg, i.e., the

40

static priority & global pre-emption language in Section 3. If in CCSsl the
distributed summation operator is left out and pre-emption is globalized by
de�ning [m] =df Loc for all m 2 Loc, the operational semantics and the be-
havioral relations reduce to the corresponding notions presented in Section 3.

Like Camilleri and Winskel, Barrett [8] devises a semantics of occam's priority
mechanism that is additionally concerned with fairness aspects. His framework
is based on a structural operational semantics augmented with ready-guard
sets which model possible inputs from the environment. Intuitively, these sets
characterize the nature of the contexts in which a transition is enabled. Thus,
they correspond to the action sets with which the CCSsl and the CCScw tran-
sition relations are parameterized. Barrett is not concerned with investigating
behavioral relations, but focuses on implementing occam's PRIALT and PRIPAR

constructs on the transputer platform instead.

Other researchers have also extended Hoare's Communicating Sequential Pro-
cesses (CSP) [42] by a concept of static priority. Inspired by the notion of
priority in ADA [49], Fidge [33] has introduced new versions of the operators
for external choice, parallel composition by interleaving, and parallel com-
position by intersection. These favor their left-hand operands similar to the
operators investigated by Jensen [46]. The semantic theory in [33] is based
on failure semantics which is made sensitive to local pre-emption. For this
purpose, traces are augmented with a preference function which identi�es the
priority relation on the initial action sets of a given process. A related approach
has been presented by Lowe [52]. It di�ers from [33] in that the underlying
algebra is a timed version of CSP [31]. Additionally, Lowe aims at obtaining
a fully deterministic language by employing a similar notion of priority as the
one proposed by Fidge.

Finally, we remark on the notion of strong and weak bisimulations for CCSsl.
Since the semantic theory re
ects local pre-emption, locations are implicitly
occurring in our semantic equivalences. In contrast to the work on location
equivalences [18,25,61], we do not consider locations explicitly in our relations.
Our objective is not to observe locations but to capture local pre-emption.

5 Dynamic Priority and Global Pre-emption

This section develops a theory in which priorities are dynamic and pre-emption
is global. The motivation for this theory originated in a desire to devise a com-
pact model of real-time computation, and we devote signi�cant space to estab-
lishing a tight connection between the seemingly di�erent notions of priority
and real-time [10]. For this purpose we equip our language with a dynamic
priority semantics based on global pre-emption and refer to it as CCSdg (CCS

41

with dynamic priority and global pre-emption). The connection with real-time
arises when we interpret delays as priorities: the longer the delay preceding an
action, the lower is its priority. This approach contrasts signi�cantly with more
traditional accounts of real-time, where the only notion of pre-emption arises
in the context of the maximal progress assumption [78] which states that time
may only pass if the system under consideration cannot engage in any fur-
ther internal computation. The main result of this section is the formalization
of a one-to-one correspondence between the strong-bisimulation equivalences
induced by dynamic priority semantics and real-time semantics.

Unlike the process algebras with priority considered so far, actions in CCSdg

do have priority values that may change as systems evolve. Accordingly, we
slightly alter our point of view regarding actions and priorities by separating
action names from their priority values; that is, an action's priority is no
longer implicit in its port name. In this vein, we take the set of actions A
to be f�; �; : : :g. We also allow priority values to come from the full set N of
natural numbers rather than a �nite set. Our syntax of processes will then
require that each action is equipped with a priority value taken from N .

The structure of this section is as follows. Section 5.1 brie
y presents a real-
time semantics for our language, whereas the dynamic priority semantics is
introduced in Section 5.2. The one-to-one correspondence between dynamic
priority semantics and real-time semantics is established in Section 5.3. Finally,
Section 5.4 contains our concluding remarks and discusses related work.

5.1 Real-Time Semantics

We �rst introduce a real-time semantics for our language, referred to as CCSrt

semantics, which explicitly represents timing behavior. The semantics of a
process is de�ned by a labeled transition system which contains explicit clock
transitions { each representing a delay of one time unit { as well as action
transitions. With respect to clock transitions, the operational semantics is set
up such that processes willing to communicate with some process running in
parallel are able to wait until the communication partner is ready. However,
as soon as it is available, the communication has to take place, i.e., further
idling is prohibited. This assumption is usually referred to as maximal progress
assumption [78] or synchrony hypothesis [13].

Formally, the labeled transition system corresponding to a process P is a four-
tuple hP;A[f1g; 7�!; P i, where the alphabet A [f1g satis�es 1 =2 A. The

transition relation
1
7�! � P � P for clock transitions is de�ned in Table 24.

With respect to action transitions, it coincides with the one for traditional
CCS where Rule (Act) is replaced by axiom � :0:P

�
7�! P . For the sake of

42

simplicity, we use
 as representative of A[f1g, and write P

7�! P 0 instead of

hP;
; P 0i 2 7�!. If
 2 A we speak of an action transition, otherwise of a clock

transition. Sometimes it is convenient to write P

7�! for 9P 0 2 P : P

7�! P 0.

In order to ensure maximal progress, our operational semantics is set up in a

way such that P 6
1
7�! whenever P

�
7�!, i.e., clock transitions are pre-empted

as long as P can engage in internal computation.

Table 24
Operational semantics for CCSrt (clock transitions)

tNil
��

0
1
7�! 0

tRec
P [�x:P=x]

1
7�! P 0

�x:P
1
7�! P 0

tAct1
��

� :k:P
1
7�! � : (k � 1):P

k > 0 tAct2
��

a :0:P
1
7�! a :0:P

tSum
P

1
7�! P 0 Q

1
7�! Q0

P +Q
1
7�! P 0 +Q0

tCom
P

1
7�! P 0 Q

1
7�! Q0

P jQ
1
7�! P 0jQ0

P jQ 6
�
7�!

tRel
P

1
7�! P 0

P [f]
1
7�! P 0[f]

tRes
P

1
7�! P 0

P n L
1
7�! P 0 n L

Intuitively, the process � :k:P , where k > 0, may engage in a clock transition
and then behave like � : (k � 1):P . The process � :0:P performs an � transition
to become process P . Moreover, if � 6� � , it may also idle by executing a clock
transition to itself. Time has to proceed equally on both sides of summation,
i.e., P + Q can engage in a clock transition and, thus, delay the nondeter-
ministic choice if and only if both P and Q can engage in a clock transition.
Hence, time is a deterministic concept. Similar to summation, P and Q have to
synchronize on clock transitions according to Rule (tCom). Its side condition
implements maximal progress by ensuring that there is no pending communi-
cation between P and Q. Although this condition is negative, our semantics
is still well-de�ned [76]. A semantic theory based on the notion of bisimula-
tion [56] has been developed for CCSrt(cf. [59]). For the purposes of this section
we restrict ourselves to (strong) temporal bisimulation, a congruence which is
de�ned as follows.

De�nition 5.1 (Temporal Bisimulation)
A symmetric relation R � P � P is called temporal bisimulation if for ev-
ery hP;Qi 2 R and
 2 A [f1g the following holds: P

7�! P 0 implies

9Q0: Q

7�! Q0 and hP 0; Q0i 2 R. We write P �rt Q if hP;Qi 2 R for some

temporal bisimulation R.

43

The reader might observe that CCSrt semantics unfolds every delay value into
a sequence of elementary time units. For example, the process a :k:0 has k+2
states, namely 0 and a : l:0, for 0 � l � k (see also Figure 6 in Section 5.3).
Representing a :k:0 by a single transition, which is labeled by a :k and leads to
state 0, would de�nitely be more e�cient. This idea of compacting the state
space of real-time systems can be implemented by viewing k as priority value
assigned to action a. In other words, one may consider the delay value k as
the time-stamp of action a [45].

5.2 Dynamic Priority Semantics

In order to make the above intuition precise, we formally introduce CCSdg,
i.e., a dynamic priority semantics for our language. The notion of pre-emption
incorporated in CCSdg is similar to CCSsg; it naturally mimics the maximal
progress assumption employed in CCSrt semantics. Formally, the CCSdg seman-
tics of a process P is given by a labeled transition system hP ;A� N ;�!; P i.
The presentation of the operational rules for the transition relation �! re-
quires two auxiliary de�nitions.

Table 25
Potential initial action sets for CCSdg

Ik(� : l:P) = f� j l � kg Ik(P jQ) = Ik(P) [Ik(Q) [f� j Ik(P) \ Ik(Q) 6= ;g

Ik(P +Q) = Ik(P) [Ik(Q) Ik(P [f]) = ff(�) j� 2 Ik(P)g

Ik(�x:P) = Ik(P [�x:P=x]) Ik(P n L) = Ik(P) n (L [L)

First, we introduce potential initial action sets as de�ned in Table 25, taking
account of the actions in which a given process can potentially engage. Note
that these sets are only supersets of the initial actions of processes because
they do not take pre-emption into account. However, this is su�cient for our

purposes regarding pre-emption, since � =2 I<k(P) if and only if 6 9l < k: P
� :l
�!,

where I<k(P) =df I
k�1(P), for k > 0, and I<0(P) =df ;.

Table 26
Priority adjustment function

[0]k =df 0; [x]k =df x [�x:P]k =df [P [�x:P=x]]
k

[� : l:P]k =df � : (l � k):P if l > k [� : l:P]k =df � :0:P if l � k

[P +Q]k =df [P]
k + [Q]k [P jQ]k =df [P]

k j [Q]k

[P [f]]k =df [P]
k[f] [P n L]k =df [P]

k n L

44

As second auxiliary de�nition for presenting the transition relation, we in-
troduce a priority adjustment function as shown in Table 26. Intuitively, our
semantics is set up in a way such that if one parallel component of a process
engages in a transition with priority k, then the priority values of all initial
actions at every other parallel component have to be decreased by k, i.e.,
those actions become equally \more urgent." Thus, the semantics of parallel
composition employs a kind of fairness assumption, and priorities have a dy-
namic character. More precisely, the priority adjustment function applied to
a process P and a natural number k, denoted as [P]k, returns a process term
which is \identical" to P except that the priority values of the initial, top-level
actions are decreased by k. Note that a priority value cannot become less than
0 and that \identical" does not mean syntactic equality but syntactic equality
up to unfolding of recursion.

Table 27
Operational semantics for CCSdg

Act1
��

a :k:P
a:l
�! P

l � k Act2
��

� :k:P
� :k
�! P

Sum1
P

�:k
�! P 0

P +Q
�:k
�! P 0

� =2 I<k(Q) Sum2
Q

�:k
�! Q0

P +Q
�:k
�! Q0

� =2 I<k(P)

Com1
P

�:k
�! P 0

P jQ
�:k
�! P 0j[Q]k

� =2 I<k(P jQ) Rel
P

�:k
�! P 0

P [f]
f(�):k
�! P 0[f]

Com2
Q

�:k
�! Q0

P jQ
�:k
�! [P]kjQ0

� =2 I<k(P jQ) Res
P

�:k
�! P 0

P n L
�:k
�! P 0 n L

� =2 L [L

Com3
P

a:k
�! P 0 Q

a:k
�! Q0

P jQ
� :k
�! P 0jQ0

� =2 I<k(P jQ) Rec
P [�x:P=x]

�:k
�! P 0

�x:P
�:k
�! P 0

The operational rules in Table 27 capture the following intuition. Process
a :k:P may engage in action a, with priority value l � k, yielding process P .
The side condition l � k re
ects that k does not specify an exact priority but
the maximum priority of the initial transition of a :k:P . It may also be inter-
preted as lower-bound \timing constraint." Due to the notion of pre-emption
incorporated in CCSdg, � :k:P may not perform the initial � -transition with a
lower priority than k. Process P + Q may behave like P (Q) if Q (P) does
not pre-empt the considered transition by being able to engage in a higher
prioritized internal transition. Thus, the notion of global pre-emption re
ects

45

implicit upper-bound \timing constraints." Process P jQ denotes the parallel
composition of P and Q according to an interleaving semantics with synchro-
nized communication on complementary actions of P and Q having the same
priority value k, which results in the internal action � attached with priority
value k (cf. Rule (Com3)). The interleaving Rules (Com1) and (Com2) incor-
porate the dynamic behavior of priority values as explained in the previous
paragraph. The side conditions of Rules (Comi) implement global pre-emption.
The semantics for relabeling, restriction, and recursion is straightforward. As
for CCSrt, we may adapt a notion of strong bisimulation, referred to as prior-
itized bisimulation.

De�nition 5.2 (Prioritized Bisimulation)
A symmetric relation R � P � P is called prioritized bisimulation if for

every hP;Qi 2 R, � 2 A, and k 2 N the following holds: P
�:k
�! P 0 implies

9Q0: Q
�:k
�! Q0 and hP 0; Q0i 2 R. We write P �dg Q if there exists a prioritized

bisimulation R such that hP;Qi 2 R.

5.3 Relating Dynamic Priority and Real-Time Semantics

In this section we show that CCSdg and CCSrt semantics are closely related.
The underlying intuition is best illustrated by a simple example dealing with
the pre�xing operator. Figure 6 depicts the dynamic priority semantics and
real-time semantics of process a :k:0. Both transition systems intuitively re
ect
that process a :k:0 must at least delay k time units before it may engage in the
a-transition. According to CCSrt semantics, this process consecutively engages
in k clock transitions passing the states a : (k � l):0, for 0 � l � k, before
it may either continue idling in state a :0:0 or perform the a-transition to
inaction process 0. Thus, time is explicitly part of states and made visible
by clock transitions, each representing a step consuming one time unit. In
contrast, the dynamic priority semantics encodes the delay of at least k time
units in the transitions rather than in the states. Hence, it possesses only the
two states a :k:0 and 0 connected via transitions labeled by a : l for l � k.
Although at �rst sight it seems that the price for saving intermediate states
is to be forced to deal with in�nite-branching, an upper bound for l can be
given. In our example this upper bound is k itself, since a delay by more than
k time units only results in idling and does not enable new or disable existing
system behavior. Therefore, the dynamic priority transition system of a :k:0
just consists of the two states a :k:0 and 0 and a symbolic transition labeled
by a :k, whereas the real-time transition system has k + 2 states and k + 2
transitions. The following proposition formally states that CCSdg semantics
can indeed be understood as an e�cient encoding of CCSrt semantics. Here,
1
7�!k denotes k consecutive clock transitions.

46

...

a:k.0

0

a:(k+1)a:k a:(k+i)

a:k.0

a:(k-1).0

dynamic-priority semantics real-time semantics

1

1

1

a:0.0

0

a
1

1

Fig. 6. Relating CCSdg semantics and CCSrt semantics

Proposition 5.3 Let P; P 0 2 P, � 2 A, and k 2 N. Then P
�:k
�! P 0 if and

only if 9P 00: P
1
7�!kP 00 �

7�! P 0.

Proposition 5.3 is the key to prove the main result of this section.

Theorem 5.4 Let P;Q 2 P. Then P �dg Q if and only if P �rt Q.

Consequently, prioritized and temporal bisimulation possess the same prop-
erties; especially, prioritized bisimulation is a congruence for CCSdg. Again,
proof details can be found in [53].

5.4 Concluding Remarks and Related Work

As shown above, real-time semantics can be encoded by dynamic priority
semantics. The utility of this encoding stems from the fact that the state
space of CCSdg models is much smaller and the size of the transition relation
is at least not worse, but in practice often better, than the one of corresponding
CCSrt models. This has been demonstrated by formally modeling and verifying
several aspects of the widely-used SCSI-2 bus-protocol, for which the state
space of the dynamic priority model is almost an order of magnitude smaller
than the one resulting from traditional real-time semantics [16].

Regarding related work, a similar approach to the one presented above has
been investigated by Je�rey [45]. He established a formal relationship between
a quantitative real-time process algebra and a process algebra with static pri-
ority which is very similar to CCSsg presented in Section 3. Technically, Je�rey
also translates real-time to priority based on the idea of time-stamping. In con-
trast to CCSrt semantics, however, a process modeled in Je�rey's framework
may either immediately engage in an action transition or idle forever. This
semantics does not allow a process to wait until a communication partner be-
comes available, but instead forces a \livelock" in such situations. It is only

47

because of this design decision that Je�rey does not need to choose a dynamic
priority framework.

In [22] a variant of CCSR [23], called CCSR92, has been introduced, which al-
lows for modeling not only static priority but also dynamic priority. The main
focus of CCSR involves the speci�cation and veri�cation of real-time concur-
rent systems, including scheduling behavior. Thus, a notion of dynamic prior-
ity, such as occurs in priority-inheritance and earliest-deadline-�rst scheduling
algorithms, is important. In [22] dynamic priorities are given as a function of
the history of the system under consideration. Accordingly, the operational
semantics of CCSR92 is re-de�ned to include the historical context. The au-
thors show that dynamic priorities do, in general, not lead to a compositional
semantics and give a su�cient condition that ensures compositionality.

6 Priority in Other Process-Algebraic Frameworks

This section completes the discussion of related work by focusing on ap-
proaches to priority which (i) do either not �t in our classi�cation scheme
presented in Section 1, such as approaches for ACP [5], SCCS [72], and stochas-
tic [11,41] or probabilistic [47,73,75] process algebras, or (ii) are concerned with
process-algebraic descriptions of non-process-algebraic languages, such as Es-
terel [12,13] and Statecharts [38].

Baeten, Bergstra, and Klop were the �rst researchers who investigated prior-
ity in process algebras [5] by developing a notion of priority in the Algebra of
Communicating Processes (ACP) [9], a process algebra which is equipped with
an axiomatic semantics. Their work is inspired by the insight that it is essen-
tial to incorporate an interrupt mechanism in process-algebraic frameworks
in order to enhance their expressive power as speci�cation and veri�cation
formalisms for concurrent systems. Therefore, a piece of syntax together with
semantics de�ning equations is introduced in [5]. Based on a given partial or-
der < on actions a unary operator � is de�ned. Intuitively, �(P) is the context
of P in which action a has precedence over action b, whenever b < a, i.e.,
non-deterministic choices between actions a and b are resolved within �(P).
Technically, the axiomatic semantics of the new language, notated as a term
rewrite system, is shown to possess nice algebraic properties such as con
uence
and termination. The utility of the theory is demonstrated by simple exam-
ples dealing with interrupts, timeouts, and other aspects of system behavior.
The approach in [5] di�ers from most other work presented in this chapter in
that the partial order expressing priorities is �xed with respect to the system
under consideration, i.e., the same priority relation holds at all states of the
system. For example, if a < b at some state of the system, then a > b cannot
be valid at another state, i.e., priorities in [5] are not globally dynamic in the

48

sense of [72]. It should also be mentioned that the version of ACP used in [5]
does not include a designated internal action, cf. action � in CCS; a fact which
simpli�es the development of algebraic theories.

Stochastic process algebras [11,41], which enhance the expressiveness of clas-
sical process algebras by integrating performance descriptions of concurrent
systems, also de�ne notions of priority. One example of a popular stochas-
tic process algebra is the Extended Markovian Process Algebra (EMPA) [11]
whose semantics is given in terms of strong bisimulation and whose static
priority approach is adapted from CCSsg.

Smolka and Ste�en [72] have introduced static priority to the Synchronous Cal-
culus of Communicating Systems (SCCS) [56]. They extended a probabilistic
version of this language, known as PCCS [75], whose semantics is given in
terms of probabilistic bisimulation. Their work shows that the concept of pri-
ority is not only related to real-time, as investigated in Section 5, but also to
probability. The main idea in [72] is to allow probability guards of value 0 to
be associated with alternatives of a probabilistic summation expression. Such
alternatives can be chosen only if the non-zero alternatives are precluded by
contextual constraints. Thus, priority may be viewed as an extreme case of
probability. Most remarkably, the semantics developed in [72] does not employ
a notion of pre-emption as one would expect from any priority setting. A con-
jecture { which if true would justify this situation { is that the very powerful
hiding operator in SCCS may destroy the congruence property of bisimulation
in the presence of pre-emption.

Tofts has investigated another extension of SCCS, the Weighted Synchronous
Calculus of Communicating Systems (WSCCS) [73]. Its semantics relies upon
a notion of relative frequency which is suitable for specifying and reasoning
about aspects of priority, probability, and time in concurrent systems. In this
approach, priority is encoded by means of higher ordinals; a transition has
priority over another if their weights are separated at least by a factor of !.
An operator similar to the �-operator in [5] is de�ned, which extracts the
highest priority transitions enabled at a process state by referring to a global
notion of pre-emption. In contrast to [5], Toft's operator allows for di�erent
priority structures at di�erent states. This concept of priority yields a simpler
operational semantics than the one in [72]. For WSCCS, a congruence adapted
from strong bisimulation together with an equational characterization, which
is sound and complete for �nite processes, has been developed.

The concept of pre-emption has also been studied in other synchronous lan-
guages, most notably by Berry [12]. The technical framework investigated
by him is Esterel's zero-delay process calculus, a theoretical version of the
Esterel synchronous programming language [13]. The calculus' semantics in-
terprets processes as deterministic mappings from input sequences to output

49

sequences which obey maximal progress [78]. Berry emphasizes the importance
of pre-emption in control-dominated reactive and real-time programming. He
suggests pre-emption operators to be considered as �rst-class operators which
are fully orthogonal with respect to all other primitives, such as concurrency
and communication. This is in contrast to the approach chosen in this chapter,
in which pre-emption is implicitly encoded as side conditions of operational
rules involving nondeterminism. Several examples of useful pre-emption op-
erators are presented and axiomatized in [12], all of which are based on the
ideas of abortion and suspension.

The speci�cation language Statecharts [38], for which process-algebraic de-
scriptions of Statecharts' semantics have been developed [51,54,74], extends
communicating �nite automata by concepts of hierarchy and priority. In Stat-
echarts static priorities can be expressed via the absence of actions, which are
called events, by permitting negated actions as guards, which are referred
to as triggers. As an example, consider the following Statecharts-like term:
a : b: P + :b : c: Q. This term consists of a nondeterministic choice between
a b-transition with guard a to process P , and a c-transition with guard :b
to Q. Intuitively, the statechart may only engage in the latter transition if
it cannot execute the former one. The reason is that the former transition
produces event b which falsi�es the guard of the c-transition. Thus, the b-
transition is given precedence over the c-transition. In the following we argue
that approaches to priority via negated events (cf. [36]) do not go well with
the concept of hiding, which is employed in many process algebras and also
in a very popular alternative to Statecharts, called ARGOS [55]. Hiding en-
ables one to relabel a visible action into a distinguished invisible action (cf.
the internal action � in CCS). The di�culty with hiding arises when several
events are hidden, i.e., all of them are relabeled to the same event and, thus,
have the same implicit priority value attached to them. Hence, hiding may
destroy priority schemes. In contrast, in the priority approaches considered in
this chapter priorities are assigned to transitions, thereby allowing for a more
�ne-granular priority mechanism and avoiding the above-mentioned problem.

7 Conclusions and Directions for Future Work

This chapter has investigated various aspects of priority in process algebras.
The utility of introducing priority to traditional process algebras is to enhance
their expressiveness and, thereby, making them more attractive to system de-
signers. Technically, priorities allow one to resolve potential nondeterminism,
as do certain constructs in existing speci�cation and programming languages.

Conclusions. We have illustrated the most important aspects of priority in
a prototypic language which extends Milner's CCS. This language has been

50

equipped with several semantics according to whether priorities are static or
dynamic and whether the adopted notion of pre-emption is global or local.

In practice it is easy to determine when to use static priority semantics and
when to use dynamic priority semantics. For modeling interrupts and prior-
itized choice constructs a static notion of priority is adequate, whereas for
modeling real-time or scheduling behavior dynamic priorities should be con-
sidered. However, static priority approaches may also allow for the description
of a few, very simple scheduling algorithms, as shown in [46] in the presence
of a prioritized parallel composition operator. In addition to the ability to
express more general scheduling algorithms, the dynamic priority approach
yields a more e�cient veri�cation of real-time systems, since the sizes of sys-
tem models with respect to dynamic priority semantics are often several orders
of magnitude smaller than the ones regarding real-time semantics [16]. If one
needs to deal with both interrupt and real-time aspects at the same time,
static and dynamic priority approaches must be combined. In this situation
each action should be assigned two priority values, the �rst interpreted as a
global priority value for scheduling purposes, and the second interpreted as a
local priority value for modeling interrupts, where the �rst priority value has
more weight than the second one.

Suitable guidelines supporting the decision in favor of a global or a local notion
of pre-emption are the following. A semantics obeying global pre-emption is
required when modeling interrupts and prioritized-choice constructs in concur-
rent, centralized systems or when specifying real-time and scheduling aspects.
Global pre-emption also allows for making executions of action sequences
atomic. This can be necessary for modeling systems accurately and, as a
desired side e�ect, may keep system models small, thereby enhancing the
e�ciency of veri�cation algorithms [30]. However, when dealing with inter-
rupts or prioritized-choice constructs within distributed systems, the concept
of global pre-emption is inadequate. Here, the use of local pre-emption does
not only lead to an intuitive but also to an implementable semantics, since
it does not require any knowledge about computations which are internal to
other, potentially unknown sites (cf. [28]).

Technically, the three di�erent calculi presented in Sections 3{5 are equipped
with a bisimulation-based semantics. The re-development of the semantic the-
ory of CCS for the static priority calculi included: (i) characterizations of the
largest congruences contained in the naive adaptations of the standard strong
and weak bisimulations, (ii) encodings of the new behavioral relations as stan-
dard strong bisimulations on enriched transition relations, and (iii) axiomatic
characterizations of the prioritized strong bisimulations for �nite processes.
For the dynamic priority calculus, strong bisimulation served as a semantic
tool for establishing a one-to-one correspondence between dynamic priority
and real-time semantics. Finally, we want to point out that the semantic theo-

51

ries presented here show that extensions of process algebras by priority do not
need to sacri�ce the simplicity and the elegance that have made traditional
process-algebraic approaches successful.

This chapter also surveyed related approaches to priority which are concerned
with di�erent process-algebraic calculi. We have classi�ed them according
to whether priorities are considered to be static or dynamic and whether
their concept of pre-emption is global or local. The concept of priority has
also been investigated in other concurrent frameworks, most notably in Petri
Nets [14,71]. In this setting priorities are either expressed explicitly by priority
relations over transitions [15] or implicitly via inhibitor arcs [44]. Finally, it
should be mentioned that priorities can implicitly arise when studying causal-
ity for mobile processes (see, e.g., [32]). In these approaches, priorities cut
o� super
uous paths that only present new temporal but not causal system
dependencies.

Future Work. In addition to the fact that a calculus combining dynamic pri-
ority and local pre-emption has not yet been developed, the semantic theories
for CCSsg and CCSsl need to be completed by axiomatizing their observational
congruences. For �nite processes, one should be able to establish these ax-
iomatizations using standard techniques [57]. However, for regular processes {
i.e., the class of �nite-state processes which do not contain recursion through
static operators { it is not clear how to obtain a completeness result. The point
is that existing methods for proving completeness of axiomatizations with re-
spect to observational congruences rely on the possibility to remove or to insert
� -cycles in processes. In the context of pre-emption, however, this would pos-
sibly change the pre-emption potential of processes and, thus, is semantically
incompatible with the prioritized observational congruences presented here.
Recently, a similar problem, which was identi�ed for the temporal process
algebra PMC before [2], has been attacked in [20,40] for stochastic process
calculi with priority and/or maximal progress. It remains to be seen whether
these approaches and techniques can be employed for the priority settings
investigated in this chapter.

Most process algebras which have been equipped with a notion of priority
rely on an interleaving semantics, handshake communication, and a semantic
theory based on bisimulation. Therefore, it should be investigated in which
sense the presented approaches and results, especially regarding local pre-
emption, can be adapted to broadcasting calculi, such as Hoare's CSP [42].
Moreover, since for semantics based on local pre-emption the usual interleaving
law is not valid, it is worth pursuing research regarding local pre-emption for
non-interleaving semantic frameworks [4,77]. Preliminary considerations have
been made in Jensen's thesis [46]. However, the insights obtained by Jensen
are restricted to a structural operational semantics for a CCS-based calculus,
which is de�ned using asynchronous transition systems [77]. Jensen's results

52

do not comprise a behavioral relation such as bisimulation (cf. [61]). Finally,
we want to note that { to the best of our knowledge { extensions of higher-
order process algebras [58,66] with concepts of priority do not exist, yet. Thus,
it would be interesting to see if some of the approaches presented here can be
carried over.

8 Sources and Acknowledgments

Major parts of this chapter have been adapted from several publications by
the authors, which include two PhD theses: the results of Section 3 are taken
from [27,53,62,63] and the ones of Section 4 from [29,53]; Section 5 heavily
borrows from material contained in [16,53].

This work was supported by the National Aeronautics and Space Adminis-
tration under NASA Contract No. NAS1-97046 while the second author was
in residence at the Institute for Computer Applications in Science and En-
gineering (ICASE), M/S 132C, NASA Langley Research Center, Hampton,
VA 23681-2199. The �rst author also acknowledges support by NSF grants
CCR-9257963, CCR-9505662, CCR-9804091, and INT-9603441, AFOSR grant
F49620-95-1-0508, and ARO grant P-38682-MA. Last but not least we would
like to thank Girish Bhat, Matthew Hennessy, Michael Mendler, and Bernhard
Ste�en for many discussions about priority in process algebras.

References

[1] L. Aceto, W. Fokkink, and C. Verhoef. Structural operational semantics. In
this volume.

[2] H.R. Andersen and M. Mendler. Complete axiomatization of observational
congruence for PMC. Technical Report ID-TR:1993-126, Department of
Computer Science, Technical University of Denmark, Lyngby, Denmark, 1993.

[3] J.C.M. Baeten, editor. Applications of Process Algebra, volume 17 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1990.

[4] J.C.M. Baeten and T. Basten. Process algebra with a partial-order semantics.
In this volume.

[5] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Syntax and de�ning equations
for an interrupt mechanism in process algebra. Fundamenta Informaticae IX,
pages 127{168, 1986.

[6] J.C.M. Baeten and J.W. Klop, editors. CONCUR '90 (Concurrency Theory),
volume 458 of Lecture Notes in Computer Science. Springer Verlag, 1990.

53

[7] J.C.M. Baeten and W.P. Weijland. Process Algebra, volume 18 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1990.

[8] G. Barrett. The semantics of priority and fairness in occam. In M. Main,
A. Melton, M. Mislove, and D. Schmidt, editors, Proceedings of Mathematical

Foundations of Programming Semantics (MFPS '89), volume 442 of Lecture
Notes in Computer Science, pages 194{208. Springer Verlag, 1989.

[9] J.A. Bergstra and J.W. Klop. Algebra of communicating processes with
abstraction. Theoretical Computer Science, 37(1):77{121, 1985.

[10] J.A. Bergstra, C.A. Middelburg, and Y.S. Usenko. Discrete time process algebra
and the semantics of SDL. In this volume.

[11] M. Bernardo and R. Gorrieri. Extended Markovian process algebra. In
U. Montanari and V. Sassone, editors, CONCUR '96 (Concurrency Theory),
volume 1119 of Lecture Notes in Computer Science, pages 315{330. Springer
Verlag, 1996.

[12] G. Berry. Preemption in concurrent systems. In R.K. Shyamasundar,
editor, Foundations of Software Technology and Theoretical Computer Science

(FSTTCS '93), volume 761 of Lecture Notes in Computer Science, pages 72{93.
Springer Verlag, 1993.

[13] G. Berry and G. Gonthier. The ESTEREL synchronous programming language:
Design, semantics, implementation. Science of Computer Programming,
19(2):87{152, 1992.

[14] E. Best, R. Devillers, and M. Koutny. A consistent model for nets and process
algebras. In this volume.

[15] E. Best and M. Koutny. Petri net semantics of priority systems. Theoretical

Computer Science, 96(1):175{215, 1992.

[16] G. Bhat, R. Cleaveland, and G. L�uttgen. A practical approach to implementing
real-time semantics. Annals of Software Engineering, 7, 1999. To appear.

[17] T. Bolognesi and E. Brinksma. Introduction to the ISO speci�cation language
LOTOS. Computer Networks and ISDN Systems, 14:25{59, 1987.

[18] G. Boudol, I. Castellani, M. Hennessy, and A. Kiehn. Observing localities.
Theoretical Computer Science, 114(1):31{61, 1993.

[19] J. Brad�eld and C. Stirling. Modal process logics for processes. In this volume.

[20] M. Bravetti and R. Gorrieri. Interactive generalized semi-markov processes. In
Process Algebra and Performance Modelling (PAPM '99), 1999. To appear.

[21] P. Br�emond-Gr�egoire, J.-Y. Choi, and I. Lee. A complete axiomatization of
�nite-state ACSR processes. Information and Computation, 138(2):124{159,
1997.

54

[22] P. Br�emond-Gr�egoire, S. Davidson, and I. Lee. CCSR92: Calculus for
communicating shared resources with dynamic priorities. In Purushothaman
and Zwarico [70], pages 65{85.

[23] P. Br�emonde-Gr�egoire, I. Lee, and R. Gerber. A process algebra of
communicating shared resources with dense time and priorities. Theoretical

Computer Science, 189(1/2):179{219, 1997.

[24] J. Camilleri and G. Winskel. CCS with priority choice. Information and

Computation, 116(1):26{37, 1995.

[25] I. Castellani. Locations and distributed processes. In this volume.

[26] R. Cleaveland. Equivalence and preorder algorithms for �nite-state systems. In
this volume.

[27] R. Cleaveland and M.C.B. Hennessy. Priorities in process algebras. Information
and Computation, 87(1/2):58{77, 1990.

[28] R. Cleaveland, G. L�uttgen, and M. Mendler. An algebraic theory of multiple
clocks. In A. Mazurkiewicz and J. Winkowski, editors, CONCUR '97

(Concurrency Theory), volume 1243 of Lecture Notes in Computer Science,
pages 166{180. Springer Verlag, 1997.

[29] R. Cleaveland, G. L�uttgen, and V. Natarajan. A process algebra with
distributed priorities. Theoretical Computer Science, 195(2):227{258, 1998.

[30] R. Cleaveland, V. Natarajan, S. Sims, and G. L�uttgen. Modeling and verifying
distributed systems using priorities: A case study. Software{Concepts and Tools,
17(2):50{62, 1996.

[31] J. Davies and S. Schneider. A brief history of Timed CSP. Theoretical

Computer Science, 138(2):243{271, 1995.

[32] P. Degano and C. Priami. Causality of mobile processes. In Z. F�ul�op and
F. G�ecseg, editors, International Conference on Automata, Languages and
Programming (ICALP '95), volume 944 of Lecture Notes in Computer Science,
pages 660{671. Springer Verlag, 1995.

[33] C.J. Fidge. A formal de�nition of priority in CSP. ACM Transactions on

Programming Languages and Systems, 15(4):681{705, 1993.

[34] R. Gerber and I. Lee. CCSR: A calculus for communicating shared resources.
In Baeten and Klop [6], pages 263{277.

[35] R. Gerber and I. Lee. A resourced-based prioritized bisimulation for real-time
systems. Information and Computation, 113(1):102{142, 1994.

[36] S.M. German. Programming in a general model of synchronization. In
R. Cleaveland, editor, CONCUR '92 (Concurrency Theory), volume 630 of
Lecture Notes in Computer Science, pages 534{549. Springer Verlag, 1992.

[37] H. Hansson and F. Orava. A process calculus with incomparable priorities. In
Purushothaman and Zwarico [70], pages 43{64.

55

[38] D. Harel. Statecharts: A visual formalism for complex systems. Science of

Computer Programming, 8:231{274, 1987.

[39] M.C.B. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.

[40] H. Hermanns and M. Lohrey. Priority and maximal progress are completely
axiomatisable. In D. Sangiorgi and R. de Simone, editors, CONCUR '98

(Concurrency Theory), volume 1466 of Lecture Notes in Computer Science,
pages 237{252. Springer Verlag, 1998.

[41] H. Hermanns, M. Rettelbach, and T. Wei�. Formal characterisation of
immediate actions in SPA with nondeterministic branching. The Computer

Journal, 38(7):530{541, 1995.

[42] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[43] INMOS Limited. Occam Programming Manual. International Series in
Computer Science. Prentice Hall, 1984.

[44] R. Janicki and M. Koutny. Semantics of inhibitor nets. Information and
Computation, 123(1):1{17, 1995.

[45] A. Je�rey. Translating timed process algebra into prioritized process algebra.
In J. Vytopil, editor, Symposium on Real-Time and Fault-Tolerant Systems

(FTRTFT '92), volume 571 of Lecture Notes in Computer Science, pages 493{
506. Springer Verlag, 1992.

[46] C.-T. Jensen. Prioritized and Independent Actions in Distributed Computer

Systems. PhD thesis, Aarhus University, Denmark, 1994.

[47] B. Jonsson, K.G. Larsen, andW. Yi. Probabilistic extensions of process algebra.
In this volume.

[48] P. Kanellakis and S.A. Smolka. CCS expressions, �nite state processes, and
three problems of equivalence. Information and Computation, 86(1):43{68,
1990.

[49] Kempe Software Capital Enterprises. Ada95 reference manual: Language and
standard libraries, 1995. Available at http://www.adahome.com.

[50] L. Lamport. What it means for a concurrent program to satisfy a speci�cation:
Why no one has speci�ed priority. In Twelfth Annual ACM Symposium

on Principles of Programming Languages (POPL '85), pages 78{83. IEEE
Computer Society Press, 1985.

[51] F. Levi. Veri�cation of Temporal and Real-Time Properties of Statecharts. PhD
thesis, University of Pisa-Genova-Udine, Pisa, Italy, 1997.

[52] G. Lowe. Probabilistic and prioritized models of timed CSP. Theoretical

Computer Science, 138(2):315{352, 1995.

[53] G. L�uttgen. Pre-emptive Modeling of Concurrent and Distributed Systems.
PhD thesis, University of Passau, Passau, Germany, 1998. Shaker Verlag.

56

[54] G. L�uttgen, M. von der Beeck, and R. Cleaveland. Statecharts via process
algebra. In Concurrency Theory (CONCUR '99), Lecture Notes in Computer
Science. Springer Verlag, 1999. To appear.

[55] F. Maraninchi. The ARGOS language: Graphical representation of automata
and description of reactive systems. In IEEE Workshop on Visual Languages.
IEEE Computer Society Press, 1991.

[56] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[57] R. Milner. A complete axiomatisation for observational congruence of �nite-
state behaviours. Information and Computation, 81(2):227{247, 1989.

[58] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, parts I
and II. Information and Computation, 100(1):1{77, 1992.

[59] F. Moller and C. Tofts. A temporal calculus of communicating systems. In
Baeten and Klop [6], pages 401{415.

[60] U. Montanari and D. Yankelevich. Location equivalence in a parametric setting.
Theoretical Computer Science, 149(2):299{332, 1995.

[61] M. Mukund and M. Nielsen. CCS, locations and asynchronous transition
systems. In R.K. Shyamasundar, editor, Foundations of Software Technology

and Theoretical Computer Science (FSTTCS '92), volume 652 of Lecture Notes
in Computer Science, pages 328{341. Springer Verlag, 1992.

[62] V. Natarajan. Degrees of Delay: Semantic Theories for Priority, E�ciency,

Fairness, and Predictability in Process Algebras. PhD thesis, North Carolina
State University, Raleigh, NC, USA, 1996.

[63] V. Natarajan, L. Christo�, I. Christo�, and R. Cleaveland. Priorities and
abstraction in process algebra. In P.S. Thiagarajan, editor, Foundations of

Software Technology and Theoretical Computer Science (FSTTCS '94), volume
880 of Lecture Notes in Computer Science, pages 217{230. Springer Verlag,
1994.

[64] R. Paige and R.E. Tarjan. Three partition re�nement algorithms. SIAM

Journal of Computing, 16(6):973{989, 1987.

[65] D.M.R. Park. Concurrency and automata on in�nite sequences. In P. Deussen,
editor, Proceedings of 5th GI Conference on Theoretical Computer Science,
volume 104 of Lecture Notes in Computer Science, pages 167{183. Springer
Verlag, 1981.

[66] J. Parrow. Mobility in process algebras. In this volume.

[67] G.D. Plotkin. A structural approach to operational semantics. Technical
Report DAIMI-FN-19, Computer Science Department, Aarhus University,
Denmark, 1981.

[68] K.V.S. Prasad. Programming with broadcasts. In E. Best, editor, CONCUR '93

(Concurrency Theory), volume 715 of Lecture Notes in Computer Science, pages
173{187. Springer Verlag, 1993.

57

[69] K.V.S. Prasad. Broadcasting with priority. In D. Sannella, editor, Proceedings
of the 5th European Symposium on Programming (ESOP '94), volume 788 of
Lecture Notes in Computer Science, pages 469{484. Springer Verlag, 1994.

[70] P. Purushothaman and A. Zwarico, editors. First North American Process

Algebra Workshop (NAPAW '92), Workshops in Computing. Springer Verlag,
1992.

[71] W. Reisig. Petri Nets: An Introduction. Springer, 1985.

[72] S.A. Smolka and B. Ste�en. Priority as extremal probability. Formal Aspects
of Computing, 8(5):585{606, 1996.

[73] C. Tofts. Processes with probabilities, priority and time. Formal Aspects of

Computing, 6(5):536{564, 1994.

[74] A.C. Uselton and S.A. Smolka. A compositional semantics for Statecharts using
labeled transition systems. In B. Jonsson and J. Parrow, editors, CONCUR '94

(Concurrency Theory), volume 836 of Lecture Notes in Computer Science, pages
2{17. Springer Verlag, 1994.

[75] R. van Glabbeek, S.A. Smolka, and B. Ste�en. Reactive, generative, and
strati�ed models of probabilistic processes. Information and Computation,
121(1):59{80, 1995.

[76] C. Verhoef. A congruence theorem for structured operational semantics with
predicates and negative premises. Nordic Journal of Computing, 2(2):274{302,
1995.

[77] G. Winskel and M. Nielsen. Models for concurrency. In S. Abramsky, D.M.
Gabbay, and T.S.E. Maibaum, editors, Handbook of Logic in Computer Science,
volume 4, pages 1{148. Oxford Science Publications, 1995.

[78] W. Yi. CCS + time = an interleaving model for real time systems. In
J. Leach Albert, B. Monien, and M. Rodr��guez-Artalejo, editors, International
Conference on Automata, Languages and Programming (ICALP '91), volume
510 of Lecture Notes in Computer Science, pages 217{228. Springer Verlag,
1991.

58

