
An Initial Investigation into Querying an
Untrustworthy and Inconsistent Web

Yuanbo Guo and Jeff Heflin

Dept. of Computer Science and Engineering, Lehigh University, Bethlehem, PA18015, USA
{yug2, heflin}@cse.lehigh.edu

Abstract. The Semantic Web is bound to be untrustworthy and inconsistent. In
this paper, we present an initial approach for obtaining useful information in such
an environment. In particular, we replace the question of whether an assertion is
entailed by the entire Semantic Web with two other queries. The first asks if a
specific statement is entailed given an identification of the trusted documents.
The second asks for the document sets that entail a specific statement. We pro-
pose a mechanism for efficiently computing and representing the contexts of the
statements and managing inconsistency. This system could be seen as a com-
ponent in an overall trust system.

1 The Problem

Since the Semantic Web is intended to mirror the World Wide Web, it will be produced
by numerous information providers with different levels of credibility, and will be used
by information consumers who have different opinions on who or what is trustworthy.
Researchers have investigated methods for developing trust systems in such environ-
ments. Some work on building trust networks between individuals (e.g. [3, 4]) while
others focus on determining whether to trust Web content depending on its sources (e.g.
[5]). In this work, we take a different approach which deals with the untrustworthy
Semantic Web from a perspective of extensional queries. We investigate how to build
a Semantic Web search engine that can tell the user what sources support each answer
to such a query. In addition, we aim at a system that could efficiently answering queries
once the user has decided what sources they trust and allow them to create hypothesis
about trusted documents and explore the consequences of their choices.

We will assume a document collection D consisting of N OWL Lite [2] documents,
labeled as d1 to dn. We also assume that this collection can be harvested from the
Internet at a rate such that the information maintained by a webcrawler is current
enough to be of value. Note, our focus on a centralized search-engine approach is based
on its success in the contemporary Web and on the fact that much research needs to be
done before distributed queries can reach a comparable response time. Finally, we will
assume that users are primarily interested in extensional queries, and will focus on
queries about the instances of a class. We use a:C to denote an assertion that individual
a is an instance of class C.

We introduce two definitions before formally defining our problem. First, we say a
set of documents D entails D�VWDWHPHQW� �LII� is entailed by the union of the imports

closure of every document in D. As such, it is possible that a pair of documents might
entail something that is not entailed by either document alone. Second, a set Dsub � D is
D�PLQLPDO�FRQVLVWHQW�VXEVHW�RI�'�WKDW�HQWDLOV� �LII�Dsub is consistent, Dsub HQWDLOV� , and
there is no subset of it WKDW�HQWDLOV� � 1RWH��IRU�D�JLYHQ� ��WKHUH�PD\�EH�PXOWLSOH�VXFK�
sets. Based on these, we propose two kinds of queries to be answered by the system:
x Q1: Given a trusted subset Dsub, is Dsub consistent and does it entail an assertion a:C?
x Q2: What are the minimal consistent subsets of D that entail an assertion a:C?

As can be seen, we have taken inconsistency into account in the queries. In classical
logic, everything can be deduced from an inconsistent knowledge base. This is not
desirable for Semantic Web applications and it is crucial to be able to identify incon-
sistent document sets. Much work has been done in the logic community to study
paraconsistent logics that allow reasoning with inconsistent information, e.g., [6, 7].
Unlike this work, we suggest that inconsistency can be managed, not by changing the
underlying logic, but by changing the kind of queries we pose to the Semantic Web.

It needs to be noted that although this work is not about a trust system in a strict
sense, it is possible to integrate our system with existing trust systems. For instance,
another system could determine the trusted set for Q1. More importantly, we take this
work as a first step to build a new trust system, wherein query answering as described
above serves as an instrument for deciding trust on resources. This might be a system
that automatically determines trust taking account of the results of Q2, or a system that
assists the user in deciding what to trust by revealing the query results to him.

2 An Initial Approach

A naïve way to answer the above queries is as follows. To answer Q1, we first combine
the documents in Dsub by loading them into a single knowledge base. Then we check the
knowledge base. If it is found inconsistent, the answer to Q1 is no. Otherwise, we query
about a:C on the knowledge base. The result is then the answer to Q1. Such a query can
be executed using a description logic reasoner that supports realization. To answer Q2,
we repeat Q1 against each applicable subset of D. We enumerate the subsets of D in
increasing order of their sizes. In order to ensure that only minimal consistent subsets
are returned, we keep track of those subsets that either answer yes to Q1 or are incon-
sistent so that we could skip all the supersets of them later on. This works because
OWL is monotonic. The answer to Q2 will then be the document sets which have
answered positively to Q1. However, this naïve approach has several drawbacks. First,
it is incapable of reusing the results of the expensive reasoning from the preceding
queries. For instance, if a Q1 query is repeated, we have to carry out the same process
all over again. Answering Q2 is similar in this aspect. Second, the scalability of this
approach is a problem especially for answering Q2. Again, the complexity cannot be
amortized over multiple queries.

Our approach, generally speaking, aims at improving the scalability and efficiency
through the reuse the results of document processing, especially reasoning. This is re-
alized by adding to the document processing a new functionality of figuring out and
recording the “context” of each encountered statement. Here we define the “context” of
a statement as a minimal consistent document set that entails the statement.

We employ an assumption-based truth maintenance system (ATMS) [1] to stream-
line the management of such contexts. In an ordinary ATMS, each node is associated
with a proposition and a justification is a record of logical inference made between
those propositions. In our approach, we use ATMS in an unconventional way. We use
the ATMS nodes to represent two types of objects. We use an assumption node to
represent a single document from D. We call the node a document node. And we use a
derived node to represent a set of documents, in other words, the combination of these
documents. We call the node a combination node. Following the notation in [1], we use

d to denote a document node representing document d, and v a combination node
representing document set v. A justification d1,…, dn=> v is then interpreted as: the
conjunction of the statements entailed by documents d1,…,dn implies the statements
entailed by the document set v. Moreover, a justification d1,…, dn=> conveys the
information that document set {d1,…,dn} is inconsistent. It can be interpreted in a
similar way when the antecedents of the justification contain combination nodes. Fig. 1
is an example ATMS after four documents are added, among which {d1, d2} and {d1,
d3} are inconsistent.

Fig. 1. An example ATMS network

There are several reasons for us to associate an ATMS node with a document or a
document set as opposed to a statement. First is the scalability consideration. The scale
of data makes it impossible to represent each statement individually and to provide a
specified justification for it. Second, we assume that documents are all or nothing, i.e.,
we trust either the whole content of a document or none of it. A more pragmatic reason
is that since our description logic reasoners are black boxes, we cannot easily determine
exact justifications at the level of a statement. We instead must determine them at the
document level. As a result, an ATMS node in our system essentially points to a set of
statements and it serves as the media of the context of those statements: an environment
of such a node is just a minimal consistent document set which entails the set of
statements associated with the node.

Now what we need to do is to store the statements together with their contexts. To
make our system more scalable, we do not store the deductive closure of the knowledge
base. We observe that once subsumption has been computed, a simple semantic net-
work is sufficient for answering queries about the instances of classes. Therefore, we
only store the subsumption relations which are not redundant (for example, C1�C3 is
redundant given C1�C2 and C2�C3) and the most specific classes of each instance.

{d2, d3}
v14

{d2, d4}
v23

d4

{d1, d4}
 v24 V34

{d1}
d2

{d3} {d4}

{d2, d3, d4}

v234

Assumption Node

d3
{d2}

: contradiction

{environment: the assumption set under which
the node’s datum holds}

d1

Legend:
{d3, d4}

However, to answer the queries presented in Section 1, we also need context informa-
tion. As a result, what is stored can be seen as a semantic network whose links are
“ annotated” by the contexts, as depicted by Fig. 2. As we will show soon, this allows us
to replace the expensive description logic reasoning with a much simpler semantic
network inference-like procedure during query answering. In this way, we find a bal-
ance between doing some precomputation at loading time in order to save query time
while controlling storage requirements.

Fig. 2. An “ Annotated” Semantic Network

In order to scale to a large number of classes and instances, we implement the “ an-
notated” semantic network using a relational database. We use two kinds of tables. The
first is a set of class instance tables, where there is one for each class. Each tuple of the
table contains an individual of the class and a pointer to an ATMS node, whose envi-
ronment can entail that the corresponding individual is an instance of the class. We call
that node a supporting node. Since the same concept assertion may hold in different
document sets, an individual may have multiple supporting nodes with respect to a
specific class. The second kind of table is a class taxonomy table, which records the
class subsumption. Each tuple in the table consists of a superclass, its subclass, and a
supporting node for the subsumption relation. Again, a subsumption may be supported
by multiple nodes. Table 1 and Table 2 show what these tables look like for the se-
mantic network displayed in Fig. 2.

Table 1. Class Instance Tables Table 2. Class Taxonomy Table
Class C2 Class C3

Individual Supporting
Node

 Individual Supporting
Node

 SuperClass SubClass Supporting
Node

a1 d1 a3 d2 C1 C2 v14
1

a2 d4 a3 d3 C1 C3 d2

The ATMS and the tables are updated as documents are loaded and processed. Due
to space constraints, we omit the operational details. The basic idea is that when a
document is newly added, we insert it to the ATMS, apply inference on it, and store the
entailed statements to the tables. Then we combine it with each consistent subset of the
preceding documents, reflect the combination on the ATMS, reason about it, and store
the entailed statements by the combination. In addition, once a new set of inconsistent
documents is detected during the processing, we record it in the ATMS.

Given this preprocessing, we can make the query answering more lightweight by
reducing them to simple operations involving multiple table lookups. First consider Q1
with respect to individual a, class C, and a set of documents set. If set is inconsistent
according to the ATMS, we return no to the query. Otherwise, we search for a in C’s

1 combination node of d1 and d4

subClassOf

C3

a3

C1

C2

a1

type type

a2

type {d4}

subClassOf
{d2} {d1, d4}

{d1}
{d2}
{d3}

table. For each found tuple of a, we look up the ATMS for the environment of its
supporting node. If the environment is a subset of set, we answer yes to the query. If we
could not directly find a matching tuple in the instance table, we will resort to the class
taxonomy table. We search for the subclasses of C in set, and repeat the test with those
subclasses. Q2 can be answered in a similar way, except that when two elements, one
from the taxonomy table and the other from an instance table, are used simultaneously
to derive an answer, we add the union of the environments of their support nodes to the
result. Moreover, we guarantee that what are finally returned are only those minimal
environments, i.e., document sets.

Compared to the naïve algorithm, our approach reduces query time at the cost of
doing extra work when loading documents. However, considering the significant im-
provement on query efficiency, we could argue that the complexity of the document
processing in advance could be amortized over a large number of queries. Furthermore,
the complexity can be alleviated in the case when a document set is identified incon-
sistent at some time and a significant number of combinations involving that set are
avoided later on. It is similar in the case when some documents import others.

3 Future Work

For future work, we will look into ways to further improve the scalability of our ap-
proach, especially to reduce the average cost in the preprocessing. One plan is to devise
a mechanism that discovers in advance if nothing new can be entailed by a combination
of documents and thus allows us to omit the combination. Also we intend to transfer the
current approach into a distributed one. In addition, we will extend the system to
support other kinds of queries such as queries about role assertion, and more complex
queries comprised of multiple atoms. Finally, as we mentioned, our long term goal is to
build a trust system on top of this work.

References

1. Kleer, J. de. An assumption-based TMS. Artificial Intelligence, 28(2), 1986.
2. Dean, M. and Schreiber, G ed. OWL Reference. http://www.w3.org/TR/owl-ref/
3. Golbeck, J., Parsia, B., and Hendler, J. Trust networks on the Semantic Web. In Proc. of

Cooperative Intelligent Agents. 2003.
4. Richardson, M., Agrawal, R., and Domingos, P. Trust Management for the Semantic Web. In

Proc. of ISWC2003.
5. Gil, Y. and Ratnakar V. Trusting Information Sources One Citizen at a Time. In Proc. of

ISWC2002.
6. Fitting, M.C. Logic Programming on a Topological Bilattice. Fundamenta Informaticae,

11(1988).
7. Blair, H.A. and Subrahmanian, V.S. Paraconsistent Logic Programming. Theoretical Com-

puter Science, 68(1989).

