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Abstract. The Semantic Web is bound to be untrustworthy and inconsistent. In 
this paper, we present an initial approach for obtaining useful information in such 
an environment. In particular, we replace the question of whether an assertion is 
entailed by the entire Semantic Web with two other queries. The first asks if a 
specific statement is entailed given an identification of the trusted documents. 
The second asks for the document sets that entail a specific statement. We pro-
pose a mechanism for efficiently computing and representing the contexts of the 
statements and managing inconsistency. This system could be seen as a com-
ponent in an overall trust system. 

1 The Problem 

Since the Semantic Web is intended to mirror the World Wide Web, it will be produced 
by numerous information providers with different levels of credibility, and will be used 
by information consumers who have different opinions on who or what is trustworthy. 
Researchers have investigated methods for developing trust systems in such environ-
ments. Some work on building trust networks between individuals (e.g. [3, 4]) while 
others focus on determining whether to trust Web content depending on its sources (e.g. 
[5]). In this work, we take a different approach which deals with the untrustworthy 
Semantic Web from a perspective of extensional queries. We investigate how to build 
a Semantic Web search engine that can tell the user what sources support each answer 
to such a query. In addition, we aim at a system that could efficiently answering queries 
once the user has decided what sources they trust and allow them to create hypothesis 
about trusted documents and explore the consequences of their choices. 

We will assume a document collection D consisting of N OWL Lite [2] documents, 
labeled as d1 to dn. We also assume that this collection can be harvested from the 
Internet at a rate such that the information maintained by a webcrawler is current 
enough to be of value. Note, our focus on a centralized search-engine approach is based 
on its success in the contemporary Web and on the fact that much research needs to be 
done before distributed queries can reach a comparable response time. Finally, we will 
assume that users are primarily interested in extensional queries, and will focus on 
queries about the instances of a class. We use a:C to denote an assertion that individual 
a is an instance of class C. 

We introduce two definitions before formally defining our problem. First, we say a 
set of documents D entails D�VWDWHPHQW� �LII�  is entailed by the union of the imports 



closure of every document in D. As such, it is possible that a pair of documents might 
entail something that is not entailed by either document alone. Second, a set Dsub � D is 
D�PLQLPDO�FRQVLVWHQW�VXEVHW�RI�'�WKDW�HQWDLOV� �LII�Dsub is consistent, Dsub HQWDLOV� , and 
there is no subset of it WKDW�HQWDLOV� � 1RWH��IRU�D�JLYHQ� ��WKHUH�PD\�EH�PXOWLSOH�VXFK�
sets. Based on these, we propose two kinds of queries to be answered by the system: 
x Q1: Given a trusted subset Dsub, is Dsub consistent and does it entail an assertion a:C? 
x Q2: What are the minimal consistent subsets of D that entail an assertion a:C? 

As can be seen, we have taken inconsistency into account in the queries. In classical 
logic, everything can be deduced from an inconsistent knowledge base. This is not 
desirable for Semantic Web applications and it is crucial to be able to identify incon-
sistent document sets. Much work has been done in the logic community to study 
paraconsistent logics that allow reasoning with inconsistent information, e.g., [6, 7]. 
Unlike this work, we suggest that inconsistency can be managed, not by changing the 
underlying logic, but by changing the kind of queries we pose to the Semantic Web. 

It needs to be noted that although this work is not about a trust system in a strict 
sense, it is possible to integrate our system with existing trust systems. For instance, 
another system could determine the trusted set for Q1. More importantly, we take this 
work as a first step to build a new trust system, wherein query answering as described 
above serves as an instrument for deciding trust on resources. This might be a system 
that automatically determines trust taking account of the results of Q2, or a system that 
assists the user in deciding what to trust by revealing the query results to him.  

2 An Initial Approach 

A naïve way to answer the above queries is as follows. To answer Q1, we first combine 
the documents in Dsub by loading them into a single knowledge base. Then we check the 
knowledge base. If it is found inconsistent, the answer to Q1 is no. Otherwise, we query 
about a:C on the knowledge base. The result is then the answer to Q1. Such a query can 
be executed using a description logic reasoner that supports realization. To answer Q2, 
we repeat Q1 against each applicable subset of D. We enumerate the subsets of D in 
increasing order of their sizes. In order to ensure that only minimal consistent subsets 
are returned, we keep track of those subsets that either answer yes to Q1 or are incon-
sistent so that we could skip all the supersets of them later on. This works because 
OWL is monotonic. The answer to Q2 will then be the document sets which have 
answered positively to Q1. However, this naïve approach has several drawbacks. First, 
it is incapable of reusing the results of the expensive reasoning from the preceding 
queries. For instance, if a Q1 query is repeated, we have to carry out the same process 
all over again. Answering Q2 is similar in this aspect. Second, the scalability of this 
approach is a problem especially for answering Q2. Again, the complexity cannot be 
amortized over multiple queries. 

Our approach, generally speaking, aims at improving the scalability and efficiency 
through the reuse the results of document processing, especially reasoning. This is re-
alized by adding to the document processing a new functionality of figuring out and 
recording the “context” of each encountered statement. Here we define the “context” of 
a statement as a minimal consistent document set that entails the statement. 



We employ an assumption-based truth maintenance system (ATMS) [1] to stream-
line the management of such contexts. In an ordinary ATMS, each node is associated 
with a proposition and a justification is a record of logical inference made between 
those propositions. In our approach, we use ATMS in an unconventional way. We use 
the ATMS nodes to represent two types of objects. We use an assumption node to 
represent a single document from D. We call the node a document node. And we use a 
derived node to represent a set of documents, in other words, the combination of these 
documents. We call the node a combination node. Following the notation in [1], we use 

d to denote a document node representing document d, and v a combination node 
representing document set v. A justification d1,…, dn=> v is then interpreted as: the 
conjunction of the statements entailed by documents d1,…,dn implies the statements 
entailed by the document set v. Moreover, a justification d1,…, dn=>  conveys the 
information that document set {d1,…,dn} is inconsistent. It can be interpreted in a 
similar way when the antecedents of the justification contain combination nodes. Fig. 1 
is an example ATMS after four documents are added, among which {d1, d2} and {d1, 
d3} are inconsistent. 

 
Fig. 1. An example ATMS network 

There are several reasons for us to associate an ATMS node with a document or a 
document set as opposed to a statement. First is the scalability consideration. The scale 
of data makes it impossible to represent each statement individually and to provide a 
specified justification for it. Second, we assume that documents are all or nothing, i.e., 
we trust either the whole content of a document or none of it. A more pragmatic reason 
is that since our description logic reasoners are black boxes, we cannot easily determine 
exact justifications at the level of a statement. We instead must determine them at the 
document level. As a result, an ATMS node in our system essentially points to a set of 
statements and it serves as the media of the context of those statements: an environment 
of such a node is just a minimal consistent document set which entails the set of 
statements associated with the node. 

Now what we need to do is to store the statements together with their contexts. To 
make our system more scalable, we do not store the deductive closure of the knowledge 
base. We observe that once subsumption has been computed, a simple semantic net-
work is sufficient for answering queries about the instances of classes. Therefore, we 
only store the subsumption relations which are not redundant (for example, C1�C3 is 
redundant given C1�C2 and C2�C3) and the most specific classes of each instance. 
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However, to answer the queries presented in Section 1, we also need context informa-
tion. As a result, what is stored can be seen as a semantic network whose links are 
“ annotated”  by the contexts, as depicted by Fig. 2. As we will show soon, this allows us 
to replace the expensive description logic reasoning with a much simpler semantic 
network inference-like procedure during query answering. In this way, we find a bal-
ance between doing some precomputation at loading time in order to save query time 
while controlling storage requirements. 

 
Fig. 2. An “ Annotated”  Semantic Network 

In order to scale to a large number of classes and instances, we implement the “ an-
notated”  semantic network using a relational database. We use two kinds of tables. The 
first is a set of class instance tables, where there is one for each class. Each tuple of the 
table contains an individual of the class and a pointer to an ATMS node, whose envi-
ronment can entail that the corresponding individual is an instance of the class. We call 
that node a supporting node. Since the same concept assertion may hold in different 
document sets, an individual may have multiple supporting nodes with respect to a 
specific class. The second kind of table is a class taxonomy table, which records the 
class subsumption. Each tuple in the table consists of a superclass, its subclass, and a 
supporting node for the subsumption relation. Again, a subsumption may be supported 
by multiple nodes. Table 1 and Table 2 show what these tables look like for the se-
mantic network displayed in Fig. 2. 

Table 1. Class Instance Tables    Table 2. Class Taxonomy Table 
Class C2                     Class C3             

Individual Supporting 
Node 

 Individual Supporting 
Node 

 SuperClass SubClass Supporting 
Node 

a1 d1  a3 d2  C1 C2 v14
1 

a2 d4  a3 d3  C1 C3 d2 

The ATMS and the tables are updated as documents are loaded and processed. Due 
to space constraints, we omit the operational details. The basic idea is that when a 
document is newly added, we insert it to the ATMS, apply inference on it, and store the 
entailed statements to the tables. Then we combine it with each consistent subset of the 
preceding documents, reflect the combination on the ATMS, reason about it, and store 
the entailed statements by the combination. In addition, once a new set of inconsistent 
documents is detected during the processing, we record it in the ATMS. 

Given this preprocessing, we can make the query answering more lightweight by 
reducing them to simple operations involving multiple table lookups. First consider Q1 
with respect to individual a, class C, and a set of documents set. If set is inconsistent 
according to the ATMS, we return no to the query. Otherwise, we search for a in C’s 
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table. For each found tuple of a, we look up the ATMS for the environment of its 
supporting node. If the environment is a subset of set, we answer yes to the query. If we 
could not directly find a matching tuple in the instance table, we will resort to the class 
taxonomy table. We search for the subclasses of C in set, and repeat the test with those 
subclasses. Q2 can be answered in a similar way, except that when two elements, one 
from the taxonomy table and the other from an instance table, are used simultaneously 
to derive an answer, we add the union of the environments of their support nodes to the 
result. Moreover, we guarantee that what are finally returned are only those minimal 
environments, i.e., document sets. 

Compared to the naïve algorithm, our approach reduces query time at the cost of 
doing extra work when loading documents. However, considering the significant im-
provement on query efficiency, we could argue that the complexity of the document 
processing in advance could be amortized over a large number of queries. Furthermore, 
the complexity can be alleviated in the case when a document set is identified incon-
sistent at some time and a significant number of combinations involving that set are 
avoided later on. It is similar in the case when some documents import others.  

3 Future Work 

For future work, we will look into ways to further improve the scalability of our ap-
proach, especially to reduce the average cost in the preprocessing. One plan is to devise 
a mechanism that discovers in advance if nothing new can be entailed by a combination 
of documents and thus allows us to omit the combination. Also we intend to transfer the 
current approach into a distributed one. In addition, we will extend the system to 
support other kinds of queries such as queries about role assertion, and more complex 
queries comprised of multiple atoms. Finally, as we mentioned, our long term goal is to 
build a trust system on top of this work. 
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