
Accuracy vs. Speed: Scalable Entity Coreference on the Semantic Web with
On-the-Fly Pruning

Dezhao Song
Department of Computer Science and Engineering

Lehigh University
Bethlehem, PA 18015, USA

des308@lehigh.edu

Jeff Heflin
Department of Computer Science and Engineering

Lehigh University
Bethlehem, PA 18015, USA

heflin@cse.lehigh.edu

Abstract—One challenge for the Semantic Web is to
scalably establish high quality owl:sameAs links between
coreferent ontology instances in different data sources; tra-
ditional approaches that exhaustively compare every pair of
instances do not scale well to large datasets. In this paper,
we propose a pruning-based algorithm for reducing the
complexity of entity coreference. First, we discard candidate
pairs of instances that are not sufficiently similar to the
same pool of other instances. A sigmoid function based
thresholding method is proposed to automatically adjust the
threshold for such commonality on-the-fly. In our prior work,
each instance is associated with a context graph consisting
of neighboring RDF nodes. In this paper, we speed up the
comparison for a single pair of instances by pruning insignif-
icant context in the graph; this is accomplished by evaluating
its potential contribution to the final similarity measure.
We evaluate our system on three Semantic Web instance
categories. We verify the effectiveness of our thresholding
and context pruning methods by comparing to nine state-
of-the-art systems. We show that our algorithm frequently
outperforms those systems with a runtime speedup factor
of 18 to 24 while maintaining competitive F1-scores. For
datasets of up to 1 million instances, this translates to as
much as 370 hours improvement in runtime.

Keywords-Semantic Web, Entity Coreference, Linked Data,
Scalability, Pruning

I. INTRODUCTION

The purpose of entity coreference is to decide which
identifiers (e.g., person names, locations, etc.) refer to the
same real world entity. This is an essential task when in-
tegrating data from multiple sources. Entity coreference in
the Semantic Web is used to detect equivalent (coreferent)
ontology instances. Minimally, an ontology is an explicit
and formal specification of a conceptualization, formally
describing a domain of discourse. An ontology consists
of a set of terms (classes) and their relationships (class
hierarchies and predicates). RDF is a graph based data
model for describing resources and their relationships in
the Web. The source s of an edge, called its subject in
RDF, is an identifier (i.e., a URI). The target o of an edge,
called its object in RDF, can be either an identifier or a
literal value, such as strings, numbers, etc. Each edge is
labeled with a predicate p. Since an edge is represented
by a tuple <s,p,o>, they are called triples. A URI that
takes the subject place in one triple can be the object
in another. Note, since ontology instances are represented
by URIs assigned in a decentralized fashion, syntactically

distinct URIs may actually represent the same entity. For
example, a researcher can have multiple distinct URI
identifiers in DBLP, ACM and CiteSeer but such URIs
actually represent the same real world person; thus they
are coreferent. In the Semantic Web, coreferent instances
are linked to each other via the owl:sameAs predicate.

One well-known effort related to entity coreference is
Linked Data [1] that enables people to publish their data
with links to existing datasets. According to the latest
statistics of the Linked Open Data (LOD) cloud1, there
are currently 295 datasets from various domains with
more than 31 billion RDF triples and about 500 million
links across different datasets. A traditional approach to
handling this entity coreference problem is to exhaustively
compare every pair of instances in a dataset [2]–[4], which
could be extremely expensive for large-scale datasets.
Therefore, there is the need to develop scalable entity
coreference algorithms to be able to efficiently process
large-scale datasets. Furthermore, Halpin et al. [5] reported
that only 50% (±21%) of the owl:sameAs links from the
LOD Cloud are correct. This troubling fact emphasizes
that although scalability is important, we must also achieve
satisfying precision and recall.

In this paper, we propose a pruning-based algorithm
for reducing the complexity of entity coreference within
a dataset itself. Here, a “dataset” may contain compara-
ble instances from multiple heterogeneous sources. For
example, different datasets may use different terms to
define the “Researcher” class and ontology instances of all
such classes are comparable. First, we design an on-the-fly
candidate selection technique to reduce the number of in-
stance pairs to be computed. During the entity coreference
process, each instance is compared against other instances;
and we hypothesize that two coreferent instances should
have similar matching histories, i.e., they should be similar
to a sufficiently common set of other instances. We further
propose a sigmoid function based thresholding method
to automatically adjust the threshold on such history
similarity in order to gain a good balance between runtime
and F1-score. To speed up the computation for a single
pair of instances, we evaluate the potential contribution of
their context and only consider the context that is likely
to make a significant contribution to their final similarity.

1http://www4.wiwiss.fu-berlin.de/lodcloud/state/

We evaluate our system on three Semantic Web in-
stance categories. By comparing to alternatives that only
adopt a subset of our proposed techniques, we verify the
effectiveness of each individual component. Through the
comparison to 9 state-of-the-art systems, we show that our
algorithm runs 18 to 24 times faster with comparably good
precision and recall. A scalability test on up to 1 million
instances shows that the runtime differences become even
more substantial as we increase the size of the datasets.

We organize the rest of the paper as follows. Section
II provides some background information. We then for-
mally present our pruning-based algorithm in Section III
and discuss related work in Section IV. We present our
evaluations in Section V and conclude in Section VI.

II. BACKGROUND

We first introduce a basic entity coreference algorithm
EPWNG [4], Exhaustive Pairwise Entity Coreference
based on Weighted Neighborhood Graph. It computes the
similarity between every instance pair in a dataset based
on a set of paths, i.e., the context, as shown in Figure 1. A

Figure 1. Weighted Neighborhood Graph (G)

path is defined as follows: path = (r, p1, n1, ..., pd, nd),
where r is an ontology instance; ni and pi (i>0) are any
expanded RDF node and predicate in the path. N(G, r)
denotes the context (a set of paths that start from r and end
on another RDF node) for r in RDF graph G; End(path)
gives the last node in a path. Each node ni has a weight Wi

computed based on the discriminability of its associated
predicate pi; path weight is the multiplication of all its
node weights. When collecting context, we adopt breadth-
first search and eliminate cycles [4].

Algorithm 1 EPWNG(Na, Nb), Na and Nb are the context for instances
a and b; returns a and b’s similarity

1. score← 0, weight← 0
2. for all paths m∈Na do
3. n← Compare(m,Nb);
4. if n 6= null then
5. ps← Sim(End(m), End(n))
6. pw ← (Wm +Wn)/2
7. score← score+ ps ∗ pw
8. weight← weight+ pw
9. return score

weight

EPWNG (Algorithm 1) compares the comparable paths
in the context of two instances a and b. Two paths are
comparable if their predicates at corresponding positions
are comparable (determined by PtCmp), i.e., having the
same semantics. For example, predicate CiteSeer:name
is comparable to DBLP:name. Here, we created these

Algorithm 2 Compare(m,Nb), m is a path from Na; Nb is instance b’s
context; returns the path of b that is comparable and has the highest similarity to
m

1. if ¬∃path n∈Nb, PtCmp(m,n) then
2. return null
3. if End(m) is literal then
4. return argmaxn∈Nb,PtCmp(m,n) Sim(End(m), End(n))
5. else if End(m) is URI then
6. if ∃path n∈Nb, PtCmp(m,n) ∧ End(m) = End(n) then
7. return argmaxn∈Nb,PtCmp(m,n)∧End(m)=End(n)Wn

8. else
9. return null

mapping axioms of predicate comparability manually; but
we note that ontology alignment [6], a well studied topic
in the Semantic Web, can help automatically determine
predicate comparability across multiple ontologies, which
is out of the scope of this paper. Sim calculates the string
similarity between the last nodes of two paths. For each
path m of a, we call Compare() (see Algorithm 2) to
choose a path n of b that is comparable to and has the
highest similarity score to m, denoted as ps. The average
weight of path m (Wm) and n (Wn) is used as the weight
for ps. The process is repeated for every path of a. The
weighted average on such (path score, path weight) pairs
is computed as the final similarity score for a and b.

There are two key factors that prevent EPWNG from
scaling to large-scale datasets. On one hand, EPWNG
compares every pair of instances in a dataset thus making
the entire entity coreference process for large datasets pro-
hibitively expensive. So, one critical question is: Can we
prune instance pairs that are unlikely to be coreferent to
reduce the overall complexity? On the other hand, for two
instances, EPWNG compares all pairs of their comparable
paths. Assuming context graphs have branching factor
n and depth d, the complexity for computing a single
instance pair is O(n2d), therefore making EPWNG very
time-consuming for handling large context. So, another
interesting question here is: Can we only consider the
context that could potentially make a significant contri-
bution to the final similarity score between two instances
to further speed up the process?

III. ALGORITHM

Algorithm 3 presents the pseudo-code of our proposed
pruning-based entity coreference algorithm P-EPWNG. At
line 1, we adopt a simple yet effective filtering method,
i.e., we check if two instances share a single token in the
literal values of their top k% most disambiguating context,
and if the cosine similarity of such instances’ top k%
context is above a threshold δ. First, two instances cannot
be coreferent if they do not share at least one common
word in their context; also, the cosine similarity is used
to better handle contexts with many tokens. For example,
for publication instances, their titles are generally very
disambiguating and thus included in the top k% context;
however, only sharing a single token does not necessarily
indicate that they could be coreferent in many cases.

From line 3 to 10, we propose an on-the-fly candidate
selection technique based upon instances’ matching histo-
ries to effectively prune out instance pairs that are not

Algorithm 3 P-EPWNG(Na, Nb, H(a), H(b)), Na and Nb are the
context for instances a and b; H(a) and H(b) are their histories; returns their
similarity

1. if Share A Token Cosine(Na, Nb, k) ≤ δ then
2. return 0;
3. if HSim(H(a), H(b)) ≤ Thresholding(a) then
4. return 0;
5. else
6. sim k ← EPWNG(kdisc(Na, k), kdisc(Nb, k))
7. if sim k ≤ θ then
8. return 0;
9. else

10. H(b)← H(b) ∪ {a}
11. score← 0, weight← 0, scurr ← 0
12. context signif ← γ
13. for all paths m∈Na do
14. n← Compare(m,Nb);
15. if n 6= null then
16. ps← Sim(End(m), End(n))
17. pw ← (Wm +Wn)/2
18. sold ← scurr

19. score← score+ ps ∗ pw
20. weight← weight+ pw
21. scurr ← score

weight
22. context signif ← context signif − Eval(sold, scurr)
23. if context signif = 0 then
24. return scurr

25. return score
weight

likely to be coreferent. Consider that during the entity
coreference process, an instance is compared to many
other instances; the results of these prior comparisons
could be useful in determining whether two instances
might be coreferent. At any point in time, each instance
should have a set of other instances that it is somewhat
similar to. We define a function H(a) to denote the set of
similar instances of instance a, i.e., the matching history.
We hypothesize that two coreferent instances should share
a sufficient amount of common instances in their histories.
Therefore, the general idea behind our on-the-fly candidate
selection technique is that before we actually compute the
similarity for instances a and b, we adopt a lightweight
method to examine if their histories are similar enough,
i.e., if HSim(H(a), H(b)) is above some threshold (line
3). Instead of utilizing a fixed threshold on HSim, we
propose a sigmoid function based thresholding method
that gradually increases the threshold at runtime until an
upper bound is reached, since there is very little history
to compare at the beginning. HSim and the thresholding
method are further presented in Section III-A.

From line 6 to 10, after an instance pair passes the
history check, we should then apply a more expensive
method to measure their similarity, which can also be
used to determine if we should add one instance to the
history of another. In our algorithm, at line 6, we make
this decision by computing two instances’ similarity by
using the EPWNG algorithm only with their top k% most
disambiguating context (as returned by kdisc(Na, k)).
Passing the history check does not necessarily mean the
two instances are coreferent and thus it might not make
sense to use full context.

Furthermore, we propose a context pruning technique
inspired by the idea of quiescence search in game playing.
The basic idea is that more time should be spent refining
heuristic evaluations when there appear to be significant
fluctuations in the value. In this paper, we define an

evaluation function to estimate if the remaining context
would still make a significant contribution to the final
similarity score of two instances. At line 12, we initialize
context signif (context significance level) with a pos-
itive integer γ that can be interpreted as the maximum
times that we allow a new path to provide only a small
contribution to the final similarity score. Then, at line
22, an evaluation function Eval is used to check the
difference between scurr and sold, i.e., if considering one
more path still makes a significant change to the similarity
score between two instances. We will prune the rest of
the context when context signif reduces to 0. Eval is
further discussed in Section III-B.

A. History-based on-the-fly Candidate Selection

A Modified Jaccard Similarity Measure. As shown in
Algorithm 3, we compute the similarity (HSim, line 3)
between the matching histories of two instances. In this
paper, we adopt a modified version of the well-utilized
Jaccard similarity measure as defined in Equation 1:

HSim(H(a), H(b))=

{
+∞, H(a)=∅ or H(b)=∅ (1a)
|H(a)∩H(b)|
|H(a)∪H(b)| , otherwise (1b)

where H(a) represents the matching history of instance
a, i.e., a set of other instances that a is similar to. Here,
HSim is +∞ when either instance has an empty history,
though the traditional Jaccard similarity measure will give
a 0 in this case. The intuition is that the history we use
for pruning is partial history in the sense that it does not
contain a complete set of other instances that the given
instance is similar to. Imagine we have a list of instances
as shown below:

I = < i1, i2, i3, ..., im, in, ... , ilast >

To detect coreference relationships, we compare each
instance with every other instance in the order they are
placed, i.e., compare i1 to i2, i3, ..., ilast and then
similarly compare i2 to all other instances after it. There-
fore, when we attempt to compare im and in, each of
them has only been compared with instances that are
placed to the left of them and we still do not know
their similarities to instances in {ik} (k>n). Due to such
incomplete knowledge, an instance pair should not be
pruned when seeing an empty history.

Sorting Instances. At Line 3 of Algorithm 3, we prune
a pair of instances if their history similarity is below a
threshold. In our algorithm, this threshold is automatically
adjusted at runtime. One approach for performing such
adjustment is based upon how many groundtruth coref-
erent pairs have already been covered by the processed
instances at any given time. When more coreferent pairs
have been covered, we should adopt a higher threshold in
order to prune more un-coreferent pairs. This will lead to
runtime savings, without the risk of missing too many true
matches. However, for this approach to work, we need a
sufficiently sized sample of groundtruth data, but obtaining
such a sample for large-scale data is impractical.

To avoid labeling, we compute a Match Heuristic (MH)
for each instance before executing Algorithm 3. MH is

the number of potential matches of each instance in the
dataset. We sort the instances by their MH in descending
order, and we call Algorithm 3 on all pairs of an instance
with a subsequent instance in descending MH order. To
compute MH , we treat the context of each instance as
a bag of words that we call doc. For an instance, doc is
extracted from all literal paths of length one, i.e., literal
values from immediate triples. We then compute a cosine
similarity between the doc of each instance and that of all
other instances with Lucene2, a well-adopted Information
Retrieval tool. We first index all the docs as documents
with Lucene. Then each document is treated as a query
q and issued to Lucene. We count a returned document
doc′ as a potential match if cosine(q, doc′) calculated by
Lucene is above a threshold α.

A Sigmoid Function based Thresholding Approach.
There could be different ways to adjust the threshold on
the similarity of two instances’ matching histories. The
simplest way is to use a fixed threshold for the entire
coreference process; however, this method may cause the
system to miss a certain amount of coreferent pairs at
the starting stage since we put instances with the most
potential matches at the beginning of the instance list.
Therefore, a thresholding approach that starts with a low
value but then gradually increases the threshold could
potentially be a good choice.

After sorting, each instance is associated with a match
heuristic. Intuitively, the match heuristic of an instance can
be considered as its weighting factor. When processing
instance im, Σm−1k=1 MH(ik) gives the total weight of
the already processed instances (i.e., their total match
heuristics), indicating how important they are and thus can
be helpful for thresholding.

In this paper, we propose a sigmoid function based
thresholding method that utilizes such match heuristics.
The original sigmoid function is defined by Equation 2:

F (x) =
1

1 + e−x
(2)

The sigmoid function provides a continuous output with
limit 1 as x approaches infinity, and limit 0 as x ap-
proaches negative infinity.

However, the traditional sigmoid function cannot be
directly applied to our situation due to the following
two aspects. First of all, the traditional function gives a
value of 0.5 when x=0; while we require the computed
threshold should be 0 when input is 0. When x is small,
the entity coreference process is still in its early stage and
thus we have very limited knowledge about the matching
histories of the instances. Also, since we sort instances
based upon the number of their potential matches in
the dataset in descending order, we want to adopt a
relatively low threshold at the early stage in the entire
entity coreference process to reduce the risk of missing too
many true matches. Furthermore, the traditional function
has an upper bound of 1. However, in our situation, we

2http://lucene.apache.org/core/3 6 0/api/core/org/apache/lucene/
search/Similarity.html

may not want to set such a high threshold for filtering and
it would be useful if we could adjust the upper bound by
setting some parameter.

Based upon the discussion above, we propose a two-
phased thresholding function as shown in Equation 3:

Thresholding(im)=

{
0, x ≤ σ (3a)
K ∗ F (x(im)− 6), x > σ (3b)

where σ determines when to start introducing a threshold;
K represents the upper bound of the computed threshold.
Input x is the ratio between match heuristics of already
processed instances and that of all instances as computed
in Eq. 4:

x(im) =
Σm−1k=1 MH(ik)

Σ
|I|
k=1MH(ik)

∗ 10 (4)

where MH(i) is the match heuristic for instance i; the
factor 10 enables x to have the range [0, 10] to ensure the
output (the computed threshold by Eq. 3) has the ability to
transition through most of the range. We shift the original
sigmoid curve to the right by replacing x in Equation 2
with x-6, thus the computed threshold gets very close to
0 when x=0.

One alternative to Equation 3 is Bump, i.e., setting
the history threshold to 0 at the beginning and bumping
it to the upper bound when x>σ. We shall compare
these different thresholding approaches in our evaluation
(Section V-D).

B. Evaluation Function based Context Pruning
Another important question discussed in Section II is

how to reduce the complexity of the comparison for a
single pair of instances. Although an instance may have
a large number of paths in its context, we should only
consider those that can actually make significant contribu-
tion to the final similarity score of two instances. In this
paper, we define an evaluation function in Equation 5 to
judge if we should continue with the remaining paths given
the similarity between two instances from their already
considered paths:

Eval(sold, scurr) =

{
1, scurr − sold ≤ β (5a)
0, otherwise (5b)

where sold is the similarity between two instances by
considering the most highly weighted n-1 paths, and scurr
is the similarity by considering the top n paths.

Our evaluation function provides a hint of how impor-
tant the remaining context is. Linking back to Algorithm
3, at line 12, context signif (context significance level)
is initialized with γ, the maximum times we can tolerate
when considering one more path does not significantly in-
crease the similarity of two instances, i.e., scurr-sold ≤ β.
When this happens, Eval will return 1 and consequently
at line 22, we reduce our tolerance level of such situations
by 1. When the context significance level reaches 0, we
suspect all remaining context is insignificant, and we will
then decide to ignore the rest of the context to save
the overall computational cost. We will show later that
adopting our evaluation function can save half of the
overall runtime (Section V-D).

IV. RELATED WORK

EPWNG [4] adopts a bag-of-paths approach to detect
coreferent ontology instances. The core idea is that differ-
ent properties may have quite different impact and thus for
each property, a specific weight is automatically assigned.
Such property weights are then combined with string
matching techniques to compute instance pair similarity.
Although it outperforms comparison systems on some
benchmark datasets, it took about 17 hours to process
10,000 instances with dense RDF graphs. E/U-EPWNG
[7] adopt context pruning techniques that are different
from the evaluation function presented in this paper. They
utilize sampling techniques and a utility function to prune
insignificant context to scale entity coreference but do not
prune dissimilar instance pairs.

Aswani et al. [2] try to match person ontology instances
converted from the British Telecommunications digital li-
brary but their system needs to frequently issue search en-
gine queries to retrieve context information. RiMOM [6],
[8] is multi-strategy ontology alignment system designed
for alignment at both schema and instance level. Some of
the strategies include matching labels with string matching
techniques and calculating cosine similarity between con-
text of entities. AgreementMaker [9] and SERIMI [10]
are another two algorithms that rely on syntactic string
similarity for detecting coreferent ontology instances. Silk
[11] indexes ontology instances on manually specified
property values for scalability purposes and customized
rules are then used to detect coreferent pairs.

Hu et al. [12] build a kernel by adopting the formal
semantics of the Semantic Web that is then extended
iteratively in terms of discriminative property-value pairs
in the descriptions of URIs. Algorithms that combine
formal semantics of the Semantic Web and string matching
techniques also include Zhishi.me [13], LN2R [14], CODI
[15] and ASMOV [16].

Instead of computing every pair of instances in a dataset,
candidate selection can be adopted to select candidate
instance pairs that are likely to be coreferent in order
to reduce the overall search space. ASN [17] learns
dynamically sized blocks for each record with a manually
determined key. BSL [18] adopted supervised learning to
learn a blocking scheme, a disjunction of conjunctions
of (method, attribute) pairs. Cao et. al. [19] proposed a
similar algorithm that utilizes both labeled and unlabeled
data for learning the blocking scheme to reduce the needs
of training data. PartEnum [20] is a search based algo-
rithm that adopts a two-level partitioning and enumeration
based on Hamming distance. BiTrieJoin [21] is a trie-
based method to support efficient edit similarity joins with
sub-trie pruning. AllPairs [22] is a simple index based
algorithm with certain optimization strategies. PPJoin+
[23] adopts a positional filtering principle that exploits
the ordering of tokens in a record. Ed-Join [24] employed
filtering methods that explore the locations and contents
of mismatching n-grams. Similarly, IndexChunk [25] com-
putes asymmetric signatures on character-level n-grams as
constraints for selecting candidates. Differently, FastJoin

[26] adopts fuzzy matching techniques that consider both
token and character level similarity.

V. EVALUATION

Our system is implemented in Java and compiled with
Java 6. We conduct all experiments on a RedHat machine
with a 12-core Intel 2.8GHz processor and 60GB memory.

A. Evaluation Datasets and Metrics

We evaluate our pruning-based entity coreference al-
gorithm P-EPWNG on two Semantic Web datasets: RKB
[27] and SWAT3. For RKB, we use eight subsets: ACM,
DBLP, CiteSeer, EPrints, IEEE, LAAS-CNRS, Newcastle
and ECS. Our SWAT dataset consists of RDF data parsed
from downloaded XML files of CiteSeer and DBLP.
Although both datasets describe the academic domain and
share some information, they adopt different ontologies
and thus quite different predicates are involved. Also, they
may have different coverage in terms of both publication
date and venue. We compare on three instance categories:
RKB Person, RKB Publication and SWAT Person. The
groundtruth is owl:sameAs statements and can be crawled
from RKB and downloaded from the SWAT website. Since
the provided groundtruth was automatically derived and
thus incomplete and erroneous, we manually verify and
augment the groundtruth to improve their quality.

We adopt the standard metrics, including Precision: the
number of correctly detected pairs divided by the total
number of detected pairs given some threshold; Recall: the
number of correctly detected pairs divided by the number
of coreferent pairs according to the groundtruth; and F1-
score calculated as 2 ∗ Precision∗Recall

Precision+Recall . Furthermore, we
compare the runtime of different systems. In all exper-
iments, we collect instance context off-line and do not
include this time in the reported runtime of each system.

For all experiments, we use the same parameter settings
as shown in Table I. In general, adopting higher k could

Table I
PARAMETER SETTINGS.

Parameter Value Description
k (Alg. 3) 5% the percentage of context used for filtering
θ (Alg. 3) 0.3 if to add an instance to the history of another
γ (Alg. 3) 5 the maximum tolerance level for context pruning
δ (Alg. 3) 0.2 the filtering threshold in Share A Token Cosine

α (Sec. III-A) 5 sorting: whether an instance is a potential match
K (Eq. 3) 0.2 the upper bound for history-based pruning
σ (Eq. 3) 30% deciding when to apply history based pruning
β (Eq. 5) 0.1 expected contribution of computing 1 more path

improve F1-score a little but slows down the process; using
lower γ causes the system to have lower F1-score because
it prunes significant context; we can also gain a little
higher F1-scores as we increase σ. Due to limited space,
we do not present results with other parameter settings.

B. Evaluation Against State-of-the-Art Systems

We show our evaluation results in Table II. We compare
P-EPWNG to state-of-the-art candidate selection systems:
AllPairs [22], PPJoin+ [23], EdJoin [24], FastJoin [26],

3http://swat.cse.lehigh.edu/resources/data/

Table II
EVALUATING AGAINST STATE-OF-THE-ART SYSTEMS. |Pairs|: CANDIDATE SET SIZE; Time: THE RUNTIME FOR CANDIDATE SELECTION; Precision, Recall

AND F1-score ARE THE RELEVANT MEASURES FOR THE ACTUAL ENTITY COREFERENCE PHASE; Total T ime: THE RUNTIME FOR THE ENTIRE PROCESS,
INCLUDING BOTH CANDIDATE SELECTION AND ENTITY COREFERENCE.

Dataset System Candidate Selection Coreference
Total T ime (s)|Pairs| Time (s) Precision (%) Recall (%) F1-score (%)

RKB Person

P-EPWNG (Eq. 3) 68,427 4.46 95.02 89.52 92.18 7.66
Baseline N/A N/A 95.47 83.66 89.15 36.69
EPWNG [4] N/A N/A 93.04 90.93 91.96 6,296.91
U-EPWNG [7] N/A N/A 94.22 90.45 92.29 215.50
Ed-Join [24] 207,643 1.31 95.06 90.74 92.84 63.31
AllPairs [22] 454,972 0.93 94.26 90.85 92.52 83.76
PPJoin+ [23] 454,972 1.02 94.26 90.85 92.52 82.96
FastJoin [26] 443,846 3.92 94.27 90.85 92.52 81.75
IndexChunk [25] 953,300 2.27 95.03 90.73 92.82 149.70
BiTrieJoin [21] 969,637 41.92 95.65 84.61 89.77 87.66
PartEnum [20] 969,637 80.32 95.65 84.61 89.77 126.43

SWAT Person

P-EPWNG (Eq. 3) 43,333 4.50 99.49 90.88 94.99 8.61
Baseline N/A N/A 99.37 90.93 94.96 31.7
EPWNG [4] N/A N/A 99.45 90.93 94.99 16968.00
U-EPWNG [7] N/A N/A 99.45 90.93 94.99 275.17
Ed-Join [24] 226,330 1.56 99.48 90.81 94.94 102.77
AllPairs [22] 381,128 0.79 99.45 90.93 94.99 108.34
PPJoin+ [23] 381,128 0.86 99.45 90.93 94.99 106.72
FastJoin [26] 360,481 3.20 99.45 90.93 94.99 103.72
IndexChunk [25] 562,114 1.67 99.48 90.84 94.96 210.96
BiTrieJoin [21] 472,875 22.13 99.61 90.29 94.72 124.02
PartEnum [20] 473,018 70.47 99.61 90.29 94.72 123.10

RKB Publication

P-EPWNG (Eq. 3) 107,471 13.18 99.66 98.10 98.87 23.06
Baseline N/A N/A 98.99 97.28 98.13 72.1
EPWNG [4] N/A N/A 99.78 99.37 99.58 63200.71
U-EPWNG [7] N/A N/A 99.82 99.30 99.56 828.56
Ed-Join [24] 1,298,525 131.85 99.45 98.36 98.90 1330.20
AllPairs [22] 581,005 1.41 99.47 99.06 99.27 340.14
PPJoin+ [23] 581,005 1.39 99.47 99.06 99.27 342.21
FastJoin [26] 583,839 75.78 99.47 99.07 99.27 430.61
IndexChunk [25] 1,594,764 156.26 99.44 98.05 98.74 1242.85
BiTrieJoin [21] N/A N/A N/A N/A N/A N/A
PartEnum [20] 18,776,030 3091.67 98.78 82.27 89.57 47019.50

IndexChunk [25], BiTrieJoin [21] and PartEnum [20]. Al-
though P-EPWNG performs both candidate selection and
entity coreference, traditional candidate selection systems
only do the first step. Thus, to compare to state-of-the-
art systems, we first run those systems on the same input
to select candidate instance pairs; and then we apply the
EPWNG algorithm (the algorithm that does not have our
proposed pruning techniques) to the selected pairs. We
directly run our proposed algorithm P-EPWNG on the
same input to get the final entity coreference results.

We also compare to EPWNG [4] that performs a brute-
force pairwise comparison on all instance pairs without
any pruning and to U-EPWNG [7] that prunes insignificant
context based upon sampling techniques and a utility
function without doing candidate selection. A baseline is
also tested against where we only compare name (person)
and title (publication) for every pair of instances.

We randomly select 100K instances for each instance
category. We split each 100K instances into 10 non-
overlapping and equal-sized folds, apply all algorithms on
each fold and report their average. For coreference results,
we report a system’s best F1-score from threshold 0.1-0.9.

Baseline. The baseline is not as good as P-EPWNG on
F1-score and runtime. It has a much lower recall than oth-
ers on RKB Person. On RKB publication, the baseline has
worse precision than P-EPWNG since candidate selection
helps to filter out some potential false positives. Although
we only observed minor difference on F1-score for SWAT
Person, the baseline needed significantly more time. For

both RKB datasets, both P-EPWNG and the baseline have
worse recall than EPWNG, showing the need to explore
context beyond just name and title and thus the need for
appropriate context pruning techniques to balance runtime
and F1-score. Note that the baseline requires human input
on what to compare; also, in the absence of discriminative
labels (such as name and title), it may not be able to
achieve satisfying results.

EPWNG and U-EPWNG. Overall, compared to our
previous entity coreference algorithms EPWNG and U-
EPWNG, P-EPWNG achieves substantial runtime savings
with slightly worse recall and F1-score. The coreference
process was sped up by 2-3 orders of magnitude com-
pared to EPWNG and by a factor of 28-36 compared
to U-EPWNG. There is no surprise that EPWNG always
achieves the highest recall since no pruning was adopted.
Also, P-EPWNG achieves a little better precision on both
person datasets because pruning dissimilar instance pairs
can help to reduce the chance of having false positives.

The State-of-the-Art. Generally speaking, when com-
pared to state-of-the-art candidate selection systems, P-
EPWNG selects the fewest candidate pairs and thus is able
to run the fastest for the entire process, including both
candidate selection and coreference. However, since P-
EPWNG is the most aggressive in pruning instance pairs,
its recall and F1-score for the final coreference results are
generally slightly worse than that of most of those systems.

On RKB Person, P-EPWNG selects 3 (EdJoin) to 13
(IndexChunk, BiTrieJoin and PartEnum) times fewer pairs

than other systems, which leads to a speedup factor
of 8 (EdJoin) to 19 (IndexChunk) on runtime but also
results in 0.66% lower F1-score than the best (achieved
by EdJoin). Although P-EPWNG needs more time for
candidate selection, the fact that it selects a lot fewer
candidates enables it to achieve substantial runtime savings
for the overall process.

We observe similar results for SWAT Person. P-EPWNG
selects about 5 (EdJoin) to 13 (IndexChunk) times fewer
candidates than other systems; thus the entire process runs
11 (EdJoin) to 24 (IndexChunk) times faster. Furthermore,
P-EPWNG is also able to achieve the highest F1-score as
AllPairs, PPJoin+ and FastJoin.

On RKB Publication, in addition to runtime savings,
P-EPWNG also achieves the highest precision among all
candidate selection systems. P-EPWNG prunes instance
pairs most aggressively, which helps to reduce the chance
of having too many false positives. Note that on this
dataset, P-EPWNG spends much more time selecting
candidates than needed for the person datasets because our
Share A Token Cosine filtering is not very effective here.
Share A Token Cosine prunes an instance pair if they do
not even share a single token in their most disambiguating
context or the cosine similarity between such partial
contexts is below a threshold. For person and publication
instances, names and titles are generally included in the
partial context used by Share A Token Cosine; and it is
relatively easier for titles to share a token and have a high
similarity than names. So, more publication instance pairs
can pass this check and are then processed by other more
expensive steps.

C. System Scalability

We apply different systems to 100K to 1M instances to
examine their scalability. AllPairs, PPJoin+ and FastJoin
achieve very similar results, so we only compare to
PPJoin+. We also compare to EdJoin on both person
datasets where it is better on both the number of selected
pairs and the overall runtime (Table II); we did not
compare to EdJoin on RKB Publication since it selects
twice as many pairs as PPJoin+ on 10K instances and
thus is not expected to have better scalability. There are
only 500K instances in SWAT Person; also, PPJoin+ does
not scale to 1 million instances on RKB Person.

In Figures 2a to 2c, P-EPWNG demonstrates better
scalability than the other systems; and it is about 17, 5
and 11 times faster on RKB Publication, RKB Person and
SWAT Person respectively on the highest compared scale.
The other algorithms demonstrate a clear exponential
curve; although P-EPWNG is exponential, it has a much
smaller exponent. Considering applying these systems to
even larger datasets, the runtime differences could become
even more substantial.

D. Feature Evaluation

We examine the effectiveness of our proposed pruning
techniques by comparing to their alternatives. First, we
compare different ways to adjust the threshold on in-
stances’ matching history similarity (Section III-A): Fixed

(using a fixed threshold), Bump (starting with 0 and then
bumping to a fixed value), Sigmoid (σ=0 in Eq. 3) and M-
Sigmoid (σ=30% in Eq. 3). We also consider removing our
context pruning (M-Sigmoid\Eval) to examine its impact.

Table III
FEATURE EVALUATION. P : PRECISION, R: RECALL AND F : THE F1-SCORE

FOR P AND R; T : THE RUNTIME FOR THE ENTIRE PROCESS.

Dataset System P (%) R (%) F (%) T (s)
M-Sigmoid 95.02 89.52 92.18 7.66

RKB Sigmoid 95.05 89.22 92.04 7.56
Person Bump 95.14 88.76 91.83 7.51

Fixed 95.18 88.57 91.75 7.26
M-Sigmoid\Eval 95.23 89.28 92.15 14.48
M-Sigmoid 99.66 98.10 98.87 23.06

RKB Sigmoid 99.66 98.03 98.84 22.70
Publication Bump 99.66 97.91 98.78 22.66

Fixed 99.66 97.80 98.72 20.86
M-Sigmoid\Eval 99.49 98.09 98.79 51.00
M-Sigmoid 99.49 90.88 94.99 8.61

SWAT Sigmoid 99.49 90.88 94.99 8.58
Person Bump 99.49 90.88 94.99 8.32

Fixed 99.51 90.59 94.83 8.27
M-Sigmoid\Eval 99.49 90.88 94.99 19.78

Table III shows that M-Sigmoid has better recall than
its thresholding alternatives; with similar precision, it
achieves the best F1-scores. Fixed runs the fastest by using
the upper bound threshold along the whole process. A two-
tailed t-test on the F1-scores shows: for RKB Person, the
differences between M-Sigmoid and Fixed/Bump, Sigmoid
are statistically significant with P values of 0.0001 and
0.0004; for RKB Publication, the differences between M-
Sigmoid and Fixed/Bump, Sigmoid are significant with P
values of 0.0001 and 0.0101. Furthermore, M-Sigmoid
is about 1.9 to 2.2 times faster than M-Sigmoid\Eval,
showing the effectiveness of our evaluation function.

VI. CONCLUSION

In this paper, we propose P-EPWNG, a pruning-based
algorithm to scalably detect coreference relationships in
the Semantic Web. To reduce the impact of number of
instances on runtime, an on-the-fly candidate selection
technique is proposed for filtering un-coreferent instance
pairs if their matching histories are not sufficiently similar.
A sigmoid function based thresholding method is also
proposed to balance F1-score and runtime. To speed up
the computation for a single pair of instances, we fur-
ther propose an evaluation function to prune insignificant
context to their final similarity score. We compare P-
EPWNG to 9 state-of-the-art candidate selection and entity
coreference algorithms and show that our system runs 18
to 24 times faster while only making a small sacrifice in
F1-scores (0.71% at maximum) for the final coreference
results. Also, a scalability test on up to 1M instances shows
runtime savings of 16-370 hours, depending on the dataset.
Finally, a feature evaluation verifies the effectiveness of
each proposed pruning technique compared to alternatives.
For future work, we will apply P-EPWNG to datasets from
the Ontology Alignment Evaluation Initiative4 and also
evaluate if our pruning techniques can help to scale other
entity coreference algorithms [8], [15].

4http://oaei.ontologymatching.org

(a) RKB Publication (b) RKB Person (c) SWAT Person

Figure 2. System Scalability

ACKNOWLEDGMENT

This project was partially sponsored by the U.S. Army
Research Office (W911NF-11-C-0215). The content of the
information does not necessarily reflect the position or the
policy of the Government, and no official endorsement
should be inferred.

REFERENCES

[1] C. Bizer, T. Heath, and T. Berners-Lee, “Linked data - the
story so far,” Int. J. Semantic Web Inf. Syst., vol. 5, no. 3,
pp. 1–22, 2009.

[2] N. Aswani, K. Bontcheva, and H. Cunningham, “Mining
information for instance unification,” in International Se-
mantic Web Conference (ISWC), 2006, pp. 329–342.

[3] J. Hassell, B. Aleman-Meza, and I. B. Arpinar, “Ontology-
driven automatic entity disambiguation in unstructured
text,” in International Semantic Web Conference, 2006, pp.
44–57.

[4] D. Song and J. Heflin, “Domain-independent entity corefer-
ence for linking ontology instances,” ACM Journal of Data
and Information Quality (ACM JDIQ), 2012.

[5] H. Halpin, P. J. Hayes, J. P. McCusker, D. L. McGuinness,
and H. S. Thompson, “When owl: sameAs isn’t the same:
An analysis of identity in linked data,” in 9th International
Semantic Web Conference (ISWC), 2010, pp. 305–320.

[6] J. Li, J. Tang, Y. Li, and Q. Luo, “RiMOM: A dynamic
multistrategy ontology alignment framework,” IEEE Trans.
Knowl. Data Eng., vol. 21, no. 8, pp. 1218–1232, 2009.

[7] D. Song and J. Heflin, “A pruning based approach for
scalable entity coreference,” in Proceedings of the Twenty-
Fourth International Florida Artificial Intelligence Re-
search Society Conference (FLAIRS), 2012, pp. 98–103.

[8] Z. Wang, X. Zhang, L. Hou, Y. Zhao, J. Li, Y. Qi, and
J. Tang, “RiMOM results for OAEI 2010,” in Proceedings
of the 5th International Workshop on Ontology Matching,
2010.

[9] I. F. Cruz, F. P. Antonelli, and C. Stroe, “AgreementMaker:
Efficient matching for large real-world schemas and ontolo-
gies,” PVLDB, vol. 2, no. 2, pp. 1586–1589, 2009.

[10] S. Araújo, A. P. de Vries, and D. Schwabe, “SERIMI results
for OAEI 2011,” in Proceedings of the 6th International
Workshop on Ontology Matching (OM), 2011.

[11] J. Volz, C. Bizer, M. Gaedke, and G. Kobilarov, “Discov-
ering and maintaining links on the web of data,” in 8th
International Semantic Web Conference (ISWC), 2009, pp.
650–665.

[12] W. Hu, J. Chen, and Y. Qu, “A self-training approach
for resolving object coreference on the semantic web,” in
Proceedings of the 20th International Conference on World
Wide Web (WWW), 2011, pp. 87–96.

[13] X. Niu, X. Sun, H. Wang, S. Rong, G. Qi, and Y. Yu,
“Zhishi.me - weaving Chinese linking open data,” in Inter-
national Semantic Web Conference, 2011, pp. 205–220.

[14] F. Saı̈s, N. Pernelle, and M.-C. Rousset, “Combining a
logical and a numerical method for data reconciliation,”
Journal on Data Semantics XII, vol. 12, pp. 66–94, 2009.

[15] J. Noessner, M. Niepert, C. Meilicke, and H. Stucken-
schmidt, “Leveraging terminological structure for object
reconciliation,” in 7th Extended Semantic Web Conference
(ESWC), 2010, pp. 334–348.

[16] Y. R. Jean-Mary, E. P. Shironoshita, and M. R. Kabuka,
“Ontology matching with semantic verification,” Journal
of Web Semantics, vol. 7, no. 3, pp. 235–251, 2009.

[17] S. Yan, D. Lee, M.-Y. Kan, and C. L. Giles, “Adaptive
sorted neighborhood methods for efficient record link-
age,” in ACM/IEEE Joint Conference on Digital Libraries
(JCDL), 2007, pp. 185–194.

[18] M. Michelson and C. A. Knoblock, “Creating relational
data from unstructured and ungrammatical data sources,”
J. Artif. Intell. Res., vol. 31, pp. 543–590, 2008.

[19] Y. Cao, Z. Chen, J. Zhu, P. Yue, C.-Y. Lin, and Y. Yu,
“Leveraging unlabeled data to scale blocking for record
linkage,” in Proceedings of the 22nd International Joint
Conference on Artificial Intelligence (IJCAI), 2011, pp.
2211–2217.

[20] A. Arasu, V. Ganti, and R. Kaushik, “Efficient exact set-
similarity joins,” in Proceedings of the 32nd International
Conference on Very Large Data Bases (VLDB), 2006, pp.
918–929.

[21] J. Wang, G. Li, and J. Feng, “Trie-join: Efficient trie-
based string similarity joins with edit-distance constraints,”
PVLDB, vol. 3, no. 1, pp. 1219–1230, 2010.

[22] R. J. Bayardo, Y. Ma, and R. Srikant, “Scaling up all pairs
similarity search,” in Proceedings of the 16th International
Conference on World Wide Web, 2007, pp. 131–140.

[23] C. Xiao, W. Wang, X. Lin, J. X. Yu, and G. Wang, “Efficient
similarity joins for near-duplicate detection,” ACM Trans.
Database Syst., vol. 36, no. 3, p. 15, 2011.

[24] C. Xiao, W. Wang, and X. Lin, “Ed-join: an efficient
algorithm for similarity joins with edit distance constraints,”
Proc. VLDB Endow., vol. 1, no. 1, pp. 933–944, 2008.

[25] J. Qin, W. Wang, Y. Lu, C. Xiao, and X. Lin, “Efficient
exact edit similarity query processing with the asymmetric
signature scheme,” in Proceedings of the ACM SIGMOD
International Conference on Management of Data, 2011,
pp. 1033–1044.

[26] J. Wang, G. Li, and J. Feng, “Fast-join: An efficient method
for fuzzy token matching based string similarity join,” in
Proceedings of the 27th International Conference on Data
Engineering (ICDE), 2011, pp. 458–469.

[27] H. Glaser, I. Millard, and A. Jaffri, “RKBExplorer.com: A
knowledge driven infrastructure for linked data providers,”
in The 5th European Semantic Web Conference (ESWC),
2008, pp. 797–801.

