Contents

1		nputational Geometry oduction	1
	1.1	An Example: Convex Hulls	2
	1.2		8
	1.3	Application Domains	10
	1.4	Notes and Comments	13
	1.5	Exercises	15
2	Line Segment Intersection Thematic Map Overlay		
	2.1	Line Segment Intersection	20
	2.2		29
	2.3		33
	2.4	· · ·	39
	2.5	Notes and Comments	40
	2.6	Exercises	41
3	Pol _y Gua	45	
	3.1	Guarding and Triangulations	46
	3.2	Partitioning a Polygon into Monotone Pieces	49
	3.3	Triangulating a Monotone Polygon	55
	3.4	Notes and Comments	59
	3.5	Exercises	60
4	Linear Programming Manufacturing with Molds		
	4.1	The Geometry of Casting	64
	4.2	Half-Plane Intersection	66
	4.3	Incremental Linear Programming	71
	4.4	Randomized Linear Programming	76

	4.5	Unbounded Linear Programs	79
		Linear Programming in Higher Dimensions	82
	4.7*	\mathcal{E}	86
		Notes and Comments	89
	4.9	Exercises	91
5		hogonal Range Searching rying a Database	95
	5.1	1-Dimensional Range Searching	96
		Kd-Trees	99
	5.3	C	105
		Higher-Dimensional Range Trees	109
		General Sets of Points	110
		Fractional Cascading	111
		Notes and Comments	115
	5.8	Exercises	117
6		nt Location wing Where You Are	121
	6.1	Point Location and Trapezoidal Maps	122
	6.2		128
	6.3	Dealing with Degenerate Cases	137
		A Tail Estimate	140
		Notes and Comments	143
	6.6	Exercises	144
7		onoi Diagrams Post Office Problem	147
	7.1	Definition and Basic Properties	148
	7.2	Computing the Voronoi Diagram	151
	7.3	Voronoi Diagrams of Line Segments	160
	7.4	Farthest-Point Voronoi Diagrams	163
	7.5	Notes and Comments	167
	7.6	Exercises	170
8		angements and Duality ersampling in Ray Tracing	173
	8.1	Computing the Discrepancy	175
	8.2	Duality	177
	8.3	Arrangements of Lines	179
	8.4	Levels and Discrepancy	185

X

CONTENTS

	8.5	Notes and Comments	186	CONTENTS	
	8.6	Exercises	188		
9	Dolo	aunay Triangulations	191		
9		ht Interpolation	191		
		-			
	9.1	Triangulations of Planar Point Sets	193		
	9.2	The Delaunay Triangulation	196		
	9.3	Computing the Delaunay Triangulation	199		
	9.4	The Analysis	205		
		A Framework for Randomized Algorithms	208		
	9.6	Notes and Comments	214		
	9.7	Exercises	215		
10	Moı	re Geometric Data Structures	219		
	Wine	dowing			
	10.1	Interval Trees	220		
	10.2	Priority Search Trees	226		
		Segment Trees	231		
	10.4	Notes and Comments	237		
	10.5	Exercises	239		
11	Con	vex Hulls	243		
11			243		
	IVIIXI	ng Things			
	11.1	The Complexity of Convex Hulls in 3-Space	244		
	11.2	Computing Convex Hulls in 3-Space	246		
	11.3	* The Analysis	250		
		* Convex Hulls and Half-Space Intersection	253		
	11.5	* Voronoi Diagrams Revisited	254		
	11.6	Notes and Comments	256		
	11.7	Exercises	257		
12	Bina	ary Space Partitions	259		
	The	Painter's Algorithm			
	12.1	The Definition of BSP Trees	261		
	12.2	BSP Trees and the Painter's Algorithm	263		
		Constructing a BSP Tree	264		
		* The Size of BSP Trees in 3-Space	268		
		BSP Trees for Low-Density Scenes	271		
		Notes and Comments	278		
		Exercises	279	xi	

Contents	13 Robot Motion Planning	283
	Getting Where You Want to Be 13.1 Work Space and Configuration Space	284
	13.2 A Point Robot	286
	13.3 Minkowski Sums	290
	13.4 Translational Motion Planning	297
	13.5* Motion Planning with Rotations	299
	13.6 Notes and Comments	303
	13.7 Exercises	305
	14 Quadtrees	307
	Non-Uniform Mesh Generation	
	14.1 Uniform and Non-Uniform Meshes	308
	14.2 Quadtrees for Point Sets	309
	14.3 From Quadtrees to Meshes	315
	14.4 Notes and Comments	318
	14.5 Exercises	320
	15 Visibility Graphs	323
	Finding the Shortest Route	
	15.1 Shortest Paths for a Point Robot	324
	15.2 Computing the Visibility Graph	326
	15.3 Shortest Paths for a Translating Polygonal Robot	330
	15.4 Notes and Comments	331
	15.5 Exercises	332
	16 Simplex Range Searching	335
	Windowing Revisited	
	16.1 Partition Trees	336
	16.2 Multi-Level Partition Trees	343
	16.3 Cutting Trees	346
	16.4 Notes and Comments	352
	16.5 Exercises	353

357

377

Bibliography

Index