

1	Introduction					
	1.1 1.2 1.3 1.4	Cosmic dust in the Universe 1.1.1 The origin of dust in the interstellar medium 1.1.2 Elemental abundances and the composition of dust in the ISM 1.1.3 The origin of interplanetary dust Dust astronomy The Cassini-Huygens mission The detection of interstellar dust in the solar system	1 2 3 6 7 9			
2		perimental set up The Cassini Cosmic Dust Analyzer				
3	Cosi 3.1	mic dust analogue material Introduction to the mineralogy of rock-forming minerals	23 24 24 25 28 29 30			
	3.2	 The synthesis of dust analogue material via the melt-quench method 3.2.1 Phase stability within the system MgO-FeO-SiO₂	31 32 33			
	3.3 3.4	 3.2.3 The effect of oxygen fugacity 3.2.4 Oxidation reactions in olivines and pyroxenes Dust analogue material from natural rocks Sample SA84-132: Analysis and results 3.4.1 Analysis of the modal mineralogy of sample SA84-132 	34 35 36 38 44			
4	4.1	ciples of impact ionization time-of-flight mass spectrometry Basic principles of time-of-flight mass spectroscopy	47 47 48 49 50			
5	Resi 5.1	ults and discussion Impact ionization mass spectra from multi-mineralic analogues measured	53			
		by LAMA	54			

		5.1.1 General evaluation of the recorded mass spectra	
		5.1.3 A new challenge: multi-mineralic dust analogues	
	5.2	A geochemical approach to the evaluation of multi-mineralic dust analogue	
		spectra	
		5.2.1 Data clusters as evidence for the existence of multiple species 64	
		5.2.2Variations of mass line amplitudes with velocity665.2.3Correlations of elements within the data set67	
		5.2.4 Establishing sensitivities for element detection by LAMA	
	5.3	Impact ionization mass spectra from multi-mineralic analogues measured	
		by CDA	
		Comparison of mass spectra between CDA and LAMA	
	5.5	In situ mass spectra of interstellar dust (ISD) candidates	
		5.5.1 Comparison of ISD mass spectra with CDA and LAMA calibration experiments	
	5.6	The composition of ISD candidates: Cosmochemically primitive or evolved? 82	
6		nary and outlook 87	
	b. I	Outlook	
7	App	ndix 91	
		Atomic masses, ionization energies and electron affinities	
	7.2	Raw data	
		7.2.1 LAMA-raw data 92 7.2.2 CDA-raw data 106	