
MapReduce Service

Product Introduction

Issue 01

Date 2023-11-07

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2023. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees
or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. i

Contents

1 Infographics.. 1

2 What Is MRS?... 3

3 Advantages of MRS Compared with Self-Built Hadoop...7

4 Application Scenarios... 13

5 How Do I Select an MRS Version?... 16

6 Components..18
6.1 List of MRS Component Versions.. 18
6.2 Alluxio... 21
6.3 CarbonData... 22
6.4 ClickHouse... 24
6.4.1 Infographics for ClickHouse... 25
6.4.2 ClickHouse... 26
6.5 CDL...30
6.5.1 CDL Basic Principles.. 30
6.5.2 Relationship Between CDL and Other Components... 32
6.6 DBService... 32
6.6.1 DBService Basic Principles.. 32
6.6.2 Relationship Between DBService and Other Components..33
6.7 Flink... 34
6.7.1 Flink Basic Principles.. 34
6.7.2 Flink HA Solution...39
6.7.3 Relationships Between Flink and Other Components.. 41
6.7.4 Flink Enhanced Open Source Features...42
6.7.4.1 Window... 42
6.7.4.2 Job Pipeline.. 45
6.7.4.3 Stream SQL Join... 49
6.7.4.4 Flink CEP in SQL... 50
6.8 Flume.. 52
6.8.1 Flume Basic Principles..52
6.8.2 Relationships Between Flume and Other Components... 56
6.8.3 Flume Enhanced Open Source Features..56

MapReduce Service
Product Introduction Contents

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. ii

6.9 HBase.. 56
6.9.1 HBase Basic Principles... 56
6.9.2 HBase HA Solution..62
6.9.3 Relationship with Other Components.. 63
6.9.4 HBase Enhanced Open Source Features..64
6.10 HDFS... 71
6.10.1 HDFS Basic Principles.. 71
6.10.2 HDFS HA Solution...75
6.10.3 Relationship Between HDFS and Other Components.. 76
6.10.4 HDFS Enhanced Open Source Features...79
6.11 HetuEngine... 85
6.11.1 HetuEngine Product Overview... 85
6.11.2 Relationships Between HetuEngine and Other Components.. 88
6.12 Hive... 88
6.12.1 Hive Basic Principles...89
6.12.2 Hive CBO Principles.. 92
6.12.3 Relationships Between Hive and Other Components.. 96
6.12.4 Enhanced Open Source Feature...96
6.13 Hudi... 98
6.14 Hue..100
6.14.1 Hue Basic Principles... 100
6.14.2 Relationships Between Hue and Other Components...102
6.14.3 Hue Enhanced Open Source Features... 104
6.15 Impala.. 104
6.16 IoTDB.. 106
6.16.1 IoTDB Basic Principles... 106
6.16.2 Relationships Between IoTDB and Other Components...108
6.16.3 IoTDB Enhanced Open Source Features... 108
6.17 Kafka.. 109
6.17.1 Kafka Basic Principles.. 109
6.17.2 Relationships Between Kafka and Other Components... 112
6.17.3 Kafka Enhanced Open Source Features.. 113
6.18 KafkaManager...113
6.19 KrbServer and LdapServer...113
6.19.1 KrbServer and LdapServer Principles... 114
6.19.2 KrbServer and LdapServer Enhanced Open Source Features.. 117
6.20 Kudu... 118
6.21 Loader.. 118
6.21.1 Loader Basic Principles... 118
6.21.2 Relationship Between Loader and Other Components... 121
6.21.3 Loader Enhanced Open Source Features..121
6.22 Manager.. 122

MapReduce Service
Product Introduction Contents

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. iii

6.22.1 Manager Basic Principles... 122
6.22.2 Manager Key Features.. 125
6.23 MapReduce...127
6.23.1 MapReduce Basic Principles.. 127
6.23.2 Relationship Between MapReduce and Other Components... 128
6.23.3 MapReduce Enhanced Open Source Features.. 129
6.24 Oozie.. 132
6.24.1 Oozie Basic Principles..133
6.24.2 Oozie Enhanced Open Source Features.. 134
6.25 OpenTSDB.. 134
6.26 Presto... 136
6.27 Ranger.. 137
6.27.1 Ranger Basic Principles... 137
6.27.2 Relationships Between Ranger and Other Components...138
6.28 Spark...139
6.28.1 Spark Basic Principles.. 139
6.28.2 Spark HA Solution.. 155
6.28.3 Relationship Among Spark, HDFS, and Yarn.. 161
6.28.4 Spark Enhanced Open Source Feature: Optimized SQL Query of Cross-Source Data..........................165
6.29 Spark2x.. 168
6.29.1 Spark2x Basic Principles... 168
6.29.2 Spark2x HA Solution... 183
6.29.2.1 Spark2x Multi-active Instance.. 183
6.29.2.2 Spark2x Multi-tenant... 186
6.29.3 Relationship Between Spark2x and Other Components...189
6.29.4 Spark2x Open Source New Features..193
6.29.5 Spark2x Enhanced Open Source Features... 193
6.29.5.1 CarbonData Overview... 193
6.29.5.2 Optimizing SQL Query of Data of Multiple Sources...196
6.30 Storm.. 199
6.30.1 Storm Basic Principles... 199
6.30.2 Relationships Between Storm and Other Components...203
6.30.3 Storm Enhanced Open Source Features... 204
6.31 Tez... 205
6.32 YARN...206
6.32.1 YARN Basic Principles.. 206
6.32.2 YARN HA Solution.. 211
6.32.3 Relationships Between YARN and Other Components..212
6.32.4 Yarn Enhanced Open Source Features.. 215
6.33 ZooKeeper...223
6.33.1 ZooKeeper Basic Principles.. 223
6.33.2 Relationships Between ZooKeeper and Other Components..225

MapReduce Service
Product Introduction Contents

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. iv

6.33.3 ZooKeeper Enhanced Open Source Features.. 229

7 Functions... 233
7.1 Multi-tenant... 233
7.2 Security Hardening.. 235
7.3 Easy Access to Web UIs of Components.. 236
7.4 Reliability Enhancement.. 237
7.5 Job Management.. 238
7.6 Bootstrap Actions... 239
7.7 Enterprise Project Management..239
7.8 Metadata... 240
7.9 Cluster Management...240
7.9.1 Cluster Lifecycle Management... 240
7.9.2 Cluster Scaling..243
7.9.3 Auto Scaling.. 243
7.9.4 Task Node Creation.. 245
7.9.5 Scaling Up Master Node Specifications.. 245
7.9.6 Isolating a Host... 246
7.9.7 Managing Tags.. 246
7.10 Cluster O&M.. 246
7.11 Message Notification.. 247

8 Security.. 249
8.1 Shared Responsibilities... 249
8.2 Asset Identification and Management..250
8.3 Identity Authentication and Access Control.. 251
8.4 Data Protection Technologies.. 252
8.5 Audit and Logging..253
8.6 Service Resilience.. 254
8.7 Security Risk Monitoring.. 254
8.8 Update Management.. 254
8.9 Security Hardening.. 255

9 Constraints..257

10 Technical Support... 259

11 Billing...261

12 Permissions Management...264

13 Related Services.. 272

14 Quota Description...275

15 Common Concepts..276

16 Released Versions... 281

MapReduce Service
Product Introduction Contents

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. v

16.1 Version Overview... 281
16.2 Release Notes.. 282
16.2.1 MRS 3.1.2-LTS.3 Version Description..282
16.2.2 MRS 3.1.5 Version Description... 283
16.2.3 MRS 3.2.0-LTS.1 Version Description..285

MapReduce Service
Product Introduction Contents

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. vi

1 Infographics

MapReduce Service
Product Introduction 1 Infographics

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 1

MapReduce Service
Product Introduction 1 Infographics

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 2

2 What Is MRS?

Big data is a huge challenge facing the Internet era as the data volume and types
increase rapidly. Conventional data processing technologies, such as single-node
storage and relational databases, are unable to solve the emerging big data
problems. In this case, the Apache Software Foundation (ASF) has launched an
open source Hadoop big data processing solution. Hadoop is an open source
distributed computing platform that can fully utilize computing and storage
capabilities of clusters to process massive amounts of data. If enterprises deploy
Hadoop systems by themselves, the disadvantages include high costs, long
deployment period, difficult maintenance, and inflexible use.

To address these issues, MapReduce Service (MRS) is provided on Huawei Cloud
for you to manage Hadoop-based components. With MRS, you can deploy a
Hadoop cluster with a few clicks. MRS provides enterprise-level big data clusters
on the cloud. Tenants can fully control clusters and easily run big data
components such as Storm, Hadoop, Spark, HBase, and Kafka. MRS is fully
compatible with open source APIs, and incorporates advantages of Huawei Cloud
computing and storage and big data industry experience to provide customers
with a full-stack big data platform featuring high performance, low cost, flexibility,
and ease-of-use. In addition, the platform can be customized based on service
requirements to help enterprises quickly build a massive data processing system
and discover new value points and business opportunities by analyzing and mining
massive amounts of data in real time or in non-real time.

Product Architecture
List of MRS Component Versions lists the MRS component versions.

Figure 2-1 shows the MRS logical architecture.

NO TE

MRS 3.x or later does not support patch management on the management console.

MapReduce Service
Product Introduction 2 What Is MRS?

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 3

Figure 2-1 MRS architecture

MRS architecture includes infrastructure and big data processing phases.

● Infrastructure
MRS big data clusters are built based on Huawei Cloud Elastic Cloud Server
(ECS), and fully utilizes the high reliability and security capabilities of the
virtualization layer.
– A Virtual Private Cloud (VPC) is a virtual internal network provided for

each tenant. It is isolated from other networks by default.
– Elastic Volume Service (EVS) provides highly reliable and high-

performance storage.
– ECS provides scalable VMs, and works with VPCs, security groups, and the

EVS multi-replica mechanism to build an efficient, reliable, and secure
computing environment.

● Data collection
The data collection layer provides the capability of importing data from
various dta sources, such as Flume (data ingestion), Loader (relational data
import), and Kafka (highly reliable message queue), to MRS big data clusters.
Alternatively, you can use Cloud Data Migration (CDM) to import external
data to MRS clusters.

● Data storage
MRS clusters can store structured and unstructured data, and support
multiple efficient formats to meet the requirements of different computing
engines.
– HDFS is a general-purpose distributed file system on a big data platform.
– OBS is an object storage service that features high availability and low

cost.
– HBase supports data storage with indexes, and is applicable to high-

performance index-based query scenarios.
● Data convergence processing

MapReduce Service
Product Introduction 2 What Is MRS?

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 4

– MRS provides multiple mainstream compute engines, including
MapReduce (batch processing), Tez (DAG model), Spark (in-memory
computing), Spark Streaming (micro-batch stream computing), Storm
(stream computing), and Flink (stream computing), to convert data
structures and logic into data models that meet service requirements in a
variety of big data application scenarios.

– Based on the preset data model and easy-to-use SQL data analysis, users
can select Hive (data warehouse), SparkSQL, and Presto (interactive
query engine).

● Data display and scheduling
Displays data analysis results and integrates with DataArts Studio to provide a
one-stop big data collaborative development platform, helping you easily
complete multiple tasks, such as data modeling, data integration, script
development, job scheduling, and O&M monitoring, making big data more
accessible than ever before, and helping you effortlessly build big data
processing centers.

● Cluster management
All components of the Hadoop-based big data ecosystem are deployed in
distributed mode, and their deployment, management, and O&M are
complex.
MRS provides a unified O&M management platform for cluster management,
supporting one-click cluster deployment, multi-version selection, as well as
manual scaling and auto scaling of clusters without service interruption. In
addition, MRS provides job management, resource tag management, and
O&M of the preceding data processing components at each layer. It also
provides one-stop O&M capabilities, covering monitoring, alarm reporting,
configuration, and patch upgrade.

Product Advantages
MRS has a powerful Hadoop kernel team and is deployed based on Huawei's
enterprise-level FusionInsight big data platform. MRS has been deployed on tens
of thousands of nodes and can ensure Service Level Agreements (SLAs) for multi-
level users.

MRS has the following advantages:

● High performance
MRS supports self-developed CarbonData storage technology. CarbonData is
a high-performance big data storage solution. It allows one data set to apply
to multiple scenarios and supports features, such as multi-level indexing,
dictionary encoding, pre-aggregation, dynamic partitioning, and quasi-real-
time data query. This improves I/O scanning and computing performance and
returns analysis results of tens of billions of data records in seconds. In
addition, MRS supports self-developed enhanced scheduler Superior, which
breaks the scale bottleneck of a single cluster and is capable of scheduling
over 10,000 nodes in a cluster.

● Cost-effectiveness
Based on diversified cloud infrastructure, MRS provides various computing and
storage choices and separates computing from storage, delivering cost-
effective massive data storage solutions. MRS supports auto scaling to

MapReduce Service
Product Introduction 2 What Is MRS?

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 5

address peak and off-peak service loads, releasing idle resources on the big
data platform for customers. MRS clusters can be created and scaled out
when you need them, and can be terminated or scaled in after you use them,
saving your costs.

● High security
MRS delivers enterprise-level big data multi-tenant permissions management
and security management to support table-based and column-based access
control and data encryption.

● Easy O&M
MRS provides a visualized big data cluster management platform, improving
O&M efficiency. MRS supports rolling patch upgrade and provides visualized
patch release information and one-click patch installation without manual
intervention, ensuring long-term stability of user clusters.

● High reliability
The proven large-scale reliability and long-term stability of MRS meet
enterprise-level high reliability requirements. In addition, MRS supports
automatic data backup across AZs and regions, as well as automatic anti-
affinity. It allows VMs to be distributed on different physical machines.

Using MRS for the First Time
If you are a first-time user, get familiar with the following information:

● Basic concepts
See Components and Functions to learn the basic knowledge of MRS,
including the basic principles and enhanced features of each MRS component,
as well as the unique concepts and functions of MRS.

● Getting started
To learn how to use MRS, see MapReduce Service Getting Started. "Getting
Started" provides detailed operation guidance of samples. You can create and
use MRS clusters based on the operation guidance.

● Other functions and operation guides
If you are an MRS cluster user and O&M engineer, you can perform
operations such as cluster life cycle management, scaling, and job
management by referring to MapReduce Service User Guide. See
MapReduce Service Component Operation Guide to learn how to use
components in a cluster.
If you are a developer, you can refer to the operation guide and sample
projects in MapReduce Service Development Guide of MRS to develop, run,
and commission your own applications. You can also call APIs to manage MRS
clusters and execute jobs. For details, see MapReduce Service API Reference.

MapReduce Service
Product Introduction 2 What Is MRS?

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 6

https://support.huaweicloud.com/intl/en-us/qs-mrs/mrs_09_0001.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/mrs_01_0030.html
https://support.huaweicloud.com/intl/en-us/cmpntguide-mrs/mrs_01_0759.html
https://support.huaweicloud.com/intl/en-us/devg3-mrs/mrs_07_010000.html
https://support.huaweicloud.com/intl/en-us/api-mrs/mrs_02_0001.html

3 Advantages of MRS Compared with Self-
Built Hadoop

MRS provides enterprise-level big data clusters on the cloud. Tenants can fully
control the clusters and run big data components such as Hadoop, Spark, HBase,
Kafka, and Storm with ease. MRS frees you from hardware purchase and
maintenance. MRS is built based on enterprise-class big data platform Huawei
FusionInsight and has been deployed on tens of thousands of nodes in the
industry, providing multi-level SLA assurance with professional Hadoop kernel
service support. Compared with self-built Hadoop clusters, MRS has the following
advantages:

1. MRS supports one-click cluster creation, deletion, and scaling. You can
use an elastic IP address (EIP) to access MRS Manager, making big data
clusters easier to use.
– Self-built big data clusters pose problems such as high costs, long

periods, difficult and inflexible O&M. To solve these problems, MRS
provides one-click cluster creation, deletion, scale-out, and scale-in,
allowing you to customize the cluster type, component range, number of
nodes of each type, VM specifications, availability zones (AZs), VPC
network, and authentication information. MRS can automatically create a
cluster that meets the configuration requirements. In addition, you can
quickly create multi-application clusters, for example, Hadoop analysis
cluster, HBase cluster, and Kafka cluster. MRS supports heterogeneous
cluster deployment. That is, VMs of different specifications can be
combined in a cluster based on CPU types, disk capacities, disk types, and
memory sizes.

– MRS provides an EIP-based secure channel for you to easily access the
web UIs of components. This is more convenient than binding an EIP by
yourself, and you can access the web UIs with a few clicks, avoiding the
steps for logging in to a VPC, adding security group rules, and obtaining a
public IP address.

– MRS provides custom bootstrap actions to flexibly configure your
dedicated clusters. Third-party software that is not supported by MRS can
be automatically installed, allowing you to perform custom operations
such as modifying the cluster running environment.

– MRS supports the WrapperFS feature, provides the OBS translation
capability (that is, access to OBS through address mapping) and can

MapReduce Service
Product Introduction

3 Advantages of MRS Compared with Self-Built
Hadoop

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 7

smoothly migrate data from HDFS to OBS. After migration, you can
access the data stored in OBS from clients without modifying service code
logic.

2. MRS supports auto scaling, which is more cost-effective than the self-
built Hadoop cluster.
MRS supports auto scaling to address peak and off-peak service loads. It
applies for extra resources during peak hours and releases idle resources
during off-peak hours, helping you save idle resources on the big data
platform during off-peak hours, minimize costs, and focus on core services.
In big data applications, especially in periodic data analysis and processing,
cluster computing resources need to be dynamically adjusted based on service
data changes to meet service requirements. The auto scaling function of MRS
enables clusters to be elastically scaled out or in based on cluster loads. In
addition, if the data volume changes regularly and you want to scale out or in
a cluster before the data volume changes, you can use the MRS resource plan
feature. MRS supports two types of auto scaling policies: auto scaling rules
and resource plans
– Auto scaling rules: You can increase or decrease Task nodes based on

real-time cluster loads. Auto scaling will be triggered when the data
volume changes but there may be some delay.

– Resource plans: If the data volume changes periodically, you can create
resource plans to resize the cluster before the data volume changes,
thereby avoiding a delay in increasing or decreasing resources.

Both auto scaling rules and resource plans can trigger auto scaling. You can
configure both of them or configure one of them. Configuring both resource
plans and auto scaling rules improves the cluster node scalability to cope with
occasionally unexpected data volume peaks.

3. MRS supports storage-compute decoupling, greatly improving the
resource utilization of big data clusters.
In the traditional big data architecture where storage and compute resources
are integrated, scaling-out is difficult and resources are not well-utilized. To
solve these problems, MRS adopts a compute-storage separation architecture.
Based on OBS, the storage achieves 99.999999999% reliability and unlimited
capacity, supporting continuous growth of enterprise data. Computing
resources can be elastically scaled in or out from 0 to N nodes. Hundreds of
nodes can be quickly provisioned. With the new architecture, compute nodes
can be elastically scaled. OBS-based cross-AZ data storage ensures higher
reliability, frees you from worrying about emergencies such as earthquakes
and fiber cuts. Storage and compute resources can be flexibly configured and
elastically scaled as required. This makes resource allocation more accurate
and reasonable, greatly improving the resource utilization of big data clusters
and reducing the comprehensive analysis cost by 50%.
In addition, the high performance compute-storage separation architecture
breaks the limit of parallel computing of the integrated storage-compute
architecture. It maximizes the high bandwidth and high concurrency of OBS,
and optimizes the data access efficiency and in-depth parallel computing
(such as metadata operation and write algorithm optimization) to improve
higher performance.

4. MRS supports self-developed CarbonData and Superior Scheduler,
delivering better performance.

MapReduce Service
Product Introduction

3 Advantages of MRS Compared with Self-Built
Hadoop

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 8

– MRS supports self-developed CarbonData storage technology.
CarbonData is a high-performance big data storage solution. It allows
one data set to apply to multiple scenarios and supports features, such as
multi-level indexing, dictionary encoding, pre-aggregation, dynamic
partitioning, and quasi-real-time data query. This improves I/O scanning
and computing performance and returns analysis results of tens of
billions of data records in seconds.

– In addition, MRS supports self-developed Superior Scheduler, which
enhances the scaling capability of a single cluster and is capable of
scheduling over 10,000 nodes in a cluster. Superior Scheduler is a
scheduling engine designed for the Hadoop YARN distributed resource
management system. It is a high-performance and enterprise-level
scheduler designed for converged resource pools and multi-tenant service
requirements. Superior Scheduler achieves all functions of open-source
schedulers, Fair Scheduler, and Capacity Scheduler. Compared with the
open-source schedulers, Superior Scheduler is enhanced in the enterprise
multi-tenant resource scheduling policy, resource isolation and sharing by
multiple users in a tenant, scheduling performance, system resource
utilization, and cluster scalability, and is designed to replace open source
schedulers.

5. MRS optimizes software and hardware based on Kunpeng processors to
fully release hardware computing power and achieve cost-effectiveness.
MRS supports self-developed Kunpeng servers whose multi-core and high-
concurrency capabilities are fully utilized to provide full-stack self-optimized
chips, and uses self-developed EulerOS, Huawei JDK, and data acceleration
layer to ensure hardware performance, delivering high computing power for
big data computing. With the similar performance, the cost of the end-to-end
big data solution is reduced by 30%.

6. MRS supports multiple isolation modes and multi-tenant permission
management of enterprise-level big data, ensuring higher security.
– MRS supports resource deployment and isolation of physical resources in

dedicated zones. You can flexibly combine computing and storage
resources, such as dedicated computing resources + shared storage
resources, shared computing resources + dedicated storage resources, and
dedicated computing resources + dedicated storage resources. An MRS
cluster supports multiple logical tenants. Permission isolation enables the
computing, storage, and table resources of the cluster to be divided based
on tenants.

– With Kerberos authentication, MRS provides role-based access control
(RBAC) and sound audit functions.

– With Cloud Trace Service (CTS) being interconnected with MRS, you are
provided with operation records of MRS resource operation requests and
request results for querying, auditing, and backtracking. You can use CTS
to audit and trace all cluster operations.

– It is proved that with Host Security Service (HSS) interconnected with
MRS, service security is enhanced without deteriorating functions and
performance.

– MRS supports unified user login based on web UI. Manager provides user
authentication, which grants you permission to access a cluster.

MapReduce Service
Product Introduction

3 Advantages of MRS Compared with Self-Built
Hadoop

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 9

– MRS supports data storage encryption, encrypted storage of all user
accounts and passwords, encrypted transmission of data channels, and
bidirectional certificate authentication for cross-trusted-zone data access
of service modules.

– MRS big data clusters provide a complete multi-tenant solution for
enterprise-level big data. Multi-tenant refers to a collection of multiple
resources (each resource set is a tenant) in an MRS big data cluster. It
can allocate and schedule resources, including computing and storage
resources. Multi-tenant isolates the resources of a big data cluster into
resource sets. Users can lease desired resource sets to run applications
and jobs and store data. In a big data cluster, multiple resource sets can
be deployed to meet diverse requirements of multiple users.

– MRS supports fine-grained permission management. With the fine-
grained authorization capability provided by HUAWEI CLOUD IAM, MRS
can specify the operations, resources, and request conditions of specific
services. This mechanism allows for more flexible policy-based
authorization, meeting requirements for secure access control. For
example, you can grant MRS users only the permissions for performing
specified operations on MRS clusters, such as creating a cluster and
querying a cluster list rather than deleting a cluster. In addition, MRS
supports fine-grained permission management of OBS for multiple
tenants. Permissions to access OBS buckets and objects in the buckets are
differentiated based on user roles, so that MRS users can each control a
different directory in OBS buckets.

– MRS supports enterprise project management. The enterprise project is
one way of managing cloud resources. Enterprise Management provides
comprehensive management services for enterprise customers, such as
cloud resources, personnel, permissions, and financial statuses. Common
management consoles are oriented to the control and configuration of
individual cloud products. The Enterprise Management console, in
contrast, is more focused on resource management. It is designed to help
enterprises manage cloud-based resources, personnel, permissions, and
finances, in a hierarchical management manner, such as management of
companies, departments, and projects. MRS allows users who have
enabled Enterprise Project Management Service (EPS) to configure
enterprise projects for a cluster during cluster creation and use EPS to
manage MRS resources by group. This feature is applicable to scenarios
where you need to manage multiple resources by group and perform
operations such as permission control and project-based fee query on
enterprise projects.

7. MRS implements HA for all management nodes and supports
comprehensive reliability mechanism, making the system more reliable.

Based on Apache Hadoop open-source software, MRS optimizes and improves
the reliability of main service components.

– HA for all management nodes

In the Hadoop open-source version, data and compute nodes are
managed in a distributed system, in which a single point of failure
(SPOF) does not affect the operation of the entire system. However, a
SPOF may occur on management nodes running in centralized mode,
which becomes the weakness of the overall system reliability.

MapReduce Service
Product Introduction

3 Advantages of MRS Compared with Self-Built
Hadoop

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 10

MRS provides similar double-node mechanisms for all management
nodes of the service components, such as Manager, Presto, HDFS
NameNodes, Hive Servers, HBase HMasters, YARN Resource Managers,
Kerberos Servers, and Ldap Servers. All of them are deployed in active/
standby mode or configured with load sharing, effectively preventing
SPOFs from affecting system reliability.

– Comprehensive reliability mechanism
By reliability analysis, the following measures to handle software and
hardware exceptions are provided to improve the system reliability:

▪ After power supply is restored, services are running properly
regardless of a power failure of a single node or the whole cluster,
ensuring data reliability in case of unexpected power failures. Key
data will not be lost unless the hard disk is damaged.

▪ Health status checks and fault handling of the hard disk do not
affect services.

▪ The file system faults can be automatically handled, and affected
services can be automatically restored.

▪ The process and node faults can be automatically handled, and
affected services can be automatically restored.

▪ The network faults can be automatically handled, and affected
services can be automatically restored.

8. MRS provides a visualized big data cluster management interface in a
unified manner, making O&M easier.
– On the big data cluster management interface, service startup and

stopping, configuration modification, and health check are available. MRS
also provides visualized and convenient cluster management, monitoring,
and alarm functions. Additionally, you can check and audit the system
health status in one click, ensuring normal system running and lowering
system O&M costs.

– After Simple Message Notification (SMN) is configured, MRS can send
real-time cluster health status information, including cluster changes and
component alarms in real time to you through SMS messages or emails,
facilitating O&M, real-time monitoring, and real-time alarm sending.

– MRS supports rolling patch upgrade and provides visualized patch release
information and one-click patch installation without manual intervention,
ensuring long-term stability of user clusters.

– If a problem occurs when you use an MRS cluster, you can initiate O&M
authorization on the MRS management console. O&M personnel can
help you quickly locate the problem, and you can revoke the
authorization at any time. You can also initiate log sharing on the MRS
management console to share a specified log scope with O&M personnel,
so that O&M personnel can locate faults without accessing the cluster.

– MRS supports to dump logs about cluster creation failures to OBS for
O&M personnel to obtain and analyze the logs.

9. MRS has an open ecosystem and supports seamless interconnection with
peripheral services, allowing you to quickly build a unified big data
platform.

MapReduce Service
Product Introduction

3 Advantages of MRS Compared with Self-Built
Hadoop

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 11

– Based on MRS, a full-stack big data service, enterprises can build a
unified big data platform for data ingestion, storage, analysis, and value
mining with one click, and interconnect with DataArts Studio and data
visualization services to help customers easily migrate data to the cloud,
develop and schedule big data jobs, and display data. This frees
customers from complex big data platform construction and professional
big data calibration and maintenance so customers can stay more
focused on industry applications and use one copy of data in multiple
service scenarios. DataArts Studio is a one-stop data lifecycle
development operations platform that provides a broad range of
functions, such as data integration, development, governance, service,
and visualization. MRS data can be ingested to DataArts Studio for
collaborative one-click visualized development by leveraging DataArts
Studio's visualized GUI, abundant data development types (script and
job), fully-hosted job scheduling and O&M monitoring, and built-in
industry data processing pipelines. This makes big data much easier to
use, helps you quickly build big data processing centers, and enables fast
monetization.

– MRS is fully compatible with the open source big data ecosystem. With
abundant data and application migration tools, MRS helps you quickly
migrate data from your own platforms without code modification and
service interruption.

MapReduce Service
Product Introduction

3 Advantages of MRS Compared with Self-Built
Hadoop

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 12

4 Application Scenarios

Big data is ubiquitous in our lives. Huawei Cloud MRS is suitable to process big
data in the industries such as the Internet of things (IoT), e-commerce, finance,
manufacturing, healthcare, energy, and government departments.

Large-scale data analysis

Large-scale data analysis is a major scenario in modern big data systems.
Generally, an enterprise has multiple data sources. After data is accessed,extract,
transform, and load (ETL) processing is required to generate modelized data for
each service module to analyze and sort out data. This type of service has the
following characteristics:

● The requirements for real-time execution are not high, and job execution time
ranges from dozens of minutes to hours.

● The data volume is large.

● There are various data sources and diversified formats.

● Data processing usually consists of multiple tasks, and resources need to be
planned in detail.

In the environmental protection industry, climate data is stored on OBS and
periodically dumped into HDFS for batch analysis. 10 TB of climate data can be
analyzed in 1 hour.

Figure 4-1 Large-scale data analysis in the environmental protection industry

MapReduce Service
Product Introduction 4 Application Scenarios

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 13

MRS has the following advantages in this scenario.

● Low cost: OBS offers cost-effective storage.
● Massive data analysis: TB/PB-level data is analyzed by Hive.
● Visualized data import and export tool: Loader exports data to Data

Warehouse Service (DWS) for business intelligence (BI) analysis.

Large-scale data storage
A user who has a large amount of structured data usually requires index-based
quasi-real-time query capabilities. For example, in an Internet of Vehicles (IoV)
scenario, vehicle maintenance information is queried by vehicle number. Therefore,
vehicle information is indexed based on vehicle numbers when it is being stored,
to implement second-level response in this scenario. Generally, the data volume is
large. The user may store data for one to three years.

For example, in the IoV industry, an automobile company stores data on HBase,
which supports PB-level storage and CDR queries in milliseconds.

Figure 4-2 Large-scale data storage in the IoV industry

MRS has the following advantages in this scenario.

● Real time: Kafka accesses massive amounts of vehicle messages in real time.
● Massive data storage: HBase stores massive volumes of data and supports

data queries in milliseconds.
● Distributed data query: Spark analyzes and queries massive volumes of data.

Real-time data processing
Real-time data processing is usually used in scenarios such as anomaly detection,
fraud detection, rule-based alarming, and service process monitoring. Data is
processed while it is being inputted to the system.

For example, in the Internet of elevators & escalators (IoEE) industry, data of
smart elevators and escalators is imported to MRS streaming clusters in real time
for real-time alarming.

MapReduce Service
Product Introduction 4 Application Scenarios

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 14

Figure 4-3 Low-latency streaming processing in the IoEE industry

MRS has the following advantages in this scenario.

● Real-time data ingestion: Flume implements real-time data ingestion and
provides various data collection and storage access methods.

● Data source access: Kafka accesses data of tens of thousands of elevators and
escalators in real time.

MapReduce Service
Product Introduction 4 Application Scenarios

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 15

5 How Do I Select an MRS Version?

MRS Cluster Versions
There are two MRS cluster versions: normal and LTS. The components and features
of clusters of different versions are slightly different. You can select a version
based on service requirements.

● Normal
– Functions

This normal version provides basic cluster operations, such as
configuration, management, and O&M. For details, see MapReduce
Service User Guide.

– Components
In addition to common components, clusters of the normal version also
support components such as Presto, Impala, Kudu, and Sqoop. You can
select components based on cluster versions. For details about
components of clusters of different versions, see List of MRS Component
Versions and MapReduce Service Component Operation Guide.

● LTS (long term support)
– Functions

In addition to basic cluster operations, clusters of the LTS version support
version upgrade. To use this function, contact technical support.

– Components
In addition to common components, clusters of the LTS version also
support HetuEngine. You can select components based on cluster
versions. For details about components of clusters of different versions,
see List of MRS Component Versions and MapReduce Service
Component Operation Guide.

Version Selection Suggestions
● Clusters of the LTS version support version upgrade. To make your clusters

upgradable, choose the LTS version.
● Clusters of the LTS version can be deployed in different AZs to implement

cross-AZ DR. To make your clusters more secure and have higher DR
capabilities, choose the LTS version.

MapReduce Service
Product Introduction 5 How Do I Select an MRS Version?

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 16

https://support.huaweicloud.com/intl/en-us/usermanual-mrs/mrs_01_0030.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/mrs_01_0030.html
https://support.huaweicloud.com/intl/en-us/cmpntguide-mrs/mrs_01_0759.html
https://support.huaweicloud.com/intl/en-us/cmpntguide-lts-mrs/mrs_01_1711.html
https://support.huaweicloud.com/intl/en-us/cmpntguide-lts-mrs/mrs_01_1711.html

● Clusters of the LTS version support HetuEngine. To use HetuEngine, choose
the LTS version.

NO TE

After purchase, the LTS version cannot be changed to the normal version. Choose an
appropriate version based on your business needs.

Billing Differences Between Versions
The normal and LTS versions have different functions and therefore they are billed
differently. For details, see Billing. You can also use the price calculator to quickly
calculate the reference price of an MRS cluster by selecting the cluster version and
node specifications that you need.

MapReduce Service
Product Introduction 5 How Do I Select an MRS Version?

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 17

https://www.huaweicloud.com/intl/en-us/pricing/index.html#/mrs

6 Components

6.1 List of MRS Component Versions

Components and Versions

Table 6-1 lists the components and their versions required by each MRS cluster
version.

NO TE

● Hadoop includes HDFS, Yarn, and MapReduce components.

● DBService, ZooKeeper, KrbServer, and LdapServer are components used in the cluster
and are not displayed during cluster creation.

● MRS component versions must be consistent with open-source component versions.

● Components in an MRS cluster cannot be upgraded. Purchase a cluster with
components of the required version.

Table 6-1 MRS component versions

Componen
t

MRS 1.9.2
(Applicabl
e to MRS
1.9.x)

MRS
3.1.0

MRS 3.1.2-
LTS

MRS 3.1.5 MRS 3.2.0-
LTS.1

Alluxio 2.0.1 - - - -

CarbonDat
a

1.6.1 2.0.1 2.2.0 2.2.0 2.2.0

CDL - - - - 1.0.0

ClickHouse - 21.3.4.
25

21.3.4.25 21.3.4.25 22.3.2.2

DBService 1.0.0 2.7.0 2.7.0 2.7.0 2.7.0

Flink 1.7.0 1.12.0 1.12.2 1.12.2 1.15.0

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 18

Componen
t

MRS 1.9.2
(Applicabl
e to MRS
1.9.x)

MRS
3.1.0

MRS 3.1.2-
LTS

MRS 3.1.5 MRS 3.2.0-
LTS.1

Flume 1.6.0 1.9.0 1.9.0 1.9.0 1.9.0

Guardian - - - 0.1.0 -

HBase 1.3.1 2.2.3 2.2.3 2.2.3 2.2.3

HDFS 2.8.3 3.1.1 3.1.1 3.1.1 3.3.1

HetuEngin
e

- - 1.2.0 - 1.2.0

Hive 2.3.3 3.1.0 3.1.0 3.1.0 3.1.0

Hudi - 0.7.0 0.9.0 0.9.0 0.11.0

Hue 3.11.0 4.7.0 4.7.0 4.7.0 4.7.0

Impala - 3.4.0 - 3.4.0 -

IoTDB - - - - 0.14.0

Kafka 1.1.0 2.11-2.
4.0

2.11-2.4.0 2.11-2.4.0 2.11-2.4.0

KafkaMan
ager

1.3.3.1 - - - -

KrbServer 1.15.2 1.17 1.18 1.18 1.18

Kudu - 1.12.1 - 1.12.1 -

LdapServer 1.0.0 2.7.0 2.7.0 2.7.0 2.7.0

Loader 2.0.0 - 1.99.3 - 1.99.3

MapReduc
e

2.8.3 3.1.1 3.1.1 3.1.1 3.3.1

Oozie - 5.1.0 5.1.0 5.1.0 5.1.0

OpenTSDB 2.3.0 - - - -

Presto 0.216 333 - 333 -

Phoenix
(integrated
in HBase)

- 5.0.0 5.0.0 5.0.0 5.0.0

Ranger 1.0.1 2.0.0 2.0.0 2.0.0 2.0.0

Spark 2.2.2 - - - -

Spark2x - 2.4.5 3.1.1 3.1.1 3.1.1

Sqoop - 1.4.7 - 1.4.7 -

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 19

Componen
t

MRS 1.9.2
(Applicabl
e to MRS
1.9.x)

MRS
3.1.0

MRS 3.1.2-
LTS

MRS 3.1.5 MRS 3.2.0-
LTS.1

Storm 1.2.1 - - - -

Tez 0.9.1 0.9.2 0.9.2 0.9.2 0.9.2

Yarn 2.8.3 3.1.1 3.1.1 3.1.1 3.3.1

ZooKeeper 3.5.1 3.5.6 3.6.3 3.6.3 3.6.3

MRS
Manager

1.9.2 - - - -

FusionInsig
ht
Manager

- 8.1.0 8.1.2 8.1.2 8.2.0.1

Components and Versions (Offline)

Table 6-2 lists the components and versions of the MRS cluster that has been
brought offline.

Table 6-2 MRS component version information (offline version)

Component MRS 3.0.5

Alluxio 2.3.0

CarbonData 2.0.1

ClickHouse 21.3.4.25

DBService 2.7.0

Flink 1.10.0

Flume 1.9.0

HBase 2.2.3

HDFS 3.1.1

Hive 3.1.0

Hue 4.7.0

Impala 3.4.0

Kafka 2.11-2.4.0

KafkaManager -

KrbServer 1.17

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 20

Component MRS 3.0.5

Kudu 1.12.1

LdapServer 2.7.0

Loader 1.99.3

MapReduce 3.1.1

Oozie 5.1.0

OpenTSDB -

Presto 333

Phoenix 5.0.0

Ranger 2.0.0

Spark -

Spark2x 2.4.5

Storm 1.2.1

Tez 0.9.2

YARN 3.1.1

ZooKeeper 3.5.6

MRS Manager -

FusionInsight Manager 8.0.2.1

6.2 Alluxio
Alluxio is data orchestration technology for analytics and AI for the cloud. In the
MRS big data ecosystem, Alluxio lies between computing and storage. It provides
a data abstraction layer for computing frameworks including Apache Spark,
Presto, MapReduce, and Apache Hive, so that upper-layer computing applications
can access persistent storage systems including HDFS and OBS through unified
client APIs and a global namespace. In this way, computing and storage are
separated.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 21

Figure 6-1 Alluxio architecture

Advantages:

● Provides in-memory I/O throughput, and makes elastically scale data-driven
applications cost effective.

● Simplified cloud and object storage access
● Simplified data management and a single point of access to multiple data

sources
● Easy application deployment

For details about Alluxio, visit https://docs.alluxio.io/os/user/stable/en/
Overview.html.

6.3 CarbonData
CarbonData is a new Apache Hadoop native data-store format. CarbonData
allows faster interactive queries over PetaBytes of data using advanced columnar
storage, index, compression, and encoding techniques to improve computing
efficiency. In addition, CarbonData is also a high-performance analysis engine that
integrates data sources with Spark.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 22

https://docs.alluxio.io/os/user/stable/en/Overview.html
https://docs.alluxio.io/os/user/stable/en/Overview.html

Figure 6-2 Basic architecture of CarbonData

The purpose of using CarbonData is to provide quick response to ad hoc queries of
big data. Essentially, CarbonData is an Online Analytical Processing (OLAP)
engine, which stores data using tables similar to those in Relational Database
Management System (RDBMS). You can import more than 10 TB data to tables
created in CarbonData format, and CarbonData automatically organizes and
stores data using the compressed multi-dimensional indexes. After data is loaded
to CarbonData, CarbonData responds to ad hoc queries in seconds.

CarbonData integrates data sources into the Spark ecosystem. You can use Spark
SQL to query and analyze data, or use the third-party tool ThriftServer provided by
Spark to connect to Spark SQL.

CarbonData features

● SQL: CarbonData is compatible with Spark SQL and supports SQL query
operations performed on Spark SQL.

● Simple Table dataset definition: CarbonData allows you to define and create
datasets by using user-friendly Data Definition Language (DDL) statements.
CarbonData DDL is flexible and easy to use, and can define complex tables.

● Easy data management: CarbonData provides various data management
functions for data loading and maintenance. It can load historical data and
incrementally load new data. The loaded data can be deleted according to the
loading time and specific data loading operations can be canceled.

● CarbonData file format is a columnar store in HDFS. It has many features that
a modern columnar format has, such as splittable and compression schema.

Unique features of CarbonData

● Stores data along with index: Significantly accelerates query performance and
reduces the I/O scans and CPU resources, when there are filters in the query.
CarbonData index consists of multiple levels of indices. A processing

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 23

framework can leverage this index to reduce the task it needs to schedule and
process, and it can also perform skip scan in more finer grain unit (called
blocklet) in task side scanning instead of scanning the whole file.

● Operable encoded data: Through supporting efficient compression and global
encoding schemes, CarbonData can query on compressed/encoded data. The
data can be converted just before returning the results to the users, which is
"late materialized".

● Supports various use cases with one single data format: like interactive OLAP-
style query, Sequential Access (big scan), and Random Access (narrow scan).

Key technologies and advantages of CarbonData

● Quick query response: CarbonData features high-performance query. The
query speed of CarbonData is 10 times of that of Spark SQL. It uses dedicated
data formats and applies multiple index technologies, global dictionary code,
and multiple push-down optimizations, providing quick response to TB-level
data queries.

● Efficient data compression: CarbonData compresses data by combining the
lightweight and heavyweight compression algorithms. This significantly saves
60% to 80% data storage space and the hardware storage cost.

For details about CarbonData architecture and principles, see https://
carbondata.apache.org/.

6.4 ClickHouse

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 24

https://carbondata.apache.org/
https://carbondata.apache.org/

6.4.1 Infographics for ClickHouse

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 25

6.4.2 ClickHouse

Introduction to ClickHouse

ClickHouse is an open-source columnar database oriented to online analysis and
processing. It is independent of the Hadoop big data system and features
compression rate and fast query performance. In addition, ClickHouse supports
SQL query and provides good query performance, especially the aggregation
analysis and query performance based on large and wide tables. The query speed
is one order of magnitude faster than that of other analytical databases.

The core functions of ClickHouse are as follows:

Comprehensive DBMS functions

ClickHouse is a database management system (DBMS) that provides the following
basic functions:
● Data Definition Language (DDL): allows databases, tables, and views to be

dynamically created, modified, or deleted without restarting services.
● Data Manipulation Language (DML): allows data to be queried, inserted,

modified, or deleted dynamically.
● Permission control: supports user-based database or table operation

permission settings to ensure data security.
● Data backup and restoration: supports data backup, export, import, and

restoration to meet the requirements of the production environment.
● Distributed management: provides the cluster mode to automatically manage

multiple database nodes.

Column-based storage and data compression

ClickHouse is a database that uses column-based storage. Data is organized by
column. Data in the same column is stored together, and data in different columns
is stored in different files.

During data query, columnar storage can reduce the data scanning range and
data transmission size, thereby improving data query efficiency.

In a traditional row-based database system, data is stored in the sequence in
Table 6-3:

Table 6-3 Row-based database

row ID Flag Name Event Time

0 123456789
01

0 name1 1 2020/1/11
15:19

1 323456789
01

1 name2 1 2020/5/12
18:10

2 423456789
01

1 name3 1 2020/6/13
17:38

N

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 26

In a row-based database, data in the same row is physically stored together. In a
column-based database system, data is stored in the sequence in Table 6-4:

Table 6-4 Columnar database

row: 0 1 2 N

ID: 12345678901 32345678901 42345678901 ...

Flag: 0 1 1 ...

Name: name1 name2 name3 ...

Event: 1 1 1 ...

Time: 2020/1/11
15:19

2020/5/12
18:10

2020/6/13
17:38

...

This example shows only the arrangement of data in a columnar database.
Columnar databases store data in the same column together and data in different
columns separately. Columnar databases are more suitable for online analytical
processing (OLAP) scenarios.

Vectorized executor

ClickHouse uses CPU's Single Instruction Multiple Data (SIMD) to implement
vectorized execution. SIMD is an implementation mode that uses a single
instruction to operate multiple pieces of data and improves performance with data
parallelism (other methods include instruction-level parallelism and thread-level
parallelism). The principle of SIMD is to implement parallel data operations at the
CPU register level.

Relational model and SQL query

ClickHouse uses SQL as the query language and provides standard SQL query APIs
for existing third-party analysis visualization systems to easily integrate with
ClickHouse.

In addition, ClickHouse uses a relational model. Therefore, the cost of migrating
the system built on a traditional relational database or data warehouse to
ClickHouse is lower.

Data sharding and distributed query

The ClickHouse cluster consists of one or more shards, and each shard corresponds
to one ClickHouse service node. The maximum number of shards depends on the
number of nodes (one shard corresponds to only one service node).

ClickHouse introduces the concepts of local table and distributed table. A local
table is equivalent to a data shard. A distributed table itself does not store any
data. It is an access proxy of the local table and functions as the sharding
middleware. With the help of distributed tables, multiple data shards can be
accessed by using the proxy, thereby implementing distributed query.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 27

ClickHouse Applications

ClickHouse is short for Click Stream and Data Warehouse. It is initially applied to a
web traffic analysis tool to perform OLAP analysis for data warehouses based on
page click event flows. Currently, ClickHouse is widely used in Internet advertising,
app and web traffic analysis, telecommunications, finance, and Internet of Things
(IoT) fields. It is applicable to business intelligence application scenarios and has a
large number of applications and practices worldwide. For details, visit https://
clickhouse.tech/docs/en/introduction/adopters/.

ClickHouse Enhanced Open Source Features

MRS ClickHouse has advantages such as automatic cluster mode, HA deployment,
and smooth and elastic scaling.

● Automatic Cluster Mode
As shown in Figure 6-3, a cluster consists of multiple ClickHouse nodes, which
has no central node. It is more of a static resource pool. If the ClickHouse
cluster mode is used for services, you need to pre-define the cluster
information in the configuration file of each node. Only in this way, services
can be correctly accessed.

Figure 6-3 ClickHouse cluster

Users are unaware of data partitions and replica storage in common database
systems. However, ClickHouse allows you to proactively plan and define
detailed configurations such as shards, partitions, and replica locations. The
ClickHouse instance of MRS packs the work in a unified manner and adapts it
to the automatic mode, implementing unified management, which is flexible
and easy to use. A ClickHouse instance consists of three ZooKeeper nodes and
multiple ClickHouse nodes. The Dedicated Replica mode is used to ensure
high reliability of dual data copies.

Figure 6-4 ClickHouse cluster structure

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 28

https://clickhouse.tech/docs/en/introduction/adopters/
https://clickhouse.tech/docs/en/introduction/adopters/

● Smooth and Elastic Scaling
As business grows rapidly, MRS provides ClickHouse, a data migration tool, for
scenarios such as the cluster's storage capacity or CPU compute resources
approaching the limit. This tool is used to migrate some partitions of one or
multiple MergeTree tables on several ClickHouseServer nodes to the same
tables on other ClickHouseServer nodes. In this way, service availability is
ensured and smooth capacity expansion is implemented.
When you add ClickHouse nodes to a cluster, use this tool to migrate some
data from the existing nodes to the new ones for data balancing after the
expansion.

● HA Deployment Architecture
MRS uses the ELB-based high availability (HA) deployment architecture to
automatically distribute user access traffic to multiple backend nodes,
expanding service capabilities to external systems and improving fault
tolerance. As shown in Figure 6-5, when a client application requests a
cluster, Elastic Load Balance (ELB) is used to distribute traffic. With the ELB
polling mechanism, data is written to local tables and read from distributed
tables on different nodes. In this way, data read/write load and high
availability of application access are guaranteed.
After the ClickHouse cluster is provisioned, each ClickHouse instance node in
the cluster corresponds to a replica, and two replicas form a logical shard. For
example, when creating a ReplicatedMergeTree table, you can specify shards
so that data can be automatically synchronized between two replicas in the
same shard.

Figure 6-5 HA deployment architecture

Relationships Between ClickHouse and Other Components
ClickHouse depends on ZooKeeper for installation and deployment.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 29

Flink stream computing applications are used to generate common report data
(detail flat-wide tables) and write the report data to ClickHouse in quasi-real time.
Hive/Spark jobs are used to generate common report data (detail flat-wide tables)
and batch import the data to ClickHouse.

NO TE

Currently, ClickHouse does not support interconnection with Kafka in normal mode or HDFS
in security mode.

6.5 CDL

6.5.1 CDL Basic Principles

Overview

Change Data Loader (CDL) is a real-time data integration service based on Kafka
Connect. The CDL service captures data change events from various OLTP
databases and push them to Kafka. Then, Sink Connector pushes the events to the
big data ecosystem.

Currently, CDL supports MySQL, PostgreSQL, Oracle, Hudi, Kafka, and ThirdParty-
Kafka data sources. Data can be written to Kafka, Hudi, DWS, and ClickHouse.

CDL structure

The CDL service contains two important roles: CDLConnector and CDLService.
CDLConnector, including Source Connector and Sink Connector, is the instance for
executing data capture jobs. CDLService is the instance for managing and creating
jobs.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 30

The CDLService instances of the CDL service work in multi-active mode. Any
CDLService instance can perform service operations. The CDLConnector instances
work in distributed mode and provide HA and rebalance capabilities. When tasks
are created, the number of tasks specified is balanced among CDLConnector
instances in a cluster to ensure that the number of tasks running on each instance
is similar. If a CDLConnector instance is abnormal or a node breaks down, the
number of tasks are rebalanced on other nodes.

Figure 6-6 Rebalance of a task

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 31

6.5.2 Relationship Between CDL and Other Components
The CDL component is based on the Kafka Connect framework. Captured data is
forwarded using Kafka topics. Therefore, the CDL component depends on the
Kafka component. In addition, the CDL component stores task metadata and
monitoring information that are also stored in a database. Therefore, the CDL
component also depends on the DBService component.

6.6 DBService

6.6.1 DBService Basic Principles

Overview
DBService is a HA storage system for relational databases, which is applicable to
the scenario where a small amount of data (about 10 GB) needs to be stored, for
example, component metadata. DBService can only be used by internal
components of a cluster and provides data storage, query, and deletion functions.

DBService is a basic component of a cluster. Components such as Hive, Hue, Oozie,
and Loader store their metadata in DBService, and provide the metadata backup
and restoration functions using DBService.

DBService Architecture
DBService in the cluster works in active/standby mode. Two DBServer instances
are deployed and each instance contains three modules: HA, Database, and
FloatIP.

Figure 6-7 shows the DBService logical architecture.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 32

Figure 6-7 DBService architecture

Table 6-5 describes the modules shown in Figure 6-7

Table 6-5 Module description

Name Description

HA HA management module. The active/standby DBServer uses the HA
module for management.

Databas
e

Database module. This module stores the metadata of the Client
module.

FloatIP Floating IP address that provides the access function externally. It is
enabled only on the active DBServer instance and is used by the
Client module to access Database.

Client Client using the DBService component, which is deployed on the
component instance node. The client connects to the database by
using FloatIP and then performs metadata adding, deleting, and
modifying operations.

6.6.2 Relationship Between DBService and Other Components
DBService is a basic component of a cluster. Components such as Hive, Hue, Oozie,
Metadata, and Loader store their metadata in DBService, and provide the
metadata backup and restoration functions using DBService.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 33

6.7 Flink

6.7.1 Flink Basic Principles

Overview
Flink is a unified computing framework that supports both batch processing and
stream processing. It provides a stream data processing engine that supports data
distribution and parallel computing. Flink features stream processing and is a top
open source stream processing engine in the industry.

Flink provides high-concurrency pipeline data processing, millisecond-level latency,
and high reliability, making it extremely suitable for low-latency data processing.

Figure 6-8 shows the technology stack of Flink.

Figure 6-8 Technology stack of Flink

Flink provides the following features in the current version:

● DataStream
● Checkpoint
● Window
● Job Pipeline
● Configuration Table

Other features are inherited from the open source community and are not
enhanced. For details, visit https://ci.apache.org/projects/flink/flink-docs-
release-1.12/.

Flink Architecture
Figure 6-9 shows the Flink architecture.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 34

https://ci.apache.org/projects/flink/flink-docs-release-1.12/
https://ci.apache.org/projects/flink/flink-docs-release-1.12/

Figure 6-9 Flink architecture

As shown in the above figure, the entire Flink system consists of three parts:

● Client
Flink client is used to submit jobs (streaming jobs) to Flink.

● TaskManager
TaskManager is a service execution node of Flink. It executes specific tasks. A
Flink system can have multiple TaskManagers. These TaskManagers are
equivalent to each other.

● JobManager
JobManager is a management node of Flink. It manages all TaskManagers
and schedules tasks submitted by users to specific TaskManagers. In high-
availability (HA) mode, multiple JobManagers are deployed. Among these
JobManagers, one is selected as the active JobManager, and the others are
standby.

For more information about the Flink architecture, visit https://ci.apache.org/
projects/flink/flink-docs-master/docs/concepts/flink-architecture/.

Flink Principles
● Stream & Transformation & Operator

A Flink program consists of two building blocks: stream and transformation.

a. Conceptually, a stream is a (potentially never-ending) flow of data
records, and a transformation is an operation that takes one or more
streams as input, and produces one or more output streams as a result.

b. When a Flink program is executed, it is mapped to a streaming dataflow.
A streaming dataflow consists of a group of streams and transformation
operators. Each dataflow starts with one or more source operators and

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 35

https://ci.apache.org/projects/flink/flink-docs-master/docs/concepts/flink-architecture/
https://ci.apache.org/projects/flink/flink-docs-master/docs/concepts/flink-architecture/

ends in one or more sink operators. A dataflow resembles a directed
acyclic graph (DAG).
Figure 6-10 shows the streaming dataflow to which a Flink program is
mapped.

Figure 6-10 Example of Flink DataStream

As shown in Figure 6-10, FlinkKafkaConsumer is a source operator;
Map, KeyBy, TimeWindow, and Apply are transformation operators;
RollingSink is a sink operator.

● Pipeline Dataflow
Applications in Flink can be executed in parallel or distributed modes. A
stream can be divided into one or more stream partitions, and an operator
can be divided into multiple operator subtasks.
The executor of streams and operators are automatically optimized based on
the density of upstream and downstream operators.
– Operators with low density cannot be optimized. Each operator subtask is

separately executed in different threads. The number of operator subtasks
is the parallelism of that particular operator. The parallelism (the total
number of partitions) of a stream is that of its producing operator.
Different operators of the same program may have different levels of
parallelism, as shown in Figure 6-11.

Figure 6-11 Operator

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 36

– Operators with high density can be optimized. Flink chains operator
subtasks together into a task, that is, an operator chain. Each operator
chain is executed by one thread on TaskManager, as shown in Figure
6-12.

Figure 6-12 Operator chain

▪ In the upper part of Figure 6-12, the condensed Source and Map
operators are chained into an Operator Chain, that is, a larger
operator. The Operator Chain, KeyBy, and Sink all represent an
operator respectively and are connected with each other through
streams. Each operator corresponds to one task during the running.
Namely, there are three tasks in the upper part.

▪ In the lower part of Figure 6-12, each task, except Sink, is paralleled
into two subtasks. The parallelism of the Sink operator is one.

Key Features
● Stream processing

The real-time stream processing engine features high throughput, high
performance, and low latency, which can provide processing capability within
milliseconds.

● Various status management
The stream processing application needs to store the received events or
intermediate result in a certain period of time for subsequent access and
processing at a certain time point. Flink provides diverse features for status
management, including:
– Multiple basic status types: Flink provides various states for data

structures, such as ValueState, ListState, and MapState. Users can select
the most efficient and suitable status type based on the service model.

– Rich State Backend: State Backend manages the status of applications
and performs Checkpoint operations as required. Flink provides different

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 37

State Backends. State can be stored in the memory or RocksDB, and
supports the asynchronous and incremental Checkpoint mechanism.

– Exactly-once state consistency: The Checkpoint and fault recovery
capabilities of Flink ensure that the application status of tasks is
consistent before and after a fault occurs. Flink supports transactional
output for some specific storage devices. In this way, exactly-once output
can be ensured even when a fault occurs.

● Various time semantics
Time is an important part of stream processing applications. For real-time
stream processing applications, operations such as window aggregation,
detection, and matching based on time semantics are quite common. Flink
provides various time semantics.
– Event-time: The timestamp provided by the event is used for calculation,

making it easier to process the events that arrive at a random sequence
or arrive late.

– Watermark: Flink introduces the concept of Watermark to measure the
development of event time. Watermark also provides flexible assurance
for balancing processing latency and data integrity. When processing
event streams with Watermark, Flink provides multiple processing options
if data arrives after the calculation, for example, redirecting data (side
output) or updating the calculation result.

– Processing-time and Ingestion-time are supported.
– Highly flexible streaming window: Flink supports the time window, count

window, session window, and data-driven customized window. You can
customize the triggering conditions to implement the complex streaming
calculation mode.

● Fault tolerance mechanism
In a distributed system, if a single task or node breaks down or is faulty, the
entire task may fail. Flink provides a task-level fault tolerance mechanism,
which ensures that user data is not lost when an exception occurs in a task
and can be automatically restored.
– Checkpoint: Flink implements fault tolerance based on checkpoint. Users

can customize the checkpoint policy for the entire task. When a task fails,
the task can be restored to the status of the latest checkpoint and data
after the snapshot is resent from the data source.

– Savepoint: A savepoint is a consistent snapshot of application status. The
savepoint mechanism is similar to that of checkpoint. However, the
savepoint mechanism needs to be manually triggered. The savepoint
mechanism ensures that the status information of the current stream
application is not lost during task upgrade or migration, facilitating task
suspension and recovery at any time point.

● Flink SQL
Table APIs and SQL use Apache Calcite to parse, verify, and optimize queries.
Table APIs and SQL can be seamlessly integrated with DataStream and
DataSet APIs, and support user-defined scalar functions, aggregation
functions, and table value functions. The definition of applications such as
data analysis and ETL is simplified. The following code example shows how to
use Flink SQL statements to define a counting application that records session
times.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 38

SELECT userId, COUNT(*)
FROM clicks
GROUP BY SESSION(clicktime, INTERVAL '30' MINUTE), userId

For more information about Flink SQL, see https://ci.apache.org/projects/
flink/flink-docs-master/dev/table/sqlClient.html.

● CEP in SQL
Flink allows users to represent complex event processing (CEP) query results
in SQL for pattern matching and evaluate event streams on Flink.
CEP SQL is implemented through the MATCH_RECOGNIZE SQL syntax. The
MATCH_RECOGNIZE clause is supported by Oracle SQL since Oracle
Database 12c and is used to indicate event pattern matching in SQL. The
following is an example of CEP SQL:
SELECT T.aid, T.bid, T.cid
FROM MyTable
 MATCH_RECOGNIZE (
 PARTITION BY userid
 ORDER BY proctime
 MEASURES
 A.id AS aid,
 B.id AS bid,
 C.id AS cid
 PATTERN (A B C)
 DEFINE
 A AS name = 'a',
 B AS name = 'b',
 C AS name = 'c'
) AS T

6.7.2 Flink HA Solution

Flink HA Solution
A Flink cluster has only one JobManager. This has the risks of single point of
failures (SPOFs). There are three modes of Flink: Flink On Yarn, Flink Standalone,
and Flink Local. Flink On Yarn and Flink Standalone modes are based on clusters
and Flink Local mode is based on a single node. Flink On Yarn and Flink
Standalone provide an HA mechanism. With such a mechanism, you can recover
the JobManager from failures and thereby eliminate SPOF risks. This section
describes the HA mechanism of the Flink On Yarn.

Flink supports the HA mode and job exception recovery that highly depend on
ZooKeeper. If you want to enable the two functions, configure ZooKeeper in the
flink-conf.yaml file in advance as follows:

high-availability: zookeeper
high-availability.zookeeper.quorum: ZooKeeper IP address:2181
high-availability.storageDir: hdfs:///flink/recovery

Yarn

Flink JobManager and Yarn ApplicationMaster are in the same process. Yarn
ResourceManager monitors ApplicationMaster. If ApplicationMaster is abnormal,
Yarn restarts it and restores all JobManager metadata from HDFS. During the
recovery, existing tasks cannot run and new tasks cannot be submitted. ZooKeeper
stores JobManager metadata, such as information about jobs, to be used by the
new JobManager. A TaskManager failure is listened and processed by the
DeathWatch mechanism of Akka on JobManager. When a TaskManager fails, a
container is requested again from Yarn and a TaskManager is created.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 39

https://ci.apache.org/projects/flink/flink-docs-master/dev/table/sqlClient.html
https://ci.apache.org/projects/flink/flink-docs-master/dev/table/sqlClient.html

For more information about the HA solution of Flink on Yarn, visit:

http://hadoop.apache.org/docs/r3.1.1/hadoop-yarn/hadoop-yarn-site/
ResourceManagerHA.html

Standalone

In the standalone mode, multiple JobManagers can be started and ZooKeeper
elects one as the Leader JobManager. In this mode, there is a leader JobManager
and multiple standby JobManagers. If the leader JobManager fails, a standby
JobManager takes over the leadership. Figure 6-13 shows the process of a leader/
standby JobManager switchover.

Figure 6-13 Switchover process

Restoring TaskManager

A TaskManager failure is listened and processed by the DeathWatch mechanism of
Akka on JobManager. If the TaskManager fails, the JobManager creates a
TaskManager and migrates services to the created TaskManager.

Restoring JobManager

Flink JobManager and Yarn ApplicationMaster are in the same process. Yarn
ResourceManager monitors ApplicationMaster. If ApplicationMaster is abnormal,
Yarn restarts it and restores all JobManager metadata from HDFS. During the
recovery, existing tasks cannot run and new tasks cannot be submitted.

Restoring Jobs

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 40

http://hadoop.apache.org/docs/r3.1.1/hadoop-yarn/hadoop-yarn-site/ResourceManagerHA.html
http://hadoop.apache.org/docs/r3.1.1/hadoop-yarn/hadoop-yarn-site/ResourceManagerHA.html

If you want to restore jobs, ensure that the startup policy is configured in Flink
configuration files. Supported restart policies are fixed-delay, failure-rate, and
none. Jobs can be restored only when the policy is configured to fixed-delay or
failure-rate. If the restart policy is configured to none and Checkpoint is
configured for Job, the restart policy is automatically configured to fixed-delay
and the value of restart-strategy.fixed-delay.attempts specifies the number of
retry times.

For details about the three strategies, visit the Flink official website at https://
ci.apache.org/projects/flink/flink-docs-release-1.12/dev/
task_failure_recovery.html. The configuration strategies are as follows:

restart-strategy: fixed-delay
restart-strategy.fixed-delay.attempts: 3
restart-strategy.fixed-delay.delay: 10 s

Jobs will be restored in the following scenarios:

● If a JobManager fails, all its jobs are stopped, and will be recovered after
another JobManager is created and running.

● If a TaskManager fails, all tasks on the TaskManager are stopped, and will be
started until there are available resources.

● When a task of a job fails, the job is restarted.

NO TE

For details about how to configure job restart strategies, see https://ci.apache.org/
projects/flink/flink-docs-release-1.12/ops/jobmanager_high_availability.html.

6.7.3 Relationships Between Flink and Other Components

Relationship Between Flink and Yarn

Flink supports Yarn-based cluster management mode. In this mode, Flink serves as
an application of Yarn and runs on Yarn.

Figure 6-14 shows the Yarn-based Flink cluster deployment.

Figure 6-14 Yarn-based Flink cluster deployment

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 41

https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/task_failure_recovery.html
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/task_failure_recovery.html
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/task_failure_recovery.html
https://ci.apache.org/projects/flink/flink-docs-release-1.12/ops/jobmanager_high_availability.html
https://ci.apache.org/projects/flink/flink-docs-release-1.12/ops/jobmanager_high_availability.html

1. The Flink Yarn Client first checks whether there are sufficient resources for
starting the Yarn cluster. If yes, the Flink Yarn client uploads JAR files and
configuration files to HDFS.

2. Flink Yarn client communicates with Yarn ResourceManager to request a
container for starting ApplicationMaster. After all Yarn NodeManagers finish
downloading the JAR file and configuration files, the ApplicationMaster is
started.

3. During the startup, the ApplicationMaster interacts with the Yarn
ResourceManager to request the container for starting a TaskManager. After
the container is ready, the TaskManager process is started.

4. In the Flink Yarn cluster, the ApplicationMaster and Flink JobManager are
running in the same container. The ApplicationMaster informs each
TaskManager of the RPC address of the JobManager. After TaskManagers are
started, they register with the JobManager.

5. After all TaskManagers has registered with the JobManager, Flink starts up in
the Yarn cluster. Then, the Flink Yarn client can submit Flink jobs to the
JobManager, and Flink can perform mapping, scheduling, and computing for
the jobs.

6.7.4 Flink Enhanced Open Source Features

6.7.4.1 Window

Enhanced Open Source Feature: Window

This section describes the sliding window of Flink and provides the sliding window
optimization method. For details about windows, visit the official website at
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/stream/
operators/windows.html.

Introduction to Window

Data in a window is saved as intermediate results or original data. If you perform
a sum operation (window(SlidingEventTimeWindows.of(Time.seconds(20),
Time.seconds(5))).sum) on data in the window, only the intermediate result will
be retained. If a custom window
(window(SlidingEventTimeWindows.of(Time.seconds(20),
Time.seconds(5))).apply(new UDF)) is used, all original data in the window will
be saved.

If custom windows SlidingEventTimeWindow and
SlidingProcessingTimeWindow are used, data is saved as multiple backups.
Assume that the window is defined as follows:

window(SlidingEventTimeWindows.of(Time.seconds(20), Time.seconds(5))).apply(new
UDFWindowFunction)

If a block of data arrives, it is assigned to four different windows (20/5 = 4). That
is, the data is saved as four copies in the memory. When the window size or
sliding period is set to a large value, data will be saved as excessive copies, causing
redundancy.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 42

https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/stream/operators/windows.html
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/stream/operators/windows.html

Figure 6-15 Original structure of a window

If a data block arrives at the 102nd second, it is assigned to windows [85, 105),
[90, 110), [95, 115), and [100, 120).

Window Optimization

As mentioned in the preceding, there are excessive data copies when original data
is saved in SlidingEventTimeWindow and SlidingProcessingTimeWindow. To resolve
this problem, the window that stores the original data is restructured, which
optimizes the storage and greatly lowers the storage space. The window
optimization scheme is as follows:

1. Use the sliding period as a unit to divide a window into different panes.

A window consists of one or multiple panes. A pane is essentially a sliding
period. For example, the sliding period (namely, the pane) of
window(SlidingEventTimeWindows.of(Time.seconds(20),
Time.seconds.of(5))) lasts for 5 seconds. If this window ranges from [100,
120), this window can be divided into panes [100, 105), [105, 110), [110,
115), and [115, 120).

Figure 6-16 Window optimization

2. When a data block arrives, it is not assigned to a specific window. Instead,
Flink determines the pane to which the data block belongs based on the
timestamp of the data block, and saves the data block into the pane.

A data block is saved only in one pane. In this case, only a data copy exists in
the memory.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 43

Figure 6-17 Saving data in a window

3. To trigger a window, compute all panes contained in the window, and
combine all these panes into a complete window.

Figure 6-18 Triggering a window

4. If a pane is not required, you can delete it from the memory.

Figure 6-19 Deleting a window

After optimization, the quantity of data copies in the memory and snapshot is
greatly reduced.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 44

6.7.4.2 Job Pipeline

Enhanced Open Source Feature: Job Pipeline
Generally, logic code related to a service is stored in a large JAR package, which is
called Fat JAR. Disadvantages of Fat JAR are as follows:
● When service logic becomes more and more complex, the size of the Fat JAR

increases.
● Fat Jar makes coordination complex. Developers of all services are working

with the same service logic. Even though the service logic can be divided into
several modules, all modules are tightly coupled with each other. If the
requirement needs to be changed, the entire flow diagram needs to be
replanned.

Splitting of jobs is facing the following problems:
● Data transmission between jobs can be achieved using Kafka. For example,

job A transmits data to the topic A in Kafka, and then job B and job C read
data from the topic A in Kafka. This solution is simple and easy to implement,
but the latency is always longer than 100 ms.

● Operators are connected using the TCP protocol. In distributed environment,
operators can be scheduled to any node and upstream and downstream
services cannot detect the scheduling.

Job Pipeline

A pipeline consists of multiple Flink jobs connected through TCP. Upstream jobs
can send data to downstream jobs. The flow diagram about data transmission is
called a job pipeline, as shown in Figure 6-20.

Figure 6-20 Job pipeline

Job Pipeline Principles

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 45

Figure 6-21 Job Pipeline

● NettySink and NettySource
In a pipeline, upstream jobs and downstream jobs communicate with each
other through Netty. The Sink operator of the upstream job works as a server
and the Source operator of the downstream job works as a client. The Sink
operator of the upstream job is called NettySink, and the Source operator of
the downstream job is called NettySource.

● NettyServer and NettyClient
NettySink functions as the server of Netty. In NettySink, NettyServer achieves
the function of a server. NettySource functions as the client of Netty. In
NettySource, NettyClient achieves the function of a client.

● Publisher
The job that sends data to downstream jobs through NettySink is called a
publisher.

● Subscriber
The job that receives data from upstream jobs through NettySource is called a
subscriber.

● RegisterServer
RegisterServer is the third-party memory that stores the IP address, port
number, and concurrency information about NettyServer.

● The general outside-in architecture is as follows:
– NettySink->NettyServer->NettyServerHandler
– NettySource->NettyClient->NettyClientHandler

Job Pipeline Functions

● NettySink
NettySink consists of the following major modules:
– RichParallelSinkFunction

NettySink inherits RichParallelSinkFunction and attributes of Sink
operators. The RichParallelSinkFunction API implements following
functions:

▪ Starts the NettySink operator.

▪ Runs the NettySink operator and receives data from the upstream
operator.

▪ Cancels the running of NettySink operators.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 46

Following information can be obtained using the attribute of
RichParallelSinkFunction:

▪ subtaskIndex about the concurrency of each NettySink operator

▪ Concurrency of the NettySink operator

– RegisterServerHandler
RegisterServerHandler interacts with the component of RegisterServer
and defines following APIs:

▪ start();: Starts the RegisterServerHandler and establishes a contact
with the third-party RegisterServer.

▪ createTopicNode();: Creates a topic node.

▪ register();: Registers information such as the IP address, port
number, and concurrency to the topic node.

▪ deleteTopicNode();: Deletes a topic node.

▪ unregister();: Deletes registration information.

▪ query();: Queries registration information.

▪ isExist();: Verifies that a specific piece of information exists.

▪ shutdown();: Disables the RegisterServerHandler and disconnects
from the third-party RegisterServer.

NO TE

● RegisterServerHandler API enables ZooKeeper to work as the handler of
RegisterServer. You can customize your handler as required. Information is
stored in ZooKeeper in the following form:
Namespace
|---Topic-1
 |---parallel-1
 |---parallel-2
 |....
 |---parallel-n
|---Topic-2
 |---parallel-1
 |---parallel-2
 |....
 |---parallel-m
|...

● Information about NameSpace can be obtained from the following
parameters of the flink-conf.yaml file:
nettyconnector.registerserver.topic.storage: /flink/nettyconnector

● The simple authentication and security layer (SASL) authentication between
ZookeeperRegisterServerHandler and ZooKeeper is implemented through the
Flink framework.

● Ensure that each job has a unique topic. Otherwise, the subscription
relationship may be unclear.

● When calling shutdown(), ZookeeperRegisterServerHandler deletes the
registration information about the current concurrency, and then attempts to
delete the topic node. If the topic node is not empty, deletion will be
canceled, because not all concurrency has exited.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 47

– NettyServer
NettyServer is the core of the NettySink operator, whose main function is
to create a NettyServer and receive connection requests from NettyClient.
Use NettyServerHandler to send data received from upstream operators
of a same job. The port number and subnet of NettyServer needs to be
configured in the flink-conf.yaml file.

▪ Port range
nettyconnector.sinkserver.port.range: 28444-28943

▪ Subnet
nettyconnector.sinkserver.subnet: 10.162.222.123/24

NO TE

The nettyconnector.sinkserver.subnet parameter is set to the subnet
(service IP address) of the Flink client by default. If the client and
TaskManager are not in the same subnet, an error may occur. Therefore,
you need to manually set this parameter to the subnet (service IP address)
of TaskManager.

– NettyServerHandler
The handler enables the interaction between NettySink and subscribers.
After NettySink receives messages, the handler sends these messages out.
To ensure data transmission security, this channel is encrypted using SSL.
The nettyconnector.ssl.enabled configures whether to enable SSL
encryption. The SSL encryption is enabled only when
nettyconnector.ssl.enabled is set to true.

● NettySource
NettySource consists of the following major modules:
– RichParallelSourceFunction

NettySource inherits RichParallelSinkFunction and attributes of Source
operators. The RichParallelSourceFunction API implements following
functions:

▪ Starts the NettySink operator.

▪ Runs the NettySink operator, receives data from subscribers, and
injects the data to jobs.

▪ Cancels the running of Source operators.
Following information can be obtained using the attribute of
RichParallelSourceFunction:

▪ subtaskIndex about the concurrency of each NettySource operator

▪ Concurrency of the NettySource operator
When the NettySource operator enters the running stage, the NettyClient
status is monitored. Once abnormality occurs, NettyClient is restarted and
reconnected to NettyServer, preventing data confusion.

– RegisterServerHandler
RegisterServerHandler of NettySource has similar function as the
RegisterServerHandler of NettySink. It obtains the IP address, port
number, and information of concurrent operators of each subscribed job
obtained in the NettySource operator.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 48

– NettyClient
NettyClient establishes a connection with NettyServer and uses
NettyClientHandler to receive data. Each NettySource operator must have
a unique name (specified by the user). NettyServer determines whether
each client comes from different NettySources based on unique names.
When a connection is established between NettyClient and NettyServer,
NettyClient is registered with NettyServer and the NettySource name of
NettyClient is transferred to NettyServer.

– NettyClientHandler
The NettyClientHandler enables the interaction with publishers and other
operators of the job. When messages are received, NettyClientHandler
transfers these messages to the job. To ensure secure data transmission,
SSL encryption is enabled for the communication with NettySink. The SSL
encryption is enabled only when SSL is enabled and
nettyconnector.ssl.enabled is set to true.

The relationship between the jobs may be many-to-many. The concurrency
between each NettySink and NettySource operator is one-to-many, as shown in
Figure 6-22.

Figure 6-22 Relationship diagram

6.7.4.3 Stream SQL Join

Enhanced Open Source Feature: Stream SQL Join

Flink's Table API&SQL is an integrated query API for Scala and Java that allows the
composition of queries from relational operators such as selection, filter, and join
in an intuitive way. For details about Table API & SQL, visit the official website at
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/table/
index.html.

Introduction to Stream SQL Join

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 49

https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/table/index.html
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/table/index.html

SQL Join is used to query data based on the relationship between columns in two
or more tables. Flink Stream SQL Join allows you to join two streaming tables and
query results from them. Queries similar to the following are supported:

SELECT o.proctime, o.productId, o.orderId, s.proctime AS shipTime
FROM Orders AS o
JOIN Shipments AS s
ON o.orderId = s.orderId
AND o.proctime BETWEEN s.proctime AND s.proctime + INTERVAL '1' HOUR;

Currently, Stream SQL Join needs to be performed within a specified window. The
join operation for data within the window requires at least one equi-join predicate
and a join condition that bounds the time on both sides. Such a condition can be
defined by two appropriate range predicates (<, <=, >=, >), a BETWEEN predicate,
or a single equality predicate that compares the same type of time attributes
(such as processing time or event time) of both input tables.

The following example will join all orders with their corresponding shipments if
the order was shipped four hours after the order was received.

SELECT *
FROM Orders o, Shipments s
WHERE o.id = s.orderId AND
o.ordertime BETWEEN s.shiptime - INTERVAL '4' HOUR AND s.shiptime

NO TE

1. Stream SQL Join supports only inner join.

2. The ON clause should include an equal join condition.

3. Time attributes support only the processing time and event time.

4. The window condition supports only the bounded time range, for example, o.proctime
BETWEEN s.proctime - INTERVAL '1' HOUR AND s.proctime + INTERVAL '1' HOUR.
The unbounded range such as o. proctime > s.proctime is not supported. The proctime
attribute of two streams must be included. o.proctime BETWEEN proctime () AND
proctime () + 1 is not supported.

6.7.4.4 Flink CEP in SQL

Flink CEP in SQL
Flink allows users to represent complex event processing (CEP) query results in
SQL for pattern matching and evaluate event streams on Flink engines.

SQL Query Syntax
CEP SQL is implemented through the MATCH_RECOGNIZE SQL syntax. The
MATCH_RECOGNIZE clause is supported by Oracle SQL since Oracle Database 12c
and is used to indicate event pattern matching in SQL. Apache Calcite also
supports the MATCH_RECOGNIZE clause.

Flink uses Calcite to analyze SQL query results. Therefore, this operation complies
with the Apache Calcite syntax.

MATCH_RECOGNIZE (
 [PARTITION BY expression [, expression]*]
 [ORDER BY orderItem [, orderItem]*]
 [MEASURES measureColumn [, measureColumn]*]
 [ONE ROW PER MATCH | ALL ROWS PER MATCH]
 [AFTER MATCH

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 50

 (SKIP TO NEXT ROW
 | SKIP PAST LAST ROW
 | SKIP TO FIRST variable
 | SKIP TO LAST variable
 | SKIP TO variable)
]
 PATTERN (pattern)
 [WITHIN intervalLiteral]
 [SUBSET subsetItem [, subsetItem]*]
 DEFINE variable AS condition [, variable AS condition]*
)

The syntax elements of the MATCH_RECOGNIZE clause are defined as follows:

(Optional) -PARTITION BY: defines partition columns. This clause is optional. If
this parameter is not defined, the parallelism 1 is used.

(Optional) -ORDER BY: defines the sequence of events in a data flow. The ORDER
BY clause is optional. If it is ignored, non-deterministic sorting is used. Since the
order of events is important in pattern matching, this clause should be specified in
most cases.

(Optional) -MEASURES: specifies the attribute value of the successfully matched
event.

(Optional) -ONE ROW PER MATCH | ALL ROWS PER MATCH: defines how to
output the result. ONE ROW PER MATCH indicates that only one row is output
for each matching. ALL ROWS PER MATCH indicates that one row is output for
each matching event.

(Optional) -AFTER MATCH: specifies the start position for processing after the
next pattern is successfully matched.

-PATTERN: defines the matching pattern as a regular expression. The following
operators can be used in the PATTERN clause: join operators, quantifier operators
(*, +, ?, {n}, {n,}, {n,m}, and {,m}), branch operators (vertical bar |), and differential
operators ('{- -}').

(Optional) -WITHIN: outputs a pattern clause match only when the match occurs
within the specified time.

(Optional) -SUBSET: combines one or more associated variables defined in the
DEFINE clause.

-DEFINE: specifies the Boolean condition, which defines the variables used in the
PATTERN clause.

In addition, the MATCH_RECOGNIZE clause supports the following functions:

-MATCH_NUMBER(): Used in the MEASURES clause to allocate the same number
to each row that is successfully matched.

-CLASSIFIER(): Used in the MEASURES clause to indicate the mapping between
matched rows and variables.

-FIRST() and LAST(): Used in the MEASURES clause to return the value of the
expression evaluated in the first or last row of the row set mapped to the schema
variable.

-NEXT() and PREV(): Used in the DEFINE clause to evaluate an expression using
the previous or next row in a partition.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 51

-RUNNING and FINAL keywords: Used to determine the semantics required for
aggregation. RUNNING can be used in the MEASURES and DEFINE clauses,
whereas FINAL can be used only in the MEASURES clause.

- Aggregate functions (COUNT, SUM, AVG, MAX, MIN): Used in the MEASURES
and DEFINE clauses.

Query Example
The following query finds the V-shaped pattern in the stock price data flow.

SELECT *
 FROM MyTable
 MATCH_RECOGNIZE (
 ORDER BY rowtime
 MEASURES
 STRT.name as s_name,
 LAST(DOWN.name) as down_name,
 LAST(UP.name) as up_name
 ONE ROW PER MATCH
 PATTERN (STRT DOWN+ UP+)
 DEFINE
 DOWN AS DOWN.v < PREV(DOWN.v),
 UP AS UP.v > PREV(UP.v)
)

In the following query, the aggregate function AVG is used in the MEASURES
clause of SUBSET E consisting of variables related to A and C.

SELECT *
 FROM Ticker
 MATCH_RECOGNIZE (
 MEASURES
 AVG(E.price) AS avgPrice
 ONE ROW PER MATCH
 AFTER MATCH SKIP PAST LAST ROW
 PATTERN (A B+ C)
 SUBSET E = (A,C)
 DEFINE
 A AS A.price < 30,
 B AS B.price < 20,
 C AS C.price < 30
)

6.8 Flume

6.8.1 Flume Basic Principles
Flume is a distributed, reliable, and HA system that supports massive log
collection, aggregation, and transmission. Flume supports customization of various
data senders in the log system for data collection. In addition, Flume can roughly
process data and write data to various data receivers (customizable). A Flume-NG
is a branch of Flume. It is simple, small, and easy to deploy. The following figure
shows the basic architecture of the Flume-NG.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 52

Figure 6-23 Flume-NG architecture

A Flume-NG consists of agents. Each agent consists of three components (source,
channel, and sink). A source is used for receiving data. A channel is used for
transmitting data. A sink is used for sending data to the next end.

Table 6-6 Module description

Module Description

Source A source receives data or generates data by using a special
mechanism, and places the data in batches in one or more
channels. The source can work in data-driven or polling mode.
Typical source types are as follows:
● Sources that are integrated with the system, such as Syslog

and Netcat
● Sources that automatically generate events, such as Exec and

SEQ
● IPC sources that are used for communication between agents,

such as Avro
A source must be associated with at least one channel.

Channel A channel is used to buffer data between a source and a sink.
The channel caches data from the source and deletes that data
after the sink sends the data to the next-hop channel or final
destination.
Different channels provide different persistence levels.
● Memory channel: non-persistency
● File channel: Write-Ahead Logging (WAL) based persistence
● JDBC channel: persistency implemented based on the

embedded database
The channel supports the transaction feature to ensure simple
sequential operations. A channel can work with sources and sinks
of any quantity.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 53

Module Description

Sink A sink sends data to the next-hop channel or final destination.
Once completed, the transmitted data is removed from the
channel.
Typical sink types are as follows:
● Sinks that send storage data to the final destination, such as

HDFS and HBase
● Sinks that are consumed automatically, such as Null Sink
● IPC Sinks used for communication between Agents, such as

Avro
A sink must be associated with a specific channel.

As shown in Figure 6-24, a Flume client can have multiple sources, channels, and
sinks.

Figure 6-24 Flume structure

The reliability of Flume depends on transaction switchovers between agents. If the
next agent is abnormal, the channel stores data persistently and transmits data
until the agent recovers. The availability of Flume depends on the built-in load
balancing and failover mechanisms. Both the channel and agent can be
configured with multiple entities between which they can use load balancing
policies. Each agent is a Java Virtual Machine (JVM) process. A server can have
multiple agents. Collection nodes (for example, Agents 1, 2, 3) process logs.
Aggregation nodes (for example, Agent 4) write the logs into HDFS. The agent of
each collection node can select multiple aggregation nodes for load balancing.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 54

Figure 6-25 Flume cascading

For details about Flume architecture and principles, see https://
flume.apache.org/releases/1.9.0.html.

Principle

Reliability Between Agents

Figure 6-26 shows the data exchange between agents.

Figure 6-26 Data transmission process

1. Flume ensures reliable data transmission based on transactions. When data
flows from one agent to another agent, the two transactions take effect. The
sink of Agent 1 (agent that sends a message) needs to obtain a message
from a channel and sends the message to Agent 2 (agent that receives the
message). If Agent 2 receives and successfully processes the message, Agent 1
will submit a transaction, indicating a successful and reliable data
transmission.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 55

https://flume.apache.org/releases/1.9.0.html
https://flume.apache.org/releases/1.9.0.html

2. When Agent 2 receives the message sent by Agent 1 and starts a new
transaction, after the data is processed successfully (written to a channel),
Agent 2 submits the transaction and sends a success response to Agent 1.

3. Before a commit operation, if the data transmission fails, the last transcription
starts and retransmits the data that fails to be transmitted last time. The
commit operation has written the transaction into a disk. Therefore, the last
transaction can continue after the process fails and restores.

6.8.2 Relationships Between Flume and Other Components

Relationship Between Flume and HDFS
If HDFS is configured as the Flume sink, HDFS functions as the final data storage
system of Flume. Flume installs, configures, and writes all transmitted data into
HDFS.

For details, see Typical Scenario: Collecting Local Static Logs and Uploading
Them to HDFS and Typical Scenario: Collecting Local Dynamic Logs and
Uploading Them to HDFS.

Relationship Between Flume and HBase
If HBase is configured as the Flume sink, HBase functions as the final data storage
system of Flume. Flume writes all transmitted data into HBase based on
configurations. For details, see Typical Scenario: Collecting Local Static Logs and
Uploading Them to HBase.

6.8.3 Flume Enhanced Open Source Features

Flume Enhanced Open Source Features
● Improving transmission speed: Multiple lines instead of only one line of data

can be specified as an event. This improves the efficiency of code execution
and reduces the times of disk writes.

● Transferring ultra-large binary files: According to the current memory usage,
Flume automatically adjusts the memory used for transferring ultra-large
binary files to prevent out-of-memory.

● Supporting the customization of preparations before and after transmission:
Flume supports customized scripts to be run before or after transmission for
making preparations.

● Managing client alarms: Flume receives Flume client alarms through
MonitorServer and reports the alarms to the alarm management center on
MRS Manager.

6.9 HBase

6.9.1 HBase Basic Principles
HBase undertakes data storage. HBase is an open source, column-oriented,
distributed storage system that is suitable for storing massive amounts of

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 56

https://support.huaweicloud.com/intl/en-us/cmpntguide-mrs/mrs_01_1063.html
https://support.huaweicloud.com/intl/en-us/cmpntguide-mrs/mrs_01_1063.html
https://support.huaweicloud.com/intl/en-us/cmpntguide-mrs/mrs_01_1064.html
https://support.huaweicloud.com/intl/en-us/cmpntguide-mrs/mrs_01_1064.html
https://support.huaweicloud.com/intl/en-us/cmpntguide-mrs/mrs_01_1067.html
https://support.huaweicloud.com/intl/en-us/cmpntguide-mrs/mrs_01_1067.html

unstructured or semi-structured data. It features high reliability, high performance,
and flexible scalability, and supports real-time data read/write. For more
information about HBase, see https://hbase.apache.org/.

Typical features of a table stored in HBase are as follows:

● Big table (BigTable): One table contains hundred millions of rows and millions
of columns.

● Column-oriented: Column-oriented storage, retrieval, and permission control
● Sparse: Null columns in the table do not occupy any storage space.

MRS HBase supports secondary indexing to allow indexes to be created for
column values so that data can be filtered by column using native HBase APIs.

HBase Architecture
An HBase cluster consists of active and standby HMaster processes and multiple
RegionServer processes.

Figure 6-27 HBase architecture

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 57

https://hbase.apache.org/

Table 6-7 Module description

Module Description

Master Master is also called HMaster. In HA mode, HMaster consists of
an active HMaster and a standby HMaster.
● Active Master: manages RegionServer in HBase, including the

creation, deletion, modification, and query of a table,
balances the load of RegionServer, adjusts the distribution of
Region, splits Region and distributes Region after it is split,
and migrates Region after RegionServer expires.

● Standby Master: takes over services when the active HMaster
is faulty. The original active HMaster demotes to the standby
HMaster after the fault is rectified.

Client Client communicates with Master for management and with
RegionServer for data protection by using the Remote Procedure
Call (RPC) mechanism of HBase.

RegionServe
r

RegionServer provides read and write services of table data as a
data processing and computing unit in HBase.
RegionServer is deployed with DataNodes of HDFS clusters to
store data.

ZooKeeper
cluster

ZooKeeper provides distributed coordination services for
processes in HBase clusters. Each RegionServer is registered with
ZooKeeper so that the active Master can obtain the health status
of each RegionServer.

HDFS cluster HDFS provides highly reliable file storage services for HBase. All
HBase data is stored in the HDFS.

HBase Principles
● HBase Data Model

HBase stores data in tables, as shown in Figure 6-28. Data in a table is
divided into multiple Regions, which are allocated by Master to RegionServers
for management.
Each Region contains data within a RowKey range. An HBase data table
contains only one Region at first. As the number of data increases and
reaches the upper limit of the Region capacity, the Region is split into two
Regions. You can define the RowKey range of a Region when creating a table
or define the Region size in the configuration file.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 58

Figure 6-28 HBase data model

Table 6-8 Concepts

Module Description

RowKey Similar to the primary key in a relationship table, which is the
unique ID of the data in each row. A RowKey can be a string,
integer, or binary string. All records are stored after being
sorted by RowKey.

Timestamp The timestamp of a data operation. Data can be specified
with different versions by time stamp. Data of different
versions in each cell is stored by time in descending order.

Cell Minimum storage unit of HBase, consisting of keys and
values. A key consists of six fields, namely row, column family,
column qualifier, timestamp, type, and MVCC version. Values
are the binary data objects.

Column
Family

One or multiple horizontal column families form a table. A
column family can consist of multiple random columns. A
column is a label under a column family, which can be added
as required when data is written. The column family supports
dynamic expansion so the number and type of columns do
not need to be predefined. Columns of a table in HBase are
sparsely distributed. The number and type of columns in
different rows can be different. Each column family has the
independent time to live (TTL). You can lock the row only.
Operations on the row in a column family are the same as
those on other rows.

Column Similar to traditional databases, HBase tables also use
columns to store data of the same type.

● RegionServer Data Storage

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 59

RegionServer manages the regions allocated by HMaster. Figure 6-29 shows
the data storage structure of RegionServer.

Figure 6-29 RegionServer data storage structure

Table 6-9 lists each component of Region described in Figure 6-29.

Table 6-9 Region structure description

Module Description

Store A Region consists of one or multiple Stores. Each Store maps a
column family in Figure 6-28.

MemSto
re

A Store contains one MemStore. The MemStore caches data
inserted to a Region by the client. When the MemStore capacity
reaches the upper limit, RegionServer flushes data in MemStore
to the HDFS.

StoreFile The data flushed to the HDFS is stored as a StoreFile in the
HDFS. As more data is inserted, multiple StoreFiles are
generated in a Store. When the number of StoreFiles reaches the
upper limit, RegionServer merges multiple StoreFiles into a big
StoreFile.

HFile HFile defines the storage format of StoreFiles in a file system.
HFile is the underlying implementation of StoreFile.

HLog HLogs prevent data loss when RegionServer is faulty. Multiple
Regions in a RegionServer share the same HLog.

● Metadata Table

The metadata table is a special HBase table, which is used by the client to
locate a region. Metadata table includes hbase:meta table to record region

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 60

information of user tables, such as the region location and start and end
RowKey.
Figure 6-30 shows the mapping relationship between metadata tables and
user tables.

Figure 6-30 Mapping relationships between metadata tables and user tables

● Data Operation Process
Figure 6-31 shows the HBase data operation process.

Figure 6-31 Data processing

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 61

a. When you add, delete, modify, and query HBase data, the HBase client
first connects to ZooKeeper to obtain information about the RegionServer
where the hbase:meta table is located. If you modify the NameSpace,
such as creating and deleting a table, you need to access HMaster to
update the meta information.

b. The HBase client connects to the RegionServer where the region of the
hbase:meta table is located and obtains the RegionServer location where
the region of the user table resides.

c. Then the HBase client connects to the RegionServer where the region of
the user table is located and issues a data operation command to the
RegionServer. The RegionServer executes the command.

To improve data processing efficiency, the HBase client caches region
information of the hbase:meta table and user table. When an application
initiates a second data operation, the HBase client queries the region
information from the memory. If no match is found in the memory, the HBase
client performs the preceding operations to obtain region information.

6.9.2 HBase HA Solution

HBase HA
HMaster in HBase allocates Regions. When one RegionServer service is stopped,
HMaster migrates the corresponding Region to another RegionServer. The
HMaster HA feature is brought in to prevent HBase functions from being affected
by the HMaster single point of failure (SPOF).

Figure 6-32 HMaster HA implementation architecture

The HMaster HA architecture is built based on Ephemeral nodes (temporary
nodes) created in the ZooKeeper cluster.

Upon startup, HMaster nodes try to create a master znode in the ZooKeeper
cluster. The HMaster node that creates the master znode first becomes the active
HMaster, and the other is the standby HMaster.

It will add watch events to the master node. If the service on the active HMaster is
stopped, the active HMaster disconnects from the ZooKeeper cluster. After the

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 62

session expires, the active HMaster disappears. The standby HMaster detects the
disappearance of the active HMaster through watch events and creates a master
node to make itself be the active one. Then, the active/standby switchover
completes. If the failed node detects existence of the master node after being
restarted, it enters the standby state and adds watch events to the master node.

When the client accesses the HBase, it first obtains the HMaster's address based
on the master node information on the ZooKeeper and then establishes a
connection to the active HMaster.

6.9.3 Relationship with Other Components

Relationship Between HDFS and HBase
HDFS is the subproject of Apache Hadoop. HBase uses the Hadoop Distributed File
System (HDFS) as the file storage system. HBase is located in structured storage
layer. The HDFS provides highly reliable support for lower-layer storage of HBase.
All the data files of HBase can be stored in the HDFS, except some log files
generated by HBase.

Relationship Between ZooKeeper and HBase
Figure 6-33 describes the relationship between ZooKeeper and HBase.

Figure 6-33 Relationship between ZooKeeper and HBase

1. HRegionServer registers itself to ZooKeeper in Ephemeral node. ZooKeeper
stores the HBase information, including the HBase metadata and HMaster
addresses.

2. HMaster detects the health status of each HRegionServer using ZooKeeper,
and monitors them.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 63

3. HBase can deploy multiple HMasters (like HDFS NameNode). When the
active HMatser node is faulty, the standby HMaster node obtains the state
information of the entire cluster using ZooKeeper, which means that HBase
single point faults can be avoided using ZooKeeper.

6.9.4 HBase Enhanced Open Source Features

HIndex

HBase is a distributed Key-Value store. Data of a table is sorted in the alphabetic
order based on row keys. If you query data based on a specified row key or scan
data in the scale of a specified row key, HBase can quickly locate the target data,
enhancing the efficiency.

However, in most actual scenarios, you need to query the data of which the
column value is XXX. HBase provides the Filter feature to query data with a
specific column value. All data is scanned in the order of row keys, and then the
data is matched with the specific column value until the required data is found.
The Filter feature scans some unnecessary data to obtain the only required data.
Therefore, the Filter feature cannot meet the requirements of frequent queries
with high performance standards.

HBase HIndex is designed to address these issues. HBase HIndex enables HBase to
query data based on specific column values.

Figure 6-34 HIndex

● Rolling upgrade is not supported for index data.
● Restrictions of combined indexes:

– All columns involved in combined indexes must be entered or deleted in a
single mutation. Otherwise, inconsistency will occur.
Index: IDX1=>cf1:[q1->datatype],[q2];cf2:[q2->datatype]
Correct write operations:
Put put = new Put(Bytes.toBytes("row"));
put.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("q1"), Bytes.toBytes("valueA"));
put.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("q2"), Bytes.toBytes("valueB"));

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 64

put.addColumn(Bytes.toBytes("cf2"), Bytes.toBytes("q2"), Bytes.toBytes("valueC"));
table.put(put);

Incorrect write operations:
Put put1 = new Put(Bytes.toBytes("row"));
put1.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("q1"), Bytes.toBytes("valueA"));
table.put(put1);
Put put2 = new Put(Bytes.toBytes("row"));
put2.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("q2"), Bytes.toBytes("valueB"));
table.put(put2);
Put put3 = new Put(Bytes.toBytes("row"));
put3.addColumn(Bytes.toBytes("cf2"), Bytes.toBytes("q2"), Bytes.toBytes("valueC"));
table.put(put3);

– The combined conditions-based query is supported only when the
combined index column contains filter criteria, or StartRow and StopRow
are not specified for some index columns.
Index: IDX1=>cf1:[q1->datatype],[q2];cf2:[q1->datatype]
Correct query operations:
scan 'table', {FILTER=>"SingleColumnValueFilter('cf1','q1',>=,'binary:valueA',true,true) AND
SingleColumnValueFilter('cf1','q2',>=,'binary:valueB',true,true) AND
SingleColumnValueFilter('cf2','q1',>=,'binary:valueC',true,true) "}

scan 'table', {FILTER=>"SingleColumnValueFilter('cf1','q1',=,'binary:valueA',true,true) AND
SingleColumnValueFilter('cf1','q2',>=,'binary:valueB',true,true)" }

scan 'table', {FILTER=>"SingleColumnValueFilter('cf1','q1',>=,'binary:valueA',true,true) AND
SingleColumnValueFilter('cf1','q2',>=,'binary:valueB',true,true) AND
SingleColumnValueFilter('cf2','q1',>=,'binary:valueC',true,true)",STARTROW=>'row001',STOPROW
=>'row100'}

Incorrect query operations:
scan 'table', {FILTER=>"SingleColumnValueFilter('cf1','q1',>=,'binary:valueA',true,true) AND
SingleColumnValueFilter('cf1','q2',>=,'binary:valueB',true,true) AND
SingleColumnValueFilter('cf2','q1',>=,'binary:valueC',true,true) AND
SingleColumnValueFilter('cf2','q2',>=,'binary:valueD',true,true)"}

scan 'table', {FILTER=>"SingleColumnValueFilter('cf1','q1',=,'binary:valueA',true,true) AND
SingleColumnValueFilter('cf2','q1',>=,'binary:valueC',true,true)" }

scan 'table', {FILTER=>"SingleColumnValueFilter('cf1','q1',=,'binary:valueA',true,true) AND
SingleColumnValueFilter('cf2','q2',>=,'binary:valueD',true,true)" }

scan 'table', {FILTER=>"SingleColumnValueFilter('cf1','q1',=,'binary:valueA',true,true) AND
SingleColumnValueFilter('cf1','q2',>=,'binary:valueB',true,true)" ,STARTROW=>'row001',STOPROW
=>'row100' }

● Do not configure any split policy for tables with index data.
● Other mutation operations, such as increment and append, are not

supported.
● Index of the column with maxVersions greater than 1 is not supported.
● The data index column in a row cannot be updated.

Index 1: IDX1=>cf1:[q1->datatype],[q2];cf2:[q1->datatype]
Index 2: IDX2=>cf2:[q2->datatype]
Correct update operations:
Put put1 = new Put(Bytes.toBytes("row"));
put1.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("q1"), Bytes.toBytes("valueA"));
put1.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("q2"), Bytes.toBytes("valueB"));
put1.addColumn(Bytes.toBytes("cf2"), Bytes.toBytes("q1"), Bytes.toBytes("valueC"));
put1.addColumn(Bytes.toBytes("cf2"), Bytes.toBytes("q2"), Bytes.toBytes("valueD"));
table.put(put1);

Put put2 = new Put(Bytes.toBytes("row"));

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 65

put2.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("q3"), Bytes.toBytes("valueE"));
put2.addColumn(Bytes.toBytes("cf2"), Bytes.toBytes("q3"), Bytes.toBytes("valueF"));
table.put(put2);

Incorrect update operations:
Put put1 = new Put(Bytes.toBytes("row"));
put1.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("q1"), Bytes.toBytes("valueA"));
put1.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("q2"), Bytes.toBytes("valueB"));
put1.addColumn(Bytes.toBytes("cf2"), Bytes.toBytes("q1"), Bytes.toBytes("valueC"));
put1.addColumn(Bytes.toBytes("cf2"), Bytes.toBytes("q2"), Bytes.toBytes("valueD"));
table.put(put1);

Put put2 = new Put(Bytes.toBytes("row"));
put2.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("q1"), Bytes.toBytes("valueA_new"));
put2.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("q2"), Bytes.toBytes("valueB_new"));
put2.addColumn(Bytes.toBytes("cf2"), Bytes.toBytes("q1"), Bytes.toBytes("valueC_new"));
put2.addColumn(Bytes.toBytes("cf2"), Bytes.toBytes("q2"), Bytes.toBytes("valueD_new"));
table.put(put2);

● The table to which an index is added cannot contain a value greater than 32
KB.

● If user data is deleted due to the expiration of the column-level TTL, the
corresponding index data is not deleted immediately. It will be deleted in the
major compaction operation.

● The TTL of the user column family cannot be modified after the index is
created.
– If the TTL of a column family increases after an index is created, delete

the index and re-create one. Otherwise, some generated index data will
be deleted before user data is deleted.

– If the TTL value of the column family decreases after an index is created,
the index data will be deleted after user data is deleted.

● The index query does not support the reverse operation, and the query results
are disordered.

● The index does not support the clone snapshot operation.
● Index tables must use HIndexWALPlayer to replay logs. WALPlayer cannot be

used to replay logs.
hbase org.apache.hadoop.hbase.hindex.mapreduce.HIndexWALPlayer
Usage: WALPlayer [options] <wal inputdir> <tables> [<tableMappings>]
Read all WAL entries for <tables>.
If no tables ("") are specific, all tables are imported.
(Careful, even -ROOT- and hbase:meta entries will be imported in that case.)
Otherwise <tables> is a comma separated list of tables.

The WAL entries can be mapped to new set of tables via <tableMapping>.
<tableMapping> is a command separated list of targettables.
If specified, each table in <tables> must have a mapping.

By default WALPlayer will load data directly into HBase.
To generate HFiles for a bulk data load instead, pass the option:
 -Dwal.bulk.output=/path/for/output
 (Only one table can be specified, and no mapping is allowed!)
Other options: (specify time range to WAL edit to consider)
 -Dwal.start.time=[date|ms]
 -Dwal.end.time=[date|ms]
For performance also consider the following options:
 -Dmapreduce.map.speculative=false
 -Dmapreduce.reduce.speculative=false

● When the deleteall command is executed for the index table, the
performance is low.

● The index table does not support HBCK. To use HBCK to repair an index table,
delete index data first.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 66

Multi-point Division
When you create tables that are pre-divided by region in HBase, you may not
know the data distribution trend so the division by region may be inappropriate.
After the system runs for a period, regions need to be divided again to achieve
better performance. Only empty regions can be divided.

The region division function delivered with HBase divides regions only when they
reach the threshold. This is called "single point division".

To achieve better performance when regions are divided based on user
requirements, multi-point division is developed, which is also called "dynamic
division". That is, an empty region is pre-divided into multiple regions to prevent
performance deterioration caused by insufficient region space.

Figure 6-35 Multi-point division

Connection Limitation
Too many sessions mean that too many queries and MapReduce tasks are running
on HBase, which compromises HBase performance and even causes service
rejection. You can configure parameters to limit the maximum number of sessions
that can be established between the client and the HBase server to achieve HBase
overload protection.

Improved Disaster Recovery
The disaster recovery (DR) capabilities between the active and standby clusters
can enhance HA of the HBase data. The active cluster provides data services and
the standby cluster backs up data. If the active cluster is faulty, the standby cluster
takes over data services. Compared with the open source replication function, this
function is enhanced as follows:

1. The whitelist function is enabled for the standby cluster. Data can be pushed
to clusters only by specifying IP addresses.

2. In the open source version, replication is synchronized based on WAL, and
data backup is implemented by replaying WAL in the standby cluster. For
BulkLoad operations, since no WAL is generated, data will not be replicated to
the standby cluster. By recording BulkLoad operations on the WAL and

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 67

synchronizing them to the standby cluster, the standby cluster can read
BulkLoad operation records through WAL and load HFile in the active cluster
to the standby cluster to implement data backup.

3. In the open source version, HBase filters ACLs. Therefore, ACL information will
not be synchronized to the standby cluster. By adding a filter
(org.apache.hadoop.hbase.replication.SystemTableWALEntryFilterAllowAC
L), ACL information can be synchronized to the standby cluster. You can
configure hbase.replication.filter.sytemWALEntryFilter to enable the filter
and implement ACL synchronization.

4. The standby cluster is read-only for HBase clients that are not deployed on
the standby cluster. Only the internal administrative user of the nodes in the
standby cluster can modify HBase.

HBase MOB
In the actual application scenarios, data in various sizes needs to be stored, for
example, image data and documents. Data whose size is smaller than 10 MB can
be stored in HBase. HBase can yield optimal read-and-write performance for data
whose size is smaller than 100 KB. If the size of data stored in HBase is greater
than 100 KB or even reaches 10 MB and the same number of data files are
inserted, the total data amount is large, causing frequent compaction and split,
high CPU consumption, high disk I/O frequency, and low performance.

MOB data (whose size ranges from 100 KB to 10 MB) is stored in a file system
(for example, HDFS) in HFile format. The expiredMobFileCleaner and Sweeper
tools are used to manage HFiles and save the address and size information about
the HFiles to the store of HBase as values. This significantly decreases the
compaction and split frequency in HBase and improves performance.

As shown in Figure 6-36, MOB indicates mobstore stored on HRegion. Mobstore
stores keys and values. Wherein, a key is the corresponding key in HBase, and a
value is the reference address and data offset stored in the file system. When
reading data, mobstore uses its own scanner to read key-value data objects and
uses the address and data size information in the value to obtain target data from
the file system.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 68

Figure 6-36 MOB data storage principle

HFS
HBase FileStream (HFS) is an independent HBase file storage module. It is used in
MRS upper-layer applications by encapsulating HBase and HDFS interfaces to
provide these upper-layer applications with functions such as file storage, read,
and deletion.

In the Hadoop ecosystem, the HDFS and HBase face tough problems in mass file
storage in some scenarios:

● If a large number of small files are stored in HDFS, the NameNode will be
under great pressure.

● Some large files cannot be directly stored on HBase due to HBase APIs and
internal mechanisms.

HFS is developed for the mixed storage of massive small files and some large files
in Hadoop. Simply speaking, massive small files (smaller than 10 MB) and some
large files (greater than 10 MB) need to be stored in HBase tables.

For such a scenario, HFS provides unified operation APIs similar to HBase function
APIs.

HBase Dual-Read
In the HBase storage scenario, it is difficult to ensure 99.9% query stability due to
GC, network jitter, and bad sectors of disks. The HBase dual-read feature is added
to meet the requirements of low glitches during large-data-volume random read.

The HBase dual-read feature is based on the DR capability of the active and
standby clusters. The probability that the two clusters generate glitches at the
same time is far less than that of one cluster. The dual-cluster concurrent access
mode is used to ensure query stability. When a user initiates a query request, the
HBase service of the two clusters is queried at the same time. If the active cluster
does not return any result after a period of time (the maximum tolerable glitch

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 69

time), the data of the cluster with the fastest response can be used. The following
figure shows the working principle.

Custom Delimiters Supported on Phoenix CsvBulkLoadTool
NO TE

This feature is available in MRS 3.2.0 or later.

Currently, Phoenix's open source CsvBulkLoadTool supports only a single character
as the data delimiter. When a user data file contains any characters, a special
string is used as the delimiter. To meet this requirement, custom delimiters are
supported so you can use any visible characters within the specified length as
delimiters to import data files.

Writing Small Files Generated During WAL File Spliting to the HTTP Archive
(HAR) File

NO TE

This feature is available in MRS 3.2.0 or later.

When a RegionServer is faulty or restarted, HMaster uses ServerCrashProcedure to
restore the services running on the RegionServer. The restoration process involves
splitting WAL files. During WAL file splitting, a large number of small files are
generated, which may cause HDFS performance bottlenecks. As a result, service
restoration takes a long time.

This feature writes small files to the HAR file during WAL file splitting to shorten
the RegionServer restoration duration.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 70

Batch TRSP

HBase 2.x uses HBase Procedure to rewrite the region assignment logic (AMV2).
When each region is opened or closed, a TransitRegionStateProcedure (TRSP) is
associated with it. When services running on a RegionServer need to be restored
due to RegionServer faults or restarts, HMaster creates a TRSP for each region to
be restored. A large number of TRSPs need to persist data to Proc WAL files and
perform an RPC interaction with RegionServer, which may cause HMaster
performance bottlenecks. As a result, the service restoration takes a long time.

This feature attaches regions to TRSPs and uses one TRSP to restore all regions of
a RegionServer. RegionServer batch opens or closes regions and reports all regions
to HMaster at a time.

NO TE

This feature can only restore regions to their original RegionServers. Therefore, the
prerequisite for this optimization to take effect is that the faulty or restarted RegionServer
has been brought online again when HMaster creates a TRSP. This feature is used to
optimize the duration for HBase restart or service fault restoration. If a few RegionServers
are faulty, this feature may not take effect because HMaster had created TRSPs before
RegionServers were brought online again.

This feature is available in MRS 3.2.0 or later.

6.10 HDFS

6.10.1 HDFS Basic Principles
Hadoop Distributed File System (HDFS) implements reliable and distributed read/
write of massive amounts of data. HDFS is applicable to the scenario where data
read/write features "write once and read multiple times". However, the write
operation is performed in sequence, that is, it is a write operation performed
during file creation or an adding operation performed behind the existing file.
HDFS ensures that only one caller can perform write operation on a file but
multiple callers can perform read operation on the file at the same time.

NO TE

To use HDFS, ensure that the Hadoop service has been installed in the MRS cluster.

Architecture

HDFS consists of active and standby NameNodes and multiple DataNodes, as
shown in Figure 6-37.

HDFS works in master/slave architecture. NameNodes run on the master (active)
node, and DataNodes run on the slave (standby) node. ZKFC should run along
with the NameNodes.

The communication between NameNodes and DataNodes is based on
Transmission Control Protocol (TCP)/Internet Protocol (IP). The NameNode,
DataNode, ZKFC, and JournalNode can be deployed on Linux servers.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 71

Figure 6-37 HA HDFS architecture

Table 6-10 describes the functions of each module shown in Figure 6-37.

Table 6-10 Module description

Modu
le

Description

Name
Node

A NameNode is used to manage the namespace, directory structure,
and metadata information of a file system and provide the backup
mechanism. The NameNode is classified into the following two types:
● Active NameNode: manages the namespace, maintains the directory

structure and metadata of file systems, and records the mapping
relationships between data blocks and files to which the data blocks
belong.

● Standby NameNode: synchronizes with the data in the active
NameNode, and takes over services from the active NameNode
when the active NameNode is faulty.

● Observer NameNode: synchronizes with the data in the active
NameNode, and processes read requests from the client.

DataN
ode

A DataNode is used to store data blocks of each file and periodically
report the storage status to the NameNode.

Journa
lNode

In HA cluster, synchronizes metadata between the active and standby
NameNodes.

ZKFC ZKFC must be deployed for each NameNode. It monitors NameNode
status and writes status information to ZooKeeper. ZKFC also has
permissions to select the active NameNode.

ZK
Cluste
r

ZooKeeper is a coordination service which helps the ZKFC to elect the
active NameNode.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 72

Modu
le

Description

HttpF
S
gatew
ay

HttpFS is a single stateless gateway process which provides the
WebHDFS REST API for external processes and FileSystem API for the
HDFS. HttpFS is used for data transmission between different versions
of Hadoop. It is also used as a gateway to access the HDFS behind a
firewall.

● HDFS HA Architecture
HA is used to resolve the SPOF problem of NameNode. This feature provides
a standby NameNode for the active NameNode. When the active NameNode
is faulty, the standby NameNode can quickly take over to continuously
provide services for external systems.
In a typical HDFS HA scenario, there are usually two NameNodes. One is in
the active state, and the other in the standby state.
A shared storage system is required to support metadata synchronization of
the active and standby NameNodes. This version provides Quorum Journal
Manager (QJM) HA solution, as shown in Figure 6-38. A group of
JournalNodes are used to synchronize metadata between the active and
standby NameNodes.
Generally, an odd number (2N+1) of JournalNodes are configured, and at
least three JournalNodes are required. For one metadata update message,
data writing is considered successful as long as data writing is successful on N
+1 JournalNodes. In this case, data writing failure of a maximum of N
JournalNodes is allowed. For example, when there are three JournalNodes,
data writing failure of one JournalNode is allowed; when there are five
JournalNodes, data writing failure of two JournalNodes is allowed.
JournalNode is a lightweight daemon process and shares a host with other
services of Hadoop. It is recommended that the JournalNode be deployed on
the control node to prevent data writing failure on the JournalNode during
massive data transmission.

Figure 6-38 QJM-based HDFS architecture

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 73

Principle

MRS uses the HDFS copy mechanism to ensure data reliability. One backup file is
automatically generated for each file saved in HDFS, that is, two copies are
generated in total. The number of HDFS copies can be queried using the
dfs.replication parameter.

● When the Core node specification of the MRS cluster is set to non-local hard
disk drive (HDD) and the cluster has only one Core node, the default number
of HDFS copies is 1. If the number of Core nodes in the cluster is greater than
or equal to 2, the default number of HDFS copies is 2.

● When the Core node specification of the MRS cluster is set to local disk and
the cluster has only one Core node, the default number of HDFS copies is 1. If
there are two Core nodes in the cluster, the default number of HDFS copies is
2. If the number of Core nodes in the cluster is greater than or equal to 3, the
default number of HDFS copies is 3.

Figure 6-39 HDFS architecture

The HDFS component of MRS supports the following features:

● Supports erasure code, reducing data redundancy to 50% and improving
reliability. In addition, the striped block storage structure is introduced to
maximize the use of the capability of a single node and multiple disks in an
existing cluster. After the coding process is introduced, the data write
performance is improved, and the performance is close to that with the multi-
copy redundancy.

● Supports balanced node scheduling on HDFS and balanced disk scheduling on
a single node, improving HDFS storage performance after node or disk scale-
out.

For details about the Hadoop architecture and principles, see https://
hadoop.apache.org/.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 74

http://hadoop.apache.org/
http://hadoop.apache.org/

6.10.2 HDFS HA Solution

HDFS HA Background
In versions earlier than Hadoop 2.0.0, SPOF occurs in the HDFS cluster. Each
cluster has only one NameNode. If the host where the NameNode is located is
faulty, the HDFS cluster cannot be used unless the NameNode is restarted or
started on another host. This affects the overall availability of HDFS in the
following aspects:

1. In the case of an unplanned event such as host breakdown, the cluster would
be unavailable until the NameNode is restarted.

2. Planned maintenance tasks, such as software and hardware upgrade, will
cause the cluster stop working.

To solve the preceding problems, the HDFS HA solution enables a hot-swap
NameNode backup for NameNodes in a cluster in automatic or manual
(configurable) mode. When a machine fails (due to hardware failure), the active/
standby NameNode switches over automatically in a short time. When the active
NameNode needs to be maintained, the MRS cluster administrator can manually
perform an active/standby NameNode switchover to ensure cluster availability
during maintenance.

For details about HDFS automatic failover, see

http://hadoop.apache.org/docs/r3.1.1/hadoop-project-dist/hadoop-hdfs/
HDFSHighAvailabilityWithQJM.html#Automatic_Failover

HDFS HA Implementation

Figure 6-40 Typical HA deployment

In a typical HA cluster (as shown in Figure 6-40), two NameNodes need to be
configured on two independent servers, respectively. At any time point, one
NameNode is in the active state, and the other NameNode is in the standby state.
The active NameNode is responsible for all client operations in the cluster, while
the standby NameNode maintains synchronization with the active node to provide
fast switchover if necessary.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 75

http://hadoop.apache.org/docs/r3.1.1/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithQJM.html#Automatic_Failover
http://hadoop.apache.org/docs/r3.1.1/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithQJM.html#Automatic_Failover

To keep the data synchronized with each other, both nodes communicate with a
group of JournalNodes. When the active node modifies any file system's metadata,
it will store the modification log to a majority of these JournalNodes. For example,
if there are three JournalNodes, then the log will be saved on two of them at
least. The standby node monitors changes of JournalNodes and synchronizes
changes from the active node. Based on the modification log, the standby node
applies the changes to the metadata of the local file system. Once a switchover
occurs, the standby node can ensure its status is the same as that of the active
node. This ensures that the metadata of the file system is synchronized between
the active and standby nodes if the switchover is incurred by the failure of the
active node.

To ensure fast switchover, the standby node needs to have the latest block
information. Therefore, DataNodes send block information and heartbeat
messages to two NameNodes at the same time.

It is vital for an HA cluster that only one of the NameNodes be active at any time.
Otherwise, the namespace state would split into two parts, risking data loss or
other incorrect results. To prevent the so-called "split-brain scenario", the
JournalNodes will only ever allow a single NameNode to write data to it at a time.
During switchover, the NameNode which is to become active will take over the
role of writing data to JournalNodes. This effectively prevents the other
NameNodes from being in the active state, allowing the new active node to safely
proceed with switchover.

For more information about the HDFS HA solution, visit the following website:

http://hadoop.apache.org/docs/r3.1.1/hadoop-project-dist/hadoop-hdfs/
HDFSHighAvailabilityWithQJM.html

6.10.3 Relationship Between HDFS and Other Components

Relationship Between HDFS and HBase
HDFS is a subproject of Apache Hadoop, which is used as the file storage system
for HBase. HBase is located in the structured storage layer. HDFS provides highly
reliable support for lower-layer storage of HBase. All the data files of HBase can
be stored in the HDFS, except some log files generated by HBase.

Relationship Between HDFS and MapReduce
● HDFS features high fault tolerance and high throughput, and can be deployed

on low-cost hardware for storing data of applications with massive data sets.
● MapReduce is a programming model used for parallel computation of large

data sets (larger than 1 TB). Data computed by MapReduce comes from
multiple data sources, such as Local FileSystem, HDFS, and databases. Most
data comes from the HDFS. The high throughput of HDFS can be used to read
massive data. After being computed, data can be stored in HDFS.

Relationship Between HDFS and Spark
Data computed by Spark comes from multiple data sources, such as local files and
HDFS. Most data comes from HDFS which can read data in large scale for parallel
computing. After being computed, data can be stored in HDFS.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 76

http://hadoop.apache.org/docs/r3.1.1/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithQJM.html
http://hadoop.apache.org/docs/r3.1.1/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithQJM.html

Spark involves Driver and Executor. Driver schedules tasks and Executor runs tasks.

Figure 6-41 shows how data is read from a file.

Figure 6-41 File reading process

The file reading process is as follows:

1. Driver interconnects with HDFS to obtain the information of File A.
2. The HDFS returns the detailed block information about this file.
3. Driver sets a parallel degree based on the block data amount, and creates

multiple tasks to read the blocks of this file.
4. Executor runs the tasks and reads the detailed blocks as part of the Resilient

Distributed Dataset (RDD).

Figure 6-42 shows how data is written to a file.

Figure 6-42 File writing process

The file writing process is as follows:

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 77

1. Driver creates a directory where the file is to be written.
2. Based on the RDD distribution status, the number of tasks related to data

writing is computed, and these tasks are sent to Executor.
3. Executor runs these tasks, and writes the computed RDD data to the directory

created in 1.

Relationship Between HDFS and ZooKeeper
Figure 6-43 shows the relationship between ZooKeeper and HDFS.

Figure 6-43 Relationship between ZooKeeper and HDFS

As the client of a ZooKeeper cluster, ZKFailoverController (ZKFC) monitors the
status of NameNode. ZKFC is deployed only in the node where NameNode resides,
and in both the active and standby HDFS NameNodes.

1. The ZKFC connects to ZooKeeper and saves information such as host names
to ZooKeeper under the znode directory /hadoop-ha. NameNode that creates
the directory first is considered as the active node, and the other is the
standby node. NameNodes read the NameNode information periodically
through ZooKeeper.

2. When the process of the active node ends abnormally, the standby
NameNode detects changes in the /hadoop-ha directory through ZooKeeper,
and then takes over the service of the active NameNode.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 78

6.10.4 HDFS Enhanced Open Source Features

Enhanced Open Source Feature: File Block Colocation
In the offline data summary and statistics scenario, Join is a frequently used
computing function, and is implemented in MapReduce as follows:

1. The Map task processes the records in the two table files into Join Key and
Value, performs hash partitioning by Join Key, and sends the data to different
Reduce tasks for processing.

2. Reduce tasks read data in the left table recursively in the nested loop mode
and traverse each line of the right table. If join key values are identical, join
results are output.
The preceding method sharply reduces the performance of the join
calculation. Because a large amount of network data transfer is required
when the data stored in different nodes is sent from MAP to Reduce, as
shown in Figure 6-44.

Figure 6-44 Data transmission in the non-colocation scenario

Data tables are stored in physical file system by HDFS block. Therefore, if two to-
be-joined blocks are put into the same host accordingly after they are partitioned
by join key, you can obtain the results directly from Map join in the local node
without any data transfer in the Reduce process of the join calculation. This will
greatly improve the performance.

With the identical distribution feature of HDFS data, a same distribution ID is
allocated to files, FileA and FileB, on which association and summation
calculations need to be performed. In this way, all the blocks are distributed
together, and calculation can be performed without retrieving data across nodes,
which greatly improves the MapReduce join performance.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 79

Figure 6-45 Data block distribution in colocation and non-colocation scenarios

Enhanced Open Source Feature: Damaged Hard Disk Volume Configuration

In the open source version, if multiple data storage volumes are configured for a
DataNode, the DataNode stops providing services by default if one of the volumes
is damaged. If the configuration item dfs.datanode.failed.volumes.tolerated is
set to specify the number of damaged volumes that are allowed, DataNode
continues to provide services when the number of damaged volumes does not
exceed the threshold.

The value of dfs.datanode.failed.volumes.tolerated ranges from -1 to the
number of disk volumes configured on the DataNode. The default value is -1, as
shown in Figure 6-46.

Figure 6-46 Item being set to 0

For example, three data storage volumes are mounted to a DataNode, and
dfs.datanode.failed.volumes.tolerated is set to 1. In this case, if one data storage
volume of the DataNode is unavailable, this DataNode can still provide services, as
shown in Figure 6-47.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 80

Figure 6-47 Item being set to 1

This native configuration item has some defects. When the number of data
storage volumes in each DataNode is inconsistent, you need to configure each
DataNode independently instead of generating the unified configuration file for all
nodes.

Assume that there are three DataNodes in a cluster. The first node has three data
directories, the second node has four, and the third node has five. If you want to
ensure that DataNode services are available when only one data directory is
available, you need to perform the configuration as shown in Figure 6-48.

Figure 6-48 Attribute configuration before being enhanced

In self-developed enhanced HDFS, this configuration item is enhanced, with a
value -1 added. When this configuration item is set to -1, all DataNodes can
provide services as long as one data storage volume in all DataNodes is available.

To resolve the problem in the preceding example, set this configuration to -1, as
shown in Figure 6-49.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 81

Figure 6-49 Attribute configuration after being enhanced

Enhanced Open Source Feature: HDFS Startup Acceleration
In HDFS, when NameNodes start, the metadata file FsImage needs to be loaded.
Then, DataNodes will report the data block information after the DataNodes
startup. When the data block information reported by DataNodes reaches the
preset percentage, NameNodes exits safe mode to complete the startup process. If
the number of files stored on the HDFS reaches the million or billion level, the two
processes are time-consuming and will lead to a long startup time of the
NameNode. Therefore, this version optimizes the process of loading metadata file
FsImage.

In the open source HDFS, FsImage stores all types of metadata information. Each
type of metadata information (such as file metadata information and folder
metadata information) is stored in a section block, respectively. These section
blocks are loaded in serial mode during startup. If a large number of files and
folders are stored on the HDFS, loading of the two sections is time-consuming,
prolonging the HDFS startup time. HDFS NameNode divides each type of
metadata by segments and stores the data in multiple sections when generating
the FsImage files. When the NameNodes start, sections are loaded in parallel
mode. This accelerates the HDFS startup.

Enhanced Open Source Feature: Label-based Block Placement Policies (HDFS
Nodelabel)

You need to configure the nodes for storing HDFS file data blocks based on data
features. You can configure a label expression to an HDFS directory or file and
assign one or more labels to a DataNode so that file data blocks can be stored on
specified DataNodes. If the label-based data block placement policy is used for
selecting DataNodes to store the specified files, the DataNode range is specified
based on the label expression. Then proper nodes are selected from the specified
range.

● You can store the replicas of data blocks to the nodes with different labels
accordingly. For example, store two replicas of the data block to the node
labeled with L1, and store other replicas of the data block to the nodes
labeled with L2.

● You can set the policy in case of block placement failure, for example, select a
node from all nodes randomly.

Figure 6-50 gives an example:

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 82

● Data in /HBase is stored in A, B, and D.
● Data in /Spark is stored in A, B, D, E, and F.
● Data in /user is stored in C, D, and F.
● Data in /user/shl is stored in A, E, and F.

Figure 6-50 Example of label-based block placement policy

Enhanced Open Source Feature: HDFS Load Balance
The current read and write policies of HDFS are mainly for local optimization
without considering the actual load of nodes or disks. Based on I/O loads of
different nodes, the load balance of HDFS ensures that when read and write
operations are performed on the HDFS client, the node with low I/O load is
selected to perform such operations to balance I/O load and fully utilize the
overall throughput of the cluster.

If HDFS Load Balance is enabled during file writing, the NameNode selects a
DataNode (in the order of local node, local rack, and remote rack). If the I/O load
of the selected node is heavy, the NameNode will choose another DataNode with
lighter load.

If HDFS Load Balance is enabled during file reading, an HDFS client sends a
request to the NameNode to provide the list of DataNodes that store the block to
be read. The NameNode returns a list of DataNodes sorted by distance in the
network topology. With the HDFS Load Balance feature, the DataNodes on the list

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 83

are also sorted by their I/O load. The DataNodes with heavy load are at the
bottom of the list.

Enhanced Open Source Feature: HDFS Auto Data Movement
Hadoop has been used for batch processing of immense data in a long time. The
existing HDFS model is used to fit the needs of batch processing applications very
well because such applications focus more on throughput than delay.

However, as Hadoop is increasingly used for upper-layer applications that demand
frequent random I/O access such as Hive and HBase, low latency disks such as
solid state disk (SSD) are favored in delay-sensitive scenarios. To cater to the
trend, HDFS supports a variety of storage types. Users can choose a storage type
according to their needs.

Storage policies vary depending on how frequently data is used. For example, if
data that is frequently accessed in the HDFS is marked as ALL_SSD or HOT, the
data that is accessed several times may be marked as WARM, and data that is
rarely accessed (only once or twice access) can be marked as COLD. You can
select different data storage policies based on the data access frequency.

However, low latency disks are far more expensive than spinning disks. Data
typically sees heavy initial usage with decline in usage over a period of time.
Therefore, it can be useful if data that is no longer used is moved out from
expensive disks to cheaper ones storage media.

A typical example is storage of detail records. New detail records are imported
into SSD because they are frequently queried by upper-layer applications. As
access frequency to these detail records declines, they are moved to cheaper
storage.

Before automatic data movement is achieved, you have to manually determine by
service type whether data is frequently used, manually set a data storage policy,
and manually trigger the HDFS Auto Data Movement Tool, as shown in the figure
below.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 84

If aged data can be automatically identified and moved to cheaper storage (such
as disk/archive), you will see significant cost cuts and data management efficiency
improvement.

The HDFS Auto Data Movement Tool is at the core of HDFS Auto Data Movement.
It automatically sets a storage policy depending on how frequently data is used.
Specifically, functions of the HDFS Auto Data Movement Tool can:
● Mark a data storage policy as All_SSD, One_SSD, Hot, Warm, Cold, or

FROZEN according to age, access time, and manual data movement rules.
● Define rules for distinguishing cold and hot data based on the data age,

access time, and manual migration rules.
● Define the action to be taken if age-based rules are met.

MARK: the action for identifying whether data is frequently or rarely used
based on the age rules and setting a data storage policy. MOVE: the action
for invoking the HDFS Auto Data Movement Tool and moving data based on
the age rules to identify whether data is frequently or rarely used after you
have determined the corresponding storage policy.
– MARK: identifies whether data is frequently or rarely used and sets the

data storage policy.
– MOVE: the action for invoking the HDFS Auto Data Movement Tool and

moving data across tiers.
– SET_REPL: the action for setting new replica quantity for a file.
– MOVE_TO_FOLDER: the action for moving files to a target folder.
– DELETE: the action for deleting a file or directory.
– SET_NODE_LABEL: the action for setting node labels of a file.

With the HDFS Auto Data Movement feature, you only need to define age based
on access time rules. HDFS Auto Data Movement Tool matches data according to
age-based rules, sets storage policies, and moves data. In this way, data
management efficiency and cluster resource efficiency are improved.

6.11 HetuEngine

6.11.1 HetuEngine Product Overview
This section applies only to MRS 3.1.2-LTS.3.

HetuEngine Description
HetuEngine is an in-house high-performance, interactive SQL analysis and data
virtualization engine. It seamlessly integrates with the big data ecosystem to
implement interactive query of massive amounts of data within seconds, and
supports cross-source and cross-domain unified data access to enable one-stop
SQL convergence analysis in the data lake, between lakes, and between
lakehouses.

HetuEngine Architecture
HetuEngine consists of different modules. Figure 6-51 shows the architecture.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 85

Figure 6-51 HetuEngine architecture

Table 6-11 Module description

Mo
dul
e

Concept Description

Clo
ud
ser
vice
lay
er

HetuEngine CLI/
JDBC

HetuEngine client, through which the query request is
submitted and the results is returned and displayed.

HSBroker Service management component of HetuEngine. It
manages and verifies compute instances, monitors
health status, and performs automatic maintenance.

HSConsole Provides visualized operation GUIs and RESTful APIs
for data source information management, compute
instance management, and automatic task query.

HSFabric Provides high-performance and secure data transfer
across domains (data centers).

Eng
ine
lay
er

Coordinator Management node of HetuEngine compute instances.
It receives and parses SQL statements, generates and
optimizes execution plans, assigns tasks, and schedules
resources.

Worker Work node of HetuEngine compute instances. It
provides capabilities such as parallel data pulling from
data sources and distributed SQL computing.

HetuEngine Application Scenarios
HetuEngine supports cross-source (multiple data sources, such as Hive, HBase,
GaussDB(DWS), and ClickHouse) and cross-domain (multiple regions or data

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 86

centers) quick joint query, especially for interactive quick query of Hive and Hudi
data in the Hadoop cluster (MRS).

Using the HetuEngine Cross-Source Function
Enterprises usually store massive data, such as from various databases and
warehouses, for management and information collection. However, diversified
data sources, hybrid dataset structures, and scattered data storage rise the
development cost for cross-source query and prolong the cross-source query
duration.

HetuEngine provides unified standard SQL statements to implement cross-source
collaborative analysis, simplifying cross-source analysis operations.

Figure 6-52 HetuEngine cross-source function

Using the HetuEngine Cross-Domain Function
HetuEngine provide unified standard SQL to implement efficient access to multiple
data sources distributed in multiple regions (or data centers), shields data
differences in the structure, storage, and region, and decouples data and
applications.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 87

Figure 6-53 HetuEngine cross-region functions

6.11.2 Relationships Between HetuEngine and Other
Components

The HetuEngine installation depends on the MRS cluster. Table 6-12 lists the
components on which the HetuServer installation depends.

Table 6-12 Components on which HetuEngine depends

Name Description

HDFS Hadoop Distributed File System, supporting high-
throughput data access and suitable for applications
with large-scale data sets.

Hive Open-source data warehouse built on Hadoop. It stores
structured data and implements basic data analysis
using the Hive Query Language (HQL), a SQL-like
language.

ZooKeeper Enables highly reliable distributed coordination. It helps
prevent single point of failures (SPOFs) and provides
reliable services for applications.

KrbServer Key management center that distributes bills.

Yarn Resource management system, which is a general
resource module that manages and schedules resources
for various applications.

DBService DBService is a high-availability relational database
storage system that provides metadata backup and
restoration functions.

6.12 Hive

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 88

6.12.1 Hive Basic Principles
Hive is a data warehouse infrastructure built on top of Hadoop. It provides a series
of tools that can be used to extract, transform, and load (ETL) data. Hive is a
mechanism that can store, query, and analyze mass data stored on Hadoop. Hive
defines simple SQL-like query language, which is known as HiveQL. It allows a
user familiar with SQL to query data. Hive data computing depends on
MapReduce, Spark, and Tez.

The new execution engine Tez is used to replace the original MapReduce,
significantly improving performance. Tez can convert multiple dependent jobs into
one job, so only once HDFS write is required and fewer transit nodes are needed,
greatly improving the performance of DAG jobs.

Hive provides the following functions:

● Analyzes massive structured data and summarizes analysis results.
● Allows complex MapReduce jobs to be compiled in SQL languages.
● Supports flexible data storage formats, including JavaScript object notation

(JSON), comma separated values (CSV), TextFile, RCFile, SequenceFile, and
ORC (Optimized Row Columnar).

Hive system structure:

● User interface: Three user interfaces are available, that is, CLI, Client, and
WUI. CLI is the most frequently-used user interface. A Hive transcript is
started when CLI is started. Client refers to a Hive client, and a client user
connects to the Hive Server. When entering the client mode, you need to
specify the node where the Hive Server resides and start the Hive Server on
this node. The web UI is used to access Hive through a browser. MRS can
access Hive only in client mode. For details, see Using Hive from Scratch. For
details about how to develop Hive applications, see Hive Application
Development.

● Metadata storage: Hive stores metadata into databases, for example, MySQL
and Derby. Metadata in Hive includes a table name, table columns and
partitions and their properties, table properties (indicating whether a table is
an external table), and the directory where table data is stored.

Hive Framework
Hive is a single-instance service process that provides services by translating HQL
into related MapReduce jobs or HDFS operations. Figure 6-54 shows how Hive is
connected to other components.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 89

https://support.huaweicloud.com/intl/en-us/cmpntguide-mrs/mrs_01_0442.html
https://support.huaweicloud.com/intl/en-us/devg-mrs/mrs_06_0053.html
https://support.huaweicloud.com/intl/en-us/devg-mrs/mrs_06_0053.html

Figure 6-54 Hive framework

Table 6-13 Module description

Module Description

HiveServer Multiple HiveServers can be deployed in a cluster to share loads.
HiveServer provides Hive database services externally, translates
HQL statements into related YARN tasks or HDFS operations to
complete data extraction, conversion, and analysis.

MetaStore ● Multiple MetaStores can be deployed in a cluster to share
loads. MetaStore provides Hive metadata services as well as
reads, writes, maintains, and modifies the structure and
properties of Hive tables.

● MetaStore provides Thrift APIs for HiveServer, Spark,
WebHCat, and other MetaStore clients to access and operate
metadata.

WebHCat Multiple WebHCats can be deployed in a cluster to share loads.
WebHCat provides REST APIs and runs the Hive commands
through the REST APIs to submit MapReduce jobs.

Hive client Hive client includes the human-machine command-line interface
(CLI) Beeline, JDBC drive for JDBC applications, Python driver for
Python applications, and HCatalog JAR files for MapReduce.

ZooKeeper
cluster

As a temporary node, ZooKeeper records the IP address list of
each HiveServer instance. The client driver connects to
ZooKeeper to obtain the list and selects corresponding
HiveServer instances based on the routing mechanism.

HDFS/HBase
cluster

The HDFS cluster stores the Hive table data.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 90

Module Description

MapReduce/
YARN
cluster

Provides distributed computing services. Most Hive data
operations rely on MapReduce. The main function of HiveServer
is to translate HQL statements into MapReduce jobs to process
massive data.

HCatalog is built on Hive Metastore and incorporates the DDL capability of Hive.
HCatalog is also a Hadoop-based table and storage management layer that
enables convenient data read/write on tables of HDFS using different data
processing tools such as MapReduce. HCatalog also provides read/write APIs for
these tools and uses a Hive CLI to publish commands for defining data and
querying metadata. After encapsulating these commands, WebHCat Server can
provide RESTful APIs, as shown in Figure 6-55.

Figure 6-55 WebHCat logical architecture

Principles

Hive functions as a data warehouse based on HDFS and MapReduce architecture
and translates HQL statements into MapReduce jobs or HDFS operations. For
details about Hive and HQL, see HiveQL Language Manual.

Figure 6-56 shows the Hive structure.

● Metastore: reads, writes, and updates metadata such as tables, columns, and
partitions. Its lower layer is relational databases.

● Driver: manages the lifecycle of HiveQL execution and participates in the
entire Hive job execution.

● Compiler: translates HQL statements into a series of interdependent Map or
Reduce jobs.

● Optimizer: is classified into logical optimizer and physical optimizer to
optimize HQL execution plans and MapReduce jobs, respectively.

● Executor: runs Map or Reduce jobs based on job dependencies.

● ThriftServer: functions as the servers of JDBC, provides Thrift APIs, and
integrates with Hive and other applications.

● Clients: include the WebUI and JDBC APIs and provides APIs for user access.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 91

https://cwiki.apache.org/confluence/display/Hive/LanguageManual

Figure 6-56 Hive framework

6.12.2 Hive CBO Principles

Hive CBO Principles
CBO is short for Cost-Based Optimization.

It will optimize the following:

During compilation, the CBO calculates the most efficient join sequence based on
tables and query conditions involved in query statements to reduce time and
resources required for query.

In Hive, the CBO is implemented as follows:

Hive uses open-source component Apache Calcite to implement the CBO. SQL
statements are first converted into Hive Abstract Syntax Trees (ASTs) and then
into RelNodes that can be identified by Calcite. After Calcite adjusts the join
sequence in RelNodes, RelNodes are converted into ASTs by Hive to continue the
logical and physical optimization. Figure 6-57 shows the working flow.

Figure 6-57 CBO Implementation process

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 92

Calcite adjusts the join sequence as follows:

1. A table is selected as the first table from the tables to be joined.
2. The second and third tables are selected based on the cost. In this way,

multiple different execution plans are obtained.
3. A plan with the minimum costs is calculated and serves as the final sequence.

The cost calculation method is as follows:

In the current version, costs are measured based on the number of data entries
after joining. Fewer data entries mean less cost. The number of joined data entries
depends on the selection rate of joined tables. The number of data entries in a
table is obtained based on the table-level statistics.

The number of data entries in a table after filtering is estimated based on the
column-level statistics, including the maximum values (max), minimum values
(min), and Number of Distinct Values (NDV).

For example, there is a table table_a whose total number of data records is
1,000,000 and NDV is 50. The query conditions are as follows:

Select * from table_a where colum_a='value1';

The estimated number of queried data entries is: 1,000,000 x 1/50 = 20,000. The
selection rate is 2%.

The following takes the TPC-DS Q3 as an example to describe how the CBO
adjusts the join sequence:

select
 dt.d_year,
 item.i_brand_id brand_id,
 item.i_brand brand,
 sum(ss_ext_sales_price) sum_agg
from
 date_dim dt,
 store_sales,
 item
where
 dt.d_date_sk = store_sales.ss_sold_date_sk
 and store_sales.ss_item_sk = item.i_item_sk
 and item.i_manufact_id = 436
 and dt.d_moy = 12
group by dt.d_year , item.i_brand , item.i_brand_id
order by dt.d_year , sum_agg desc , brand_id
limit 10;

Statement explanation: This statement indicates that inner join is performed for
three tables: table store_sales is a fact table with about 2,900,000,000 data
entries, table date_dim is a dimension table with about 73,000 data entries, and
table item is a dimension table with about 18,000 data entries. Each table has
filtering conditions. Figure 6-58 shows the join relationship.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 93

Figure 6-58 Join relationship

The CBO must first select the tables that bring better filtering effect for joining.

By analyzing min, max, NDV, and the number of data entries, the CBO estimates
the selection rates of different dimension tables, as shown in Table 6-14.

Table 6-14 Data filtering

Table Number of
Original Data
Entries

Number of Data
Entries After
Filtering

Selection Rate

date_dim 73,000 6,200 8.5%

item 18,000 19 0.1%

The selection rate can be estimated as follows: Selection rate = Number of data
entries after filtering/Number of original data entries

As shown in the preceding table, the item table has a better filtering effect.
Therefore, the CBO joins the item table first before joining the date_dim table.

Figure 6-59 shows the join process when the CBO is disabled.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 94

Figure 6-59 Join process when the CBO is disabled

Figure 6-60 shows the join process when the CBO is enabled.

Figure 6-60 Join process when the CBO is enabled

After the CBO is enabled, the number of intermediate data entries is reduced from
495,000,000 to 2,900,000 and thus the execution time can be remarkably reduced.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 95

6.12.3 Relationships Between Hive and Other Components

HDFS
Hive is a sub-project of Apache Hadoop, which uses HDFS as the file storage
system. It parses and processes structured data with highly reliable underlying
storage supported by HDFS. All data files in the Hive database are stored in HDFS,
and all data operations on Hive are also performed using HDFS APIs.

MapReduce
Hive data computing depends on MapReduce. MapReduce is also a sub-project of
Apache Hadoop and is a parallel computing framework based on HDFS. During
data analysis, Hive parses HQL statements submitted by users into MapReduce
tasks and submits the tasks for MapReduce to execute.

Tez
Tez, an open-source project of Apache, is a distributed computing framework that
supports directed acyclic graphs (DAGs). When Hive uses the Tez engine to
analyze data, it parses HQL statements submitted by users into Tez tasks and
submits the tasks to Tez for execution.

DBService
MetaStore (metadata service) of Hive processes the structure and attribute
information of Hive metadata, such as Hive databases, tables, and partitions. The
information needs to be stored in a relational database and is managed and
processed by MetaStore. In the product, the metadata of Hive is stored and
maintained by the DBService component, and the metadata service is provided by
the Metadata component.

Spark
Spark can be used as the execution engine of Hive. Hive SQL statements delivered
by the client are processed at the logical layer on Hive, and physical execution
plans are generated and converted into a directed acyclic graph (DAG) of a
resilient distributed dataset (RDD), and then submitted to a Spark cluster as a
task. This way, Hive query efficiency is improved thanks to the distributed memory
computing capability of Spark.

6.12.4 Enhanced Open Source Feature

Enhanced Open Source Feature: HDFS Colocation
HDFS Colocation is the data location control function provided by HDFS. The
HDFS Colocation API stores associated data or data on which associated
operations are performed on the same storage node.

Hive supports HDFS Colocation. When Hive tables are created, after the locator
information is set for table files, the data files of related tables are stored on the
same storage node. This ensures convenient and efficient data computing among
associated tables.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 96

Enhanced Open Source Feature: Column Encryption
Hive supports encryption of one or more columns. The columns to be encrypted
and the encryption algorithm can be specified when a Hive table is created. When
data is inserted into the table using the INSERT statement, the related columns
are encrypted. The Hive column encryption does not support views and the Hive
over HBase scenario.

The Hive column encryption mechanism supports two encryption algorithms that
can be selected to meet site requirements during table creation:

● AES (the encryption class is org.apache.hadoop.hive.serde2.AESRewriter)
● SMS4 (the encryption class is

org.apache.hadoop.hive.serde2.SMS4Rewriter)

Enhanced Open Source Feature: HBase Deletion
Due to the limitations of underlying storage systems, Hive does not support the
ability to delete a single piece of table data. In Hive on HBase, Hive in the MRS
solution supports the ability to delete a single piece of HBase table data. Using a
specific syntax, Hive can delete one or more pieces of data from an HBase table.

Enhanced Open Source Feature: Row Delimiter
In most cases, a carriage return character is used as the row delimiter in Hive
tables stored in text files, that is, the carriage return character is used as the
terminator of a row during queries.

However, some data files are delimited by special characters, and not a carriage
return character.

MRS Hive allows you to specify different characters or character combinations as
row delimiters for Hive data in text files.

Enhanced Open Source Feature: HTTPS/HTTP-based REST API Switchover
WebHCat provides external REST APIs for Hive. By default, the open source
community version uses the HTTP protocol.

MRS Hive supports the HTTPS protocol that is more secure, and enables
switchover between the HTTP protocol and the HTTPS protocol.

Enhanced Open Source Feature: Transform Function
The Transform function is not allowed by Hive of the open source version. MRS
Hive supports the configuration of the Transform function. The function is disabled
by default, which is the same as that of the open source community version.

Users can modify configurations of the Transform function to enable the function.
However, security risks exist when the Transform function is enabled.

Enhanced Open Source Feature: Temporary Function Creation Without
ADMIN Permission

You must have ADMIN permission when creating temporary functions on Hive of
the open source community version. MRS Hive supports the configuration of the

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 97

function for creating temporary functions with ADMIN permission. The function is
disabled by default, which is the same as that of the open-source community
version.

You can modify configurations of this function. After the function is enabled, you
can create temporary functions without ADMIN permission.

Enhanced Open Source Feature: Database Authorization
In the Hive open source community version, only the database owner can create
tables in the database. You can be granted with the CREATE and SELECT
permissions on tables by MRS Hive in a database. After you are granted with the
permission to query data in the database, the system automatically associates the
query permission on all tables in the database.

Enhanced Open Source Feature: Column Authorization
The Hive open source community version supports only table-level permission
control. MRS Hive supports column-level permission control. You can be granted
with column-level permissions, such as SELECT, INSERT, and UPDATE.

6.13 Hudi
Hudi is a data lake table format that provides the ability to update and delete
data as well as consume new data on HDFS. It supports multiple compute engines
and provides insert, update, and delete (IUD) interfaces and streaming primitives,
including upsert and incremental pull, over datasets on HDFS.

NO TE

To use Hudi, ensure that the Spark2x service has been installed in the MRS cluster.

Figure 6-61 Basic architecture of Hudi

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 98

Feature
● The ACID transaction capability supports real-time data import to the lake

and batch data import to the data lake.

● Multiple view capabilities (read-optimized view/incremental view/real-time
view) enable quick data analysis.

● Multi-version concurrency control (MVCC) design supports data version
backtracking.

● Automatic management of file sizes and layouts optimizes query performance
and provides quasi-real-time data for queries.

● Concurrent read and write are supported. Data can be read when being
written based on snapshot isolation.

● Bootstrapping is supported to convert existing tables into Hudi datasets.

Key Technologies and Advantages
● Pluggable index mechanism: Hudi provides multiple index mechanisms to

quickly update and delete massive data.

● Ecosystem support: Hudi supports multiple data engines, including Hive,
Spark, HetuEngine, and Flink.

Two Types of Tables Supported by Hudi
● Copy On Write

Copy-on-write tables are also called COW tables. Parquet files are used to
store data, and internal update operations need to be performed by rewriting
the original Parquet files.

– Advantage: It is efficient because only one data file in the corresponding
partition needs to be read.

– Disadvantage: During data write, a previous copy needs to be copied and
then a new data file is generated based on the previous copy. This
process is time-consuming. Therefore, the data read by the read request
lags behind.

● Merge On Read

Merge-on-read tables are also called MOR tables. The combination of
columnar-based Parquet and row-based format Avro is used to store data.
Parquet files are used to store base data, and Avro files (also called log files)
are used to store incremental data.

– Advantage: Data is written to the delta log first, and the delta log size is
small. Therefore, the write cost is low.

– Disadvantage: Files need to be compacted periodically. Otherwise, there
are a large number of fragment files. The read performance is poor
because delta logs and old data files need to be merged.

Hudi Supporting Three Types Of Views for Read Capabilities in Different
Scenarios

● Snapshot View

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 99

Provides the latest snapshot data of the current Hudi table. That is, once the
latest data is written to the Hudi table, the newly written data can be queried
through this view.
Both COW and MOR tables support this view capability.

● Incremental View
Provides the incremental query capability. The incremental data after a
specified commit can be queried. This view can be used to quickly pull
incremental data.
COW tables support this view capability. MOR tables also support this view
capability, but the incremental view capability disappears once the compact
operation is performed.

● Read Optimized View
Provides only the data stored in the latest Parquet file.
This view is different for COW and MOR tables.
For COW tables, the view capability is the same as the real-time view
capability. (COW tables use only Parquet files to store data.)
For MOR tables, only base files are accessed, and the data in the given file
slices since the last compact operation is provided. It can be simply
understood that this view provides only the data stored in Parquet files of
MOR tables, and the data in log files is ignored. The data provided by this
view may not be the latest. However, once the compact operation is
performed on MOR tables, the incremental log data is merged into the base
data. In this case, this view has the same capability as the real-time view.

6.14 Hue

6.14.1 Hue Basic Principles
Hue is a group of web applications that interact with MRS big data components. It
helps you browse HDFS, perform Hive query, and start MapReduce jobs. Hue bears
applications that interact with all MRS big data components.

Hue provides the file browser and query editor functions:

● File browser allows you to directly browse and operate different HDFS
directories on the GUI.

● Query editor can write simple SQL statements to query data stored on
Hadoop, for example, HDFS, HBase, and Hive. With the query editor, you can
easily create, manage, and execute SQL statements and download the
execution results as an Excel file.

On the WebUI provided by Hue, you can perform the following operations on the
components:

● HDFS:
– View, create, manage, rename, move, and delete files or directories.
– File upload and download
– Search for files, directories, file owners, and user groups; change the

owners and permissions of the files and directories.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 100

– Manually configure HDFS directory storage policies and dynamic storage
policies.

● Hive:

– Edit and execute SQL/HQL statements. Save, copy, and edit the SQL/HQL
template. Explain SQL/HQL statements. Save the SQL/HQL statement
and query it.

– Database presentation and data table presentation

– Supporting different types of Hadoop storage

– Use MetaStore to add, delete, modify, and query databases, tables, and
views.

NO TE

If Internet Explorer is used to access the Hue page to execute HiveSQL statements,
the execution fails, because the browser has functional problems. You are advised to
use a compatible browser, for example, Google Chrome.

● Impala:

– Edit and execute SQL/HQL statements. Save, copy, and edit the SQL/HQL
template. Explain SQL/HQL statements. Save the SQL/HQL statement
and query it.

– Database presentation and data table presentation

– Supporting different types of Hadoop storage

– Use MetaStore to add, delete, modify, and query databases, tables, and
views.

NO TE

If Internet Explorer is used to access the Hue page to execute HiveSQL statements,
the execution fails, because the browser has functional problems. You are advised to
use a compatible browser, for example, Google Chrome.

● MapReduce: Check MapReduce tasks that are being executed or have been
finished in the clusters, including their status, start and end time, and run
logs.

● Oozie: Hue provides the Oozie job manager function, in this case, you can use
Oozie in GUI mode.

● ZooKeeper: Hue provides the ZooKeeper browser function for you to use
ZooKeeper in GUI mode.

For details about Hue, visit https://gethue.com/.

Architecture

Hue, adopting the MTV (Model-Template-View) design, is a web application
program running on Django Python. (Django Python is a web application
framework that uses open source codes.)

Hue consists of Supervisor Process and WebServer. Supervisor Process is the core
Hue process that manages application processes. Supervisor Process and
WebServer interact with applications on WebServer through Thrift/REST APIs, as
shown in Figure 6-62.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 101

http://gethue.com/

Figure 6-62 Hue architecture

Table 6-15 describes the components shown in Figure 6-62.

Table 6-15 Architecture description

Connection
Name

Description

Supervisor
Process

Manages processes of WebServer applications, such as
starting, stopping, and monitoring the processes.

Hue WebServer Provides the following functions through the Django Python
web framework:
● Deploys applications.
● Provides the GUI.
● Connects to databases to store persistent data of

applications.

6.14.2 Relationships Between Hue and Other Components

Relationship Between Hue and Hadoop Clusters
Figure 6-63 shows how Hue interacts with Hadoop clusters.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 102

Figure 6-63 Hue and Hadoop clusters

Table 6-16 Relationships between Hue and other components

Connection
Name

Description

HDFS HDFS provides REST APIs to interact with Hue to query and
operate HDFS files.
Hue packages a user request into interface data, sends the
request to HDFS through REST APIs, and displays execution
results on the web UI.

Hive Hive provides Thrift interfaces to interact with Hue, execute
Hive SQL statements, and query table metadata.
If you edit HQL statements on the Hue web UI, then, Hue
submits the HQL statements to the Hive server through the
Thrift APIs and displays execution results on the web UI.

YARN/
MapReduce

MapReduce provides REST APIs to interact with Hue and
query YARN job information.
If you go to the Hue web UI, enter the filter parameters, the
UI sends the parameters to the background, and Hue
invokes the REST APIs provided by MapReduce (MR1/MR2-
YARN) to obtain information such as the status of the task
running, the start/end time, the run log, and more.

Oozie Oozie provides REST APIs to interact with Hue, create
workflows, coordinators, and bundles, and manage and
monitor tasks.
A graphical workflow, coordinator, and bundle editor are
provided on the Hue web UI. Hue invokes the REST APIs of
Oozie to create, modify, delete, submit, and monitor
workflows, coordinators, and bundles.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 103

Connection
Name

Description

ZooKeeper ZooKeeper provides REST APIs to interact with Hue and
query ZooKeeper node information.
ZooKeeper node information is displayed in the Hue web UI.
Hue invokes the REST APIs of ZooKeeper to obtain the node
information.

Impala Impala provides Hue Beeswax APIs to interact with Hue,
execute Hive SQL statements, and query table metadata.
If you edit HQL statements on the Hue web UI, then, Hue
submits the HQL statements to the Hive server through the
Hue Beeswax APIs and displays execution results on the
web UI.

6.14.3 Hue Enhanced Open Source Features

Hue Enhanced Open Source Features
● Storage policy: The number of HDFS file copies varies depending on the

storage media. This feature allows you to manually set an HDFS directory
storage policy or can automatically adjust the file storage policy, modify the
number of file copies, move the file directory, and delete files based on the
latest access time and modification time of HDFS files to fully utilize storage
capacity and improve storage performance.

● MR engine: You can use the MapReduce engine to execute Hive SQL
statements.

● Reliability enhancement: Hue is deployed in active/standby mode. When
interconnecting with HDFS, Oozie, Hive, and YARN, Hue can work in failover
or load balancing mode.

6.15 Impala

Impala
Impala provides fast, interactive SQL queries directly on your Apache Hadoop data
stored in HDFS, HBase, or the Object Storage Service (OBS). In addition to using
the same unified storage platform, Impala also uses the same metadata, SQL
syntax (Hive SQL), ODBC driver, and user interface (Impala query UI in Hue) as
Apache Hive. This provides a familiar and unified platform for real-time or batch-
oriented queries. Impala is an addition to tools available for querying big data.
Impala does not replace the batch processing frameworks built on MapReduce
such as Hive. Hive and other frameworks built on MapReduce are best suited for
long running batch jobs.

Impala provides the following features:

● Most common SQL-92 features of Hive Query Language (HiveQL) including
SELECT, JOIN, and aggregate functions

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 104

● HDFS, HBase, and OBS storage, including:
– HDFS file formats: delimited text files, Parquet, Avro, SequenceFile, and

RCFile
– Compression codecs: Snappy, GZIP, Deflate, BZIP

● Common data access interfaces including:
– JDBC driver
– ODBC driver
– Hue Beeswax and the Impala query UI

● impala-shell command line interface
● Kerberos authentication

Impala applies to offline analysis (such as log and cluster status analysis) of real-
time data queries, large-scale data mining (such as user behavior analysis, interest
region analysis, and region display), and other scenarios.

For details about Impala, visit https://impala.apache.org/impala-docs.html.

Impala consists of three roles: Impala Daemon (Impalad), Impala StateStore, and
Impala Catalog Service.

Impala Daemon
The core Impala component is the Impala daemon, physically represented by the
impalad process.

A few of the key functions that an Impala daemon performs are:

● Runs on all data nodes.
● Reads and writes to data files.
● Accepts queries transmitted from the impala-shell command, Hue, JDBC, or

ODBC.
● Parallelizes the queries and transmits intermediate query results back to the

central coordinator.
● Invokes a node to return the query results to the client.

The Impala daemons are in constant communication with StateStore, to confirm
which daemons are healthy and can accept new work.

Impala StateStore
The Impala component known as the StateStore checks on the health of all
Impala daemons in a cluster, and continuously relays its findings to each of those
daemons. It is physically represented by a daemon process named statestored.
You only need such a process on one host in a cluster. If an Impala daemon goes
offline due to hardware failure, network error, software issue, or other reason, the
StateStore informs all the other Impala daemons so that future queries can avoid
making requests to the unreachable Impala daemon.

Impala Catalog Service
The Impala component known as the Catalog Service relays the metadata changes
from Impala SQL statements to all the Impala daemons in a cluster. It is physically

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 105

https://impala.apache.org/impala-docs.html

represented by a daemon process named catalogd. When you create a table, load
data, and so on through Hive, you do need to issue REFRESH or INVALIDATE
METADATA on an Impala daemon before executing a query there. The catalog
service avoids the need to issue REFRESH and INVALIDATE METADATA statements
when the metadata changes are performed by statements issued through Impala.

6.16 IoTDB

6.16.1 IoTDB Basic Principles
Database for Internet of Things (IoTDB) is a software system that collects, stores,
manages, and analyzes IoT time series data. Apache IoTDB uses a lightweight
architecture and features high performance and rich functions.

IoTDB sorts time series and stores indexes and chunks, greatly improving the
query performance of time series data. IoTDB uses the Raft protocol to ensure
data consistency. In time series scenarios, IoTDB pre-computes and stores data to
improve analysis performance. Based on the characteristics of time series data,
IoTDB provides powerful data encoding and compression capabilities. In addition,
its replica mechanism ensures data security. IoTDB is deeply integrated with
Apache Hadoop and Flink to meet the requirements of massive data storage,
high-speed data reading, and complex data analysis in the industrial IoT field.

IoTDB Architecture

The IoTDB suite consists of multiple components to provide a series of functions
such as data collection, data writing, data storage, data query, data visualization,
and data analysis.

Figure 6-64 shows the overall application architecture after all components of the
IoTDB suite are used. IoTDB refers to the time series database component in the
suite.

Figure 6-64 IoTDB architecture

● Users can use Java Database Connectivity (JDBC) or Session to import the
time series data and system status data (such as server load, CPU usage and

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 106

memory usage) collected from device sensors, as well as time series data in
message queues, applications, or other databases, to the local or remote
IoTDB. Users can also directly write the preceding data into a local TsFile file
or a TsFile file in the HDFS.

● Users can write TsFile files to the HDFS to implement data processing tasks
such as exception detection and machine learning on the Hadoop or Flink
data processing platform.

● The TsFile-Hadoop or TsFile-Flink connector can be used to allow Hadoop or
Flink to process the TsFile files written to the HDFS or local host.

● The analysis result can be written back to a TsFile in the same way.
● IoTDB and TsFile also provide client tools to meet users' requirements for

viewing and writing data in SQL, script, and graphical formats.

The IoTDB service includes two roles: IoTDBServer (DataNode) and ConfigNode.
The role name DataNode of the community edition has the same name as the
HDFS role. DataNode is renamed IoTDBServer.
● ConfigNode: management role, which is responsible for DataNode data

sharding and load balancing.
● IoTDBServer (DataNode): storage role, which is responsible for storing,

querying, and writing data.

Figure 6-65 IoTDB distributed architecture

IoTDB Principles
Based on the attribute hierarchy, attribute coverage, and subordinate relationships
between data, the IoTDB data model can be represented as the attribute

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 107

hierarchy, as shown in Figure 6-66. The hierarchy is as follows: power group layer
- power plant layer - device layer - sensor layer. ROOT is a root node, and each
node at the sensor layer is a leaf node. According to the IoTDB syntax, the path
from ROOT to a leaf node is separated by a dot (.). The complete path is used to
name a time series in the IoTDB. For example, the time series name corresponding
to the path on the left in the following figure is ROOT.ln.wf01.wt01.status.

Figure 6-66 IoTDB data model

6.16.2 Relationships Between IoTDB and Other Components
The IoTDB stores data locally, so it does not depend on any other component for
storage. However, in a security cluster environment, IoTDB depends on the
KrbServer component for Kerberos authentication.

6.16.3 IoTDB Enhanced Open Source Features

Visualization
● Visualized O&M covers installation, uninstallation, one-click start and stop,

configurations, clients, monitoring, alarms, health checks, and logs.
● Visualized permission management does not require background command

line operations and supports read and write permission control at the
database and table levels.

● Visualized log level configuration dynamically takes effect, supports visualized
download and retrieval, and supports log audit.

Security Hardening

User authentication supports Kerberos authentication and SSL encryption, which
are compatible with the community authentication mode.

Ecosystem Interconnection

On the basis of native capabilities, the cluster interconnection with MQTT is
enhanced.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 108

6.17 Kafka

6.17.1 Kafka Basic Principles
Kafka is an open source, distributed, partitioned, and replicated commit log
service. Kafka is publish-subscribe messaging, rethought as a distributed commit
log. It provides features similar to Java Message Service (JMS) but another design.
It features message endurance, high throughput, distributed methods, multi-client
support, and real time. It applies to both online and offline message consumption,
such as regular message collection, website activeness tracking, aggregation of
statistical system operation data (monitoring data), and log collection. These
scenarios engage large amounts of data collection for Internet services.

Kafka Structure
Producers publish data to topics, and consumers subscribe to the topics and
consume messages. A broker is a server in a Kafka cluster. For each topic, the
Kafka cluster maintains partitions for scalability, parallelism, and fault tolerance.
Each partition is an ordered, immutable sequence of messages that is continually
appended to - a commit log. Each message in a partition is assigned a sequential
ID, which is called offset.

Figure 6-67 Kafka architecture

Table 6-17 Kafka architecture description

Name Description

Broker A broker is a server in a Kafka cluster.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 109

Name Description

Topic A topic is a category or feed name to which messages are
published. A topic can be divided into multiple partitions,
which can act as a parallel unit.

Partition A partition is an ordered, immutable sequence of messages
that is continually appended to - a commit log. The messages
in the partitions are each assigned a sequential ID number
called the offset that uniquely identifies each message within
the partition.

Producer Producers publish messages to a Kafka topic.

Consumer Consumers subscribe to topics and process the feed of
published messages.

Figure 6-68 shows the relationships between modules.

Figure 6-68 Relationships between Kafka modules

Consumers label themselves with a consumer group name, and each message
published to a topic is delivered to one consumer instance within each subscribing
consumer group. If all the consumer instances belong to the same consumer
group, loads are evenly distributed among the consumers. As shown in the
preceding figure, Consumer1 and Consumer2 work in load-sharing mode;
Consumer3, Consumer4, Consumer5, and Consumer6 work in load-sharing mode.
If all the consumer instances belong to different consumer groups, messages are
broadcast to all consumers. As shown in the preceding figure, the messages in
Topic 1 are broadcast to all consumers in Consumer Group1 and Consumer
Group2.

For details about Kafka architecture and principles, see https://
kafka.apache.org/24/documentation.html.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 110

https://kafka.apache.org/24/documentation.html
https://kafka.apache.org/24/documentation.html

Principle
● Message Reliability

When a Kafka broker receives a message, it stores the message on a disk
persistently. Each partition of a topic has multiple replicas stored on different
broker nodes. If one node is faulty, the replicas on other nodes can be used.

● High Throughput

Kafka provides high throughput in the following ways:

– Messages are written into disks instead of being cached in the memory,
fully utilizing the sequential read and write performance of disks.

– The use of zero-copy eliminates I/O operations.

– Data is sent in batches, improving network utilization.

– Each topic is divided in to multiple partitions, which increases concurrent
processing. Concurrent read and write operations can be performed
between multiple producers and consumers. Producers send messages to
specified partitions based on the algorithm used.

● Message Subscribe-Notify Mechanism

Consumers subscribe to interested topics and consume data in pull mode.
Consumers can choose the consumption mode, such as batch consumption,
repeated consumption, and consumption from the end, and control the
message pulling speed based on actual situation. Consumers need to
maintain the consumption records by themselves.

● Scalability

When broker nodes are added to expand the Kafka cluster capacity, the newly
added brokers register with ZooKeeper. After the registration is successful,
procedures and consumers can sense the change in a timely manner and
make related adjustment.

Open Source Features
● Reliability

Message processing methods such as At-Least Once, At-Most Once, and
Exactly Once are provided. The message processing status is maintained by
consumers. Kafka needs to work with the application layer to implement
Exactly Once.

● High throughput

High throughput is provided for message publishing and subscription.

● Persistence

Messages are stored on disks and can be used for batch consumption and
real-time application programs. Data persistence and replication prevent data
loss.

● Distribution

A distributed system is easy to be expanded externally. All producers, brokers,
and consumers support the deployment of multiple distributed clusters.
Systems can be scaled without stopping the running of software or shutting
down the machines.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 111

Kafka UI
Kafka UI provides Kafka web services, displays basic information about functional
modules such as brokers, topics, partitions, and consumers in a Kafka cluster, and
provides operation entries for common Kafka commands. Kafka UI replaces Kafka
Manager to provide secure Kafka web services that comply with security
specifications.

You can perform the following operations on Kafka UI:

● Check cluster status (topics, consumers, offsets, partitions, replicas, and
nodes).

● Redistribute partitions in the cluster.
● Create a topic with optional topic configurations.
● Delete a topic (supported when delete.topic.enable is set to true for the

Kafka service).
● Add partitions to an existing topic.
● Update configurations for an existing topic.
● Optionally enable JMX polling for broker-level and topic-level metrics.

6.17.2 Relationships Between Kafka and Other Components
As a message publishing and subscription system, Kafka provides high-speed data
transmission methods for data transmission between different subsystems of the
FusionInsight platform. It can receive external messages in a real-time manner
and provides the messages to the online and offline services for processing. The
following figure shows the relationship between Kafka and other components.

Figure 6-69 Relationships with other components

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 112

6.17.3 Kafka Enhanced Open Source Features

Kafka Enhanced Open Source Features
● Monitors the following topic-level metrics:

– Topic Input Traffic
– Topic Output Traffic
– Topic Rejected Traffic
– Number of Failed Fetch Requests Per Second
– Number of Failed Produce Requests Per Second
– Number of Topic Input Messages Per Second
– Number of Fetch Requests Per Second
– Number of Produce Requests Per Second

● Queries the mapping between broker IDs and node IP addresses. On Linux
clients, kafka-broker-info.sh can be used to query the mapping between
broker IDs and node IP addresses.

6.18 KafkaManager
KafkaManager is a tool for managing Apache Kafka and provides GUI-based
metric monitoring and management of Kafka clusters.

KafkaManager supports the following operations:

● Manage multiple Kafka clusters.
● Easy inspection of cluster states (topics, consumers, offsets, partitions,

replicas, and nodes)
● Run preferred replica election.
● Generate partition assignments with option to select brokers to use.
● Run reassignment of partition (based on generated assignments).
● Create a topic with optional topic configurations (Multiple Kafka cluster

versions are supported).
● Delete a topic (only supported on 0.8.2+ and delete.topic.enable=true is set

in broker configuration).
● Batch generate partition assignments for multiple topics with option to select

brokers to use.
● Batch run reassignment of partitions for multiple topics.
● Add partitions to an existing topic.
● Update configurations for an existing topic.
● Optionally enable JMX polling for broker-level and topic-level metrics.
● Optionally filter out consumers that do not have ids/ owner / & offsets/

directories in ZooKeeper.

6.19 KrbServer and LdapServer

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 113

6.19.1 KrbServer and LdapServer Principles

Overview

To manage the access control permissions on data and resources in a cluster, it is
recommended that the cluster be installed in security mode. In security mode, a
client application must be authenticated and a secure session must be established
before the application accesses any resource in the cluster. MRS uses KrbServer to
provide Kerberos authentication for all components, implementing a reliable
authentication mechanism.

LdapServer supports Lightweight Directory Access Protocol (LDAP) and provides
the capability of storing user and user group data for Kerberos authentication.

Architecture

The security authentication function for user login depends on Kerberos and LDAP.

Figure 6-70 Security authentication architecture

Figure 6-70 includes three scenarios:

● Logging in to the MRS Manager Web UI
The authentication architecture includes steps 1, 2, 3, and 4.

● Logging in to a component web UI
The authentication architecture includes steps 5, 6, 7, and 8.

● Accessing between components
The authentication architecture includes step 9.

Table 6-18 Key modules

Connection
Name

Description

Manager Cluster Manager

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 114

Connection
Name

Description

Manager WS WebBrowser

Kerberos1 KrbServer (management plane) service deployed in MRS
Manager, that is, OMS Kerberos

Kerberos2 KrbServer (service plane) service deployed in the cluster

LDAP1 LdapServer (management plane) service deployed in MRS
Manager, that is, OMS LDAP

LDAP2 LdapServer (service plane) service deployed in the cluster

Data operation mode of Kerberos1 in LDAP: The active and standby instances of
LDAP1 and the two standby instances of LDAP2 can be accessed in load balancing
mode. Data write operations can be performed only in the active LDAP1 instance.
Data read operations can be performed in LDAP1 or LDAP2.

Data operation mode of Kerberos2 in LDAP: Data read operations can be
performed in LDAP1 and LDAP2. Data write operations can be performed only in
the active LDAP1 instance.

Principle

Kerberos authentication

Figure 6-71 Authentication process

LDAP data read and write

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 115

Figure 6-72 Data modification process

LDAP data synchronization

● OMS LDAP data synchronization before cluster installation

Figure 6-73 OMS LDAP data synchronization

Data synchronization direction before cluster installation: Data is synchronized
from the active OMS LDAP to the standby OMS LDAP.

● LDAP data synchronization after cluster installation

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 116

Figure 6-74 LDAP data synchronization

Data synchronization direction after cluster installation: Data is synchronized
from the active OMS LDAP to the standby OMS LDAP, standby component
LDAP, and standby component LDAP.

6.19.2 KrbServer and LdapServer Enhanced Open Source
Features

Enhanced open-source features of KrbServer and LdapServer: intra-cluster
service authentication

In an MRS cluster that uses the security mode, mutual access between services is
implemented based on the Kerberos security architecture. When a service (such as
HDFS) in the cluster is to be started, the corresponding sessionkey (keytab, used
for identity authentication of the application) is obtained from Kerberos. If
another service (such as YARN) needs to access HDFS and add, delete, modify, or
query data in HDFS, the corresponding TGT and ST must be obtained for secure
access.

Enhanced Open-Source Features of KrbServer and LdapServer: Application
Development Authentication

MRS components provide application development interfaces for customers or
upper-layer service product clusters. During application development, a cluster in
security mode provides specified application development authentication
interfaces to implement application security authentication and access. For
example, the UserGroupInformation class provided by the hadoop-common API
provides multiple security authentication APIs.

● setConfiguration() is used to obtain related configuration and set
parameters such as global variables.

● loginUserFromKeytab(): is used to obtain TGT interfaces.

Enhanced Open-Source Features of KrbServer and LdapServer: Cross-System
Mutual Trust

MRS provides the mutual trust function between two Managers to implement
data read and write operations between systems.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 117

6.20 Kudu
Kudu is a column-store manager developed for the Apache Hadoop platform.
Kudu shares the common technical properties of Hadoop ecosystem applications,
that is, it runs on commodity hardware, which is horizontally scalable, delivering
high availability.

Kudu's design has the following benefits:

● Fast processing of OLAP workloads
● Integration with MapReduce, Spark and other Hadoop ecosystem components
● Tight integration with Apache Impala, making it a good, mutable alternative

to using HDFS with Apache Parquet
● Strong but flexible consistency model, allowing you to choose consistency

requirements on a per-request basis, including the option for strict-serializable
consistency

● Strong performance for running sequential and random workloads
simultaneously

● Easy to manage
● High availability Tablet Servers and Masters use the Raft Consensus

Algorithm, which ensures that as long as more than half the total number of
replicas is available, the tablet is available for reads and writes. For example,
if 2 out of 3 replicas or 3 out of 5 replicas are available, the tablet is available.
Reads can be serviced by read-only follower tablets, even in the event of a
leader tablet failure.

● Structured data model

By combining all of these properties, Kudu targets support for families of
applications that are difficult or impossible to implement on current generation
Hadoop storage technologies.

A few examples of applications for which Kudu is a great solution are:
● Reporting applications where newly-arrived data needs to be immediately

available for end users
● Time-series applications that must simultaneously support queries across

large amounts of historic data and granular queries about an individual entity
that must return very quickly

● Applications that use predictive models to make real-time decisions with
periodic refreshes of the predictive model based on all historic data

6.21 Loader

6.21.1 Loader Basic Principles
Loader is developed based on the open source Sqoop component. It is used to
exchange data and files between MRS and relational databases and file systems.
Loader can import data from relational databases or file servers to the HDFS and

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 118

HBase components, or export data from HDFS and HBase to relational databases
or file servers.

A Loader model consists of Loader Client and Loader Server, as shown in Figure
6-75.

Figure 6-75 Loader model

Table 6-19 describes the functions of each module shown in the preceding figure.

Table 6-19 Components of the Loader model

Module Description

Loader
Client

Loader client. It provides two interfaces: web UI and CLI.

Loader
Server

Loader server. It processes operation requests sent from the
client, manages connectors and metadata, submits MapReduce
jobs, and monitors MapReduce job status.

REST API It provides a Representational State Transfer (RESTful) APIs
(HTTP + JSON) to process the operation requests sent from the
client.

Job
Scheduler

Simple job scheduler. It periodically executes Loader jobs.

Transform
Engine

Data transformation engine. It supports field combination, string
cutting, and string reverse.

Execution
Engine

Loader job execution engine. It executes Loader jobs in
MapReduce manner.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 119

Module Description

Submission
Engine

Loader job submission engine. It submits Loader jobs to
MapReduce.

Job Manager It manages Loader jobs, including creating, querying, updating,
deleting, activating, deactivating, starting, and stopping jobs.

Metadata
Repository

Metadata repository. It stores and manages data about Loader
connectors, transformation procedures, and jobs.

HA Manager It manages the active/standby status of Loader Server processes.
The Loader Server has two nodes that are deployed in active/
standby mode.

Loader imports or exports jobs in parallel using MapReduce jobs. Some job import
or export may involve only the Map operations, while some may involve both Map
and Reduce operations.

Loader implements fault tolerance using MapReduce. Jobs can be rescheduled
upon a job execution failure.

● Importing data to HBase
When the Map operation is performed for MapReduce jobs, Loader obtains
data from an external data source.
When a Reduce operation is performed for a MapReduce job, Loader enables
the same number of Reduce tasks based on the number of Regions. The
Reduce tasks receive data from Map tasks, generate HFiles by Region, and
store the HFiles in a temporary directory of HDFS.
When a MapReduce job is submitted, Loader migrates HFiles from the
temporary directory to the HBase directory.

● Importing Data to HDFS
When a Map operation is performed for a MapReduce job, Loader obtains
data from an external data source and exports the data to a temporary
directory (named export directory-ldtmp).
When a MapReduce job is submitted, Loader migrates data from the
temporary directory to the output directory.

● Exporting data to a relational database
When a Map operation is performed for a MapReduce job, Loader obtains
data from HDFS or HBase and inserts the data to a temporary table (Staging
Table) through the Java DataBase Connectivity (JDBC) API.
When a MapReduce job is submitted, Loader migrates data from the
temporary table to a formal table.

● Exporting data to a file system
When a Map operation is performed for a MapReduce job, Loader obtains
data from HDFS or HBase and writes the data to a temporary directory of the
file server.
When a MapReduce job is submitted, Loader migrates data from the
temporary directory to a formal directory.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 120

For details about the Loader architecture and principles, see https://
sqoop.apache.org/docs/1.99.3/index.html.

6.21.2 Relationship Between Loader and Other Components
The components that interact with Loader include HDFS, HBase, MapReduce, and
ZooKeeper. Loader works as a client to use certain functions of these components,
such as storing data to HDFS and HBase and reading data from HDFS and HBase
tables. In addition, Loader functions as an MapReduce client to import or export
data.

6.21.3 Loader Enhanced Open Source Features

Loader Enhanced Open-Source Feature: Data Import and Export

Loader is developed based on Sqoop. In addition to the Sqoop functions, Loader
has the following enhanced features:

● Provides data conversion functions.
● Supports GUI-based configuration conversion.
● Imports data from an SFTP/FTP server to HDFS/OBS.
● Imports data from an SFTP/FTP server to an HBase table.
● Imports data from an SFTP/FTP server to a Phoenix table.
● Imports data from an SFTP/FTP server to a Hive table.
● Exports data from HDFS/OBS to an SFTP server.
● Exports data from an HBase table to an SFTP server.
● Exports data from a Phoenix table to an SFTP server.
● Imports data from a relational database to an HBase table.
● Imports data from a relational database to a Phoenix table.
● Imports data from a relational database to a Hive table.
● Exports data from an HBase table to a relational database.
● Exports data from a Phoenix table to a relational database.
● Imports data from an Oracle partitioned table to HDFS/OBS.
● Imports data from an Oracle partitioned table to an HBase table.
● Imports data from an Oracle partitioned table to a Phoenix table.
● Imports data from an Oracle partitioned table to a Hive table.
● Exports data from HDFS/OBS to an Oracle partitioned table.
● Exports data from HBase to an Oracle partitioned table.
● Exports data from a Phoenix table to an Oracle partitioned table.
● Imports data from HDFS to an HBase table, a Phoenix table, and a Hive table

in the same cluster.
● Exports data from an HBase table and a Phoenix table to HDFS/OBS in the

same cluster.
● Imports data to an HBase table and a Phoenix table by using bulkload or put

list.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 121

https://sqoop.apache.org/docs/1.99.3/index.html
https://sqoop.apache.org/docs/1.99.3/index.html

● Imports all types of files from an SFTP/FTP server to HDFS. The open source
component Sqoop can import only text files.

● Exports all types of files from HDFS/OBS to an SFTP server. The open source
component Sqoop can export only text files and SequenceFile files.

● Supports file coding format conversion during file import and export. The
supported coding formats include all formats supported by Java Development
Kit (JDK).

● Retains the original directory structure and file names during file import and
export.

● Supports file combination during file import and export. For example, if a
large number of files are to be imported, these files can be combined into n
files (n can be configured).

● Supports file filtering during file import and export. The filtering rules support
wildcards and regular expressions.

● Supports batch import and export of ETL tasks.
● Supports query by page and key word and group management of ETL tasks.
● Provides floating IP addresses for external components.

6.22 Manager

6.22.1 Manager Basic Principles

Overview
Manager is the O&M management system of MRS and provides unified cluster
management capabilities for services deployed in clusters.

Manager provides functions such as performance monitoring, alarms, user
management, permission management, auditing, service management, health
check, and log collection.

Architecture
Figure 6-76 shows the overall logical architecture of FusionInsight Manager.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 122

Figure 6-76 Manager logical architecture

Manager consists of OMS and OMA.

● OMS: serves as management node in the O&M system. There are two OMS
nodes deployed in active/standby mode.

● OMA: managed node in the O&M system. Generally, there are multiple OMA
nodes.

Table 6-20 describes the modules shown in Figure 6-76.

Table 6-20 Service module description

Module Description

Web Service A web service deployed under Tomcat, providing HTTPS API of
Manager. It is used to access Manager through the web browser.
In addition, it provides the northbound access capability based
on the Syslog and SNMP protocols.

OMS Management node of the O&M system. Generally, there are two
OMS nodes that work in active/standby mode.

OMA Managed node in the O&M system. Generally, there are multiple
OMA nodes.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 123

Module Description

Controller The control center of Manager. It can converge information
from all nodes in the cluster and display it to MRS cluster
administrators, as well as receive from MRS cluster
administrators, and synchronize information to all nodes in the
cluster according to the operation instruction range.
Control process of Manager. It implements various management
actions:
1. The web service delivers various management actions (such

as installation, service startup and stop, and configuration
modification) to Controller.

2. Controller decomposes the command and delivers the action
to each Node Agent, for example, starting a service involves
multiple roles and instances.

3. Controller is responsible for monitoring the implementation
of each action.

Node Agent Node Agent exists on each cluster node and is an enabler of
Manager on a single node.
● Node Agent represents all the components deployed on the

node to interact with Controller, implementing convergence
from multiple nodes of a cluster to a single node.

● Node Agent enables Controller to perform all operations on
the components deployed on the node. It allows Controller
functions to be implemented.

Node Agent sends heartbeat messages to Controller at an
interval of 3 seconds. The interval cannot be configured.

IAM Records audit logs. Each non-query operation on the Manager
UI has a related audit log.

PMS The performance monitoring module. It collects the
performance monitoring data on each OMA and provides the
query function.

CEP Convergence function module. For example, the used disk space
of all OMAs is collected as a performance indicator.

FMS Alarm module. It collects and queries alarms on each OMA.

OMM Agent Agent for performance monitoring and alarm reporting on the
OMA. It collects performance monitoring data and alarm data
on Agent Node.

CAS Unified authentication center. When a user logs in to the web
service, CAS authenticates the login. The browser automatically
redirects the user to the CAS through URLs.

AOS Permission management module. It manages the permissions of
users and user groups.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 124

Module Description

ACS User and user group management module. It manages users
and user groups to which users belong.

Kerberos LDAP is deployed in OMS and a cluster, respectively.
● OMS Kerberos provides the single sign-on (SSO) and

authentication between Controller and Node Agent.
● Kerberos in the cluster provides the user security

authentication function for components. The service name is
KrbServer, which contains two role instances:
– KerberosServer: is an authentication server that provides

security authentication for MRS.
– KerberosAdmin: manages processes of Kerberos users.

Ldap LDAP is deployed in OMS and a cluster, respectively.
● OMS LDAP provides data storage for user authentication.
● The LDAP in the cluster functions as the backup of the OMS

LDAP. The service name is LdapServer and the role instance
is SlapdServer.

Database Manager database used to store logs and alarms.

HA HA management module that manages the active and standby
OMSs.

NTP Server
NTP Client

It synchronizes the system clock of each node in the cluster.

6.22.2 Manager Key Features

Key Feature: Unified Alarm Monitoring
Manager provides the visualized and convenient alarm monitoring function. Users
can quickly obtain key cluster performance indicators, evaluate cluster health
status, customize performance indicator display, and convert indicators to alarms.
Manager can monitor the running status of all components and report alarms in
real time when faults occur. The online help on the GUI allows you to view
performance counters and alarm clearance methods to quickly rectify faults.

Key Feature: Unified User Permission Management
Manager provides permission management of components in a unified manner.

Manager introduces the concept of role and uses role-based access control (RBAC)
to manage system permissions. It centrally displays and manages scattered
permission functions of each component in the system and organizes the
permissions of each component in the form of permission sets (roles) to form a
unified system permission concept. By doing so, common users cannot obtain
internal permission management details, and permissions become easy for MRS

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 125

cluster administrators to manage, greatly facilitating permission management and
improving user experience.

Key Feature: SSO
Single sign-on (SSO) is provided between the Manager web UI and component
web UI as well as for integration between MRS and third-party systems.

This function centrally manages and authenticates Manager users and component
users. The entire system uses LDAP to manage users and uses Kerberos for
authentication. A set of Kerberos and LDAP management mechanisms are used
between the OMS and components. SSO (including single sign-on and single sign-
out) is implemented through CAS. With SSO, users can easily switch tasks between
the Manager web UI, component web UIs, and third-party systems, without
switching to another user.

NO TE

● To ensure security, the CAS Server can retain a ticket-granting ticket (TGT) used by a user
only for 20 minutes.

● If a user does not perform any operation on the page (including on the Manager web UI and
component web UIs) within 20 minutes, the page is automatically locked.

Key Feature: Automatic Health Check and Inspection
Manager provides users with automatic inspection on system running
environments and helps users check and audit system running health by one click,
ensuring correct system running and lowering system operation and maintenance
costs. After viewing inspection results, you can export reports for archiving and
fault analysis.

Key Feature: Tenant Management
Manager introduces the multi-tenant concept. The CPU, memory, and disk
resources of a cluster can be integrated into a set. The set is called a tenant. A
mode involving different tenants is called multi-tenant mode.

Manager provides the multi-tenant function, supports a level-based tenant model
and allows tenants to be added and deleted dynamically, achieving resource
isolation. As a result, it can dynamically manage and configure the computing
resources and the storage resources of tenants.

● The computing resources indicate tenants' Yarn task queue resources. The
task queue quota can be modified, and the task queue usage status and
statistics can be viewed.

● The storage resources can be stored on HDFS. You can add and delete the
HDFS storage directories of tenants, and set the quotas of file quantity and
the storage space of the directories.

As a unified tenant management platform of MRS, MRS Manager allows users to
create and manage tenants in clusters based on service requirements.

● Roles, computing resources, and storage resources are automatically created
when tenants are created. By default, all permissions of the new computing
resources and storage resources are allocated to a tenant's roles.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 126

● After you have modified the tenant's computing or storage resources,
permissions of the tenant's roles are automatically updated.

Manager also provides the multi-instance function so that users can use the
HBase, Hive, or Spark alone in the resource control and service isolation scenario.
The multi-instance function is disabled by default and can be manually enabled.

Key Feature: Multi-Language Support
Manager supports multiple languages and automatically selects Chinese or
English based on the browser language preference. If the browser preferred
language is Chinese, Manager displays the portal in Chinese; if the browser
preferred language is not Chinese, Manager displays the portal in English. You can
also switch between Chinese and English in the lower left corner of the page
based on your language preference. (Only MRS 3.x and later versions support one-
click switching between Chinese and English.)

6.23 MapReduce

6.23.1 MapReduce Basic Principles
NO TE

To use MapReduce, ensure that the Hadoop service has been installed in the MRS cluster.

MapReduce is the core of Hadoop. As a software architecture proposed by Google,
MapReduce is used for parallel computing of large-scale datasets (larger than 1
TB). The concepts "Map" and "Reduce" and their main thoughts are borrowed
from functional programming language and also borrowed from the features of
vector programming language.

Current software implementation is as follows: Specify a Map function to map a
series of key-value pairs into a new series of key-value pairs, and specify a Reduce
function to ensure that all values in the mapped key-value pairs share the same
key.

Figure 6-77 Distributed batch processing engine

MapReduce is a software framework for processing large datasets in parallel. The
root of MapReduce is the Map and Reduce functions in functional programming.
The Map function accepts a group of data and transforms it into a key-value pair

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 127

list. Each element in the input domain corresponds to a key-value pair. The Reduce
function accepts the list generated by the Map function, and then shrinks the key-
value pair list based on the keys. MapReduce divides a task into multiple parts and
allocates them to different devices for processing. In this way, the task can be
finished in a distributed environment instead of a single powerful server.

For more information, see MapReduce Tutorial.

MapReduce structure
As shown in Figure 6-78, MapReduce is integrated into YARN through the Client
and ApplicationMaster interfaces of YARN, and uses YARN to apply for computing
resources.

Figure 6-78 Basic architecture of Apache YARN and MapReduce

6.23.2 Relationship Between MapReduce and Other
Components

Relationship Between MapReduce and HDFS
● HDFS features high fault tolerance and high throughput, and can be deployed

on low-cost hardware for storing data of applications with massive data sets.
● MapReduce is a programming model used for parallel computation of large

data sets (larger than 1 TB). Data computed by MapReduce comes from
multiple data sources, such as Local FileSystem, HDFS, and databases. Most
data comes from the HDFS. The high throughput of HDFS can be used to read
massive data. After being computed, data can be stored in HDFS.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 128

https://hadoop.apache.org/docs/r3.1.1/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html

Relationship Between MapReduce and Yarn
MapReduce is a computing framework running on Yarn, which is used for batch
processing. MRv1 is implemented based on MapReduce in Hadoop 1.0, which is
composed of programming models (new and old programming APIs), running
environment (JobTracker and TaskTracker), and data processing engine (MapTask
and ReduceTask). This framework is still weak in scalability, fault tolerance
(JobTracker SPOF), and compatibility with multiple frameworks. (Currently, only
the MapReduce computing framework is supported.) MRv2 is implemented based
on MapReduce in Hadoop 2.0. The source code reuses MRv1 programming models
and data processing engine implementation, and the running environment is
composed of ResourceManager and ApplicationMaster. ResourceManager is a
brand new resource manager system, and ApplicationMaster is responsible for
cutting MapReduce job data, assigning tasks, applying for resources, scheduling
tasks, and tolerating faults.

6.23.3 MapReduce Enhanced Open Source Features

MapReduce Enhanced Open-Source Feature: JobHistoryServer HA
JobHistoryServer (JHS) is the server used to view historical MapReduce task
information. Currently, the open source JHS supports only single-instance services.
JHS HA can solve the problem that an application fails to access the MapReduce
API when SPOFs occur on the JHS, which causes the application fails to be
executed. This greatly improves the high availability of the MapReduce service.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 129

Figure 6-79 Status transition of the JobHistoryServer HA active/standby
switchover

JobHistoryServer High Availability

● ZooKeeper is used to implement active/standby election and switchover.
● JHS uses the floating IP address to provide services externally.
● Both the JHS single-instance and HA deployment modes are supported.
● Only one node starts the JHS process at a time point to prevent multiple JHS

operations from processing the same file.
● You can perform scale-out, scale-in, instance migration, upgrade, and health

check.

Enhanced Open Source Feature: Improving MapReduce Performance by
Optimizing the Merge/Sort Process in Specific Scenarios

The figure below shows the workflow of a MapReduce task.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 130

Figure 6-80 MapReduce job

Figure 6-81 Job execution process

The Reduce process is divided into three different steps: Copy, Sort (actually
supposed to be called Merge), and Reduce. In Copy phase, Reducer tries to fetch
the output of Maps from NodeManagers and store it on Reducer either in memory
or on disk. Shuffle (Sort and Merge) phase then begins. All the fetched map
outputs are being sorted, and segments from different map outputs are merged
before being sent to Reducer. When a job has a large number of maps to be
processed, the shuffle process is time-consuming. For specific tasks (for example,
SQL tasks such as hash join and hash aggregation), sorting is not mandatory
during the shuffle process. However, the sorting is required by default in the
shuffle process.

This feature is enhanced by using the MapReduce API, which can automatically
close the Sort process for such tasks. When the sorting is disabled, the API directly
merges the fetched Maps output data and sends the data to Reducer. This greatly
saves time, and significantly improves the efficiency of SQL tasks.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 131

Enhanced Open Source Feature: Small Log File Problem Solved After
Optimization of MR History Server

After the job running on Yarn is executed, NodeManager uses
LogAggregationService to collect and send generated logs to HDFS and deletes
them from the local file system. After the logs are stored to HDFS, they are
managed by MR HistoryServer. LogAggregationService will merge local logs
generated by containers to a log file and upload it to the HDFS, reducing the
number of log files to some extent. However, in a large-scale and busy cluster,
there will be excessive log files on HDFS after long-term running.

For example, if there are 20 nodes, about 18 million log files are generated within
the default clean-up period (15 days), which occupy about 18 GB of the memory
of a NameNode and slow down the HDFS system response.

Only the reading and deletion are required for files stored on HDFS. Therefore,
Hadoop Archives can be used to periodically archive the directory of collected log
files.

Archiving Logs

The AggregatedLogArchiveService module is added to MR HistoryServer to
periodically check the number of files in the log directory. When the number of
files reaches the threshold, AggregatedLogArchiveService starts an archiving task
to archive log files. After archiving, it deletes the original log files to reduce log
files on HDFS.

Cleaning Archived Logs

Hadoop Archives does not support deletion in archived files. Therefore, the entire
archive log package must be deleted upon log clean-up. The latest log generation
time is obtained by modifying the AggregatedLogDeletionService module. If all log
files meet the clean-up requirements, the archive log package can be deleted.

Browsing Archived Logs

Hadoop Archives allows URI-based access to file content in the archive log
package. Therefore, if MR History Server detects that the original log files do not
exist during file browsing, it directly redirects the URI to the archive log package to
access the archived log file.

NO TE

● This function invokes Hadoop Archives of HDFS for log archiving. Because the execution
of an archiving task by Hadoop Archives is to run an MR application. Therefore, after an
archiving task is executed, an MR execution record is added.

● This function of archiving logs is based on the log collection function. Therefore, this
function is valid only when the log collection function is enabled.

6.24 Oozie

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 132

6.24.1 Oozie Basic Principles

Introduction to Oozie
Oozie is an open-source workflow engine that is used to schedule and coordinate
Hadoop jobs.

Architecture
The Oozie engine is a web application integrated into Tomcat by default. Oozie
uses PostgreSQL databases.

Oozie provides an Ext-based web console, through which users can view and
monitor Oozie workflows. Oozie provides an external REST web service API for the
Oozie client to control workflows (such as starting and stopping operations), and
orchestrate and run Hadoop MapReduce tasks. For details, see Figure 6-82.

Figure 6-82 Oozie architecture

Table 6-21 describes the functions of each module shown in Figure 6-82.

Table 6-21 Architecture description

Connection
Name

Description

Console Allows users to view and monitor Oozie workflows.

Client Controls workflows, including submitting, starting, running,
planting, and restoring workflows, through APIs.

SDK Is short for software development kit. An SDK is a set of
development tools used by software engineers to establish
applications for particular software packages, software
frameworks, hardware platforms, and operating systems.

Database PostgreSQL database

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 133

Connection
Name

Description

WebApp
(Oozie)

Functions as the Oozie server. It can be deployed on a built-in
or an external Tomcat container. Information recorded by
WebApp (Oozie) including logs is stored in the PostgreSQL
database.

Tomcat A free open-source web application server

Hadoop
components

Underlying components, such as MapReduce and Hive, that
execute the workflows orchestrated by Oozie.

Principle
Oozie is a workflow engine server that runs MapReduce workflows. It is also a
Java web application running in a Tomcat container.

Oozie workflows are constructed using Hadoop Process Definition Language
(HPDL). HPDL is an XML-defined language, similar to JBoss jBPM Process
Definition Language (jPDL). An Oozie workflow consists of the Control Node and
Action Node.

● Control Node controls workflow orchestration, such as start, end, error,
decision, fork, and join.

● An Oozie workflow contains multiple Action Nodes, such as MapReduce and
Java.
All Action Nodes are deployed and run in Direct Acyclic Graph (DAG) mode.
Therefore, Action Nodes run in direction. That is, the next Action Node can
run only when the running of the previous Action Node ends. When one
Action Node ends, the remote server calls back the Oozie interface. Then
Oozie executes the next Action Node of workflow in the same manner until
all Action Nodes are executed (execution failures are counted).

Oozie workflows provide various types of Action Nodes, such as MapReduce,
Hadoop distributed file system (HDFS), Secure Shell (SSH), Java, and Oozie sub-
flows, to support a wide range of business requirements.

6.24.2 Oozie Enhanced Open Source Features

Enhanced Open Source Feature: Improved Security
Provides roles of administrator and common users to support Oozie permission
management.

Supports single sign-on and sign-out, HTTPS access, and audit logs.

6.25 OpenTSDB
OpenTSDB is a distributed, scalable time series database based on HBase.
OpenTSDB is designed to collect monitoring information of a large-scale cluster

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 134

and implement second-level data query, eliminating the limitations of querying
and storing massive amounts of monitoring data in common databases.

OpenTSDB consists of a Time Series Daemon (TSD) as well as a set of command
line utilities. Interaction with OpenTSDB is primarily implemented by running one
or more TSDs. Each TSD is independent. There is no master server and no shared
state, so you can run as many TSDs as required to handle any load you throw at it.
Each TSD uses HBase in a CloudTable cluster to store and retrieve time series data.
The data schema is highly optimized for fast aggregations of similar time series to
minimize storage space. TSD users never need to directly access the underlying
storage. You can communicate with the TSD through an HTTP API. All
communications happen on the same port (the TSD figures out the protocol of
the client by looking at the first few bytes it receives).

Figure 6-83 OpenTSDB architecture

Application scenarios of OpenTSDB have the following features:

● The collected metrics have a unique value at a time point and do not have a
complex structure or relationship.

● Monitoring metrics change with time.
● Like HBase, OpenTSDB features high throughput and good scalability.

OpenTSDB provides an HTTP based application programming interface to enable
integration with external systems. Almost all OpenTSDB features are accessible via
the API such as querying time series data, managing metadata, and storing data
points. For details, see https://opentsdb.net/docs/build/html/api_http/
index.html.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 135

https://opentsdb.net/docs/build/html/api_http/index.html
https://opentsdb.net/docs/build/html/api_http/index.html

6.26 Presto
Presto is an open source SQL query engine for running interactive analytic queries
against data sources of all sizes. It applies to massive structured/semi-structured
data analysis, massive multi-dimensional data aggregation/report, ETL, ad-hoc
queries, and more scenarios.

Presto allows querying data where it lives, including HDFS, Hive, HBase,
Cassandra, relational databases or even proprietary data stores. A Presto query
can combine different data sources to perform data analysis across the data
sources.

Figure 6-84 Presto architecture

Presto runs in a cluster in distributed mode and contains one coordinator and
multiple worker processes. Query requests are submitted from clients (for
example, CLI) to the coordinator. The coordinator parses SQL statements,
generates execution plans, and distributes the plans to multiple worker processes
for execution.

For details about Presto, visit https://prestodb.github.io/ or https://prestosql.io/.

Multiple Presto Instances

MRS supports the installation of multiple Presto instances for a large-scale cluster
by default. That is, multiple Worker instances, such as Worker1, Worker2, and
Worker3, are installed on a Core/Task node. Multiple Worker instances interact
with the Coordinator to execute computing tasks, greatly improving node resource
utilization and computing efficiency.

Presto multi-instance applies only to the Arm architecture. Currently, a single node
supports a maximum of four instances.

For more Presto deployment information, see https://prestodb.io/docs/current/
installation/deployment.html or https://trino.io/docs/current/installation/
deployment.html.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 136

https://prestodb.github.io/
https://prestosql.io/
https://prestodb.io/docs/current/installation/deployment.html
https://prestodb.io/docs/current/installation/deployment.html
https://trino.io/docs/current/installation/deployment.html
https://trino.io/docs/current/installation/deployment.html

6.27 Ranger

6.27.1 Ranger Basic Principles
Apache Ranger offers a centralized security management framework and
supports unified authorization and auditing. It manages fine grained access
control over Hadoop and related components, such as Storm, HDFS, Hive, HBase,
and Kafka. You can use the front-end web UI console provided by Ranger to
configure policies to control users' access to these components.

Figure 6-85 shows the Ranger architecture.

Figure 6-85 Ranger structure

Table 6-22 Architecture description

Connection Name Description

RangerAdmin Provides a WebUI and RESTful API to manage policies,
users, and auditing.

UserSync Periodically synchronizes user and user group
information from an external system and writes the
information to RangerAdmin.

TagSync Periodically synchronizes tag information from the
external Atlas service and writes the tag information to
RangerAdmin.

Ranger Principles
● Ranger Plugins

Ranger provides policy-based access control (PBAC) plug-ins to replace the
original authentication plug-ins of the components. Ranger plug-ins are

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 137

https://ranger.apache.org/

developed based on the authentication interface of the components. Users set
permission policies for specified services on the Ranger web UI. Ranger plug-
ins periodically update policies from the RangerAdmin and caches them in the
local file of the component. When a client request needs to be authenticated,
the Ranger plug-in matches the user carried in the request with the policy
and then returns an accept or reject message.

● UserSync User Synchronization
UserSync periodically synchronizes data from LDAP/Unix to RangerAdmin. In
security mode, data is synchronized from LDAP. In non-security mode, data is
synchronized from Unix. By default, the incremental synchronization mode is
used. In each synchronization period, UserSync updates only new or modified
users and user groups. When a user or user group is deleted, UserSync does
not synchronize the change to RangerAdmin. That is, the user or user group is
not deleted from the RangerAdmin. To improve performance, UserSync does
not synchronize user groups to which no user belongs to RangerAdmin.

● Unified auditing
Ranger plug-ins can record audit logs. Currently, audit logs can be stored in
local files.

● High reliability
Ranger supports two RangerAdmins working in active/active mode. Two
RangerAdmins provide services at the same time. If either RangerAdmin is
faulty, Ranger continues to work.

● High performance
Ranger provides the Load-Balance capability. When a user accesses Ranger
WebUI using a browser, the Load-Balance automatically selects the
RangerAdmin with the lightest load to provide services.

6.27.2 Relationships Between Ranger and Other Components
Ranger provides PABC-based authentication plug-ins for components to run on
their servers. Ranger currently supports authentication for the following
components like HDFS, YARN, Hive, HBase, Kafka, Storm, and Spark2x. More
components will be supported in the future.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 138

Figure 6-86 Relationships between Ranger and other components

6.28 Spark

6.28.1 Spark Basic Principles
NO TE

The Spark component applies to versions earlier than MRS 3.x.

Description

Spark is an open source parallel data processing framework. It helps you easily
develop unified big data applications and perform offline processing, stream
processing, and interactive analysis on data.

Spark provides a framework featuring fast computing, write, and interactive query.
Spark has obvious advantages over Hadoop in terms of performance. Spark uses
the in-memory computing mode to avoid I/O bottlenecks in scenarios where
multiple tasks in a MapReduce workflow process the same dataset. Spark is
implemented by using Scala programming language. Scala enables distributed
datasets to be processed in a method that is the same as that of processing local
data. In addition to interactive data analysis, Spark supports interactive data
mining. Spark adopts in-memory computing, which facilitates iterative computing.
By coincidence, iterative computing of the same data is a general problem facing
data mining. In addition, Spark can run in Yarn clusters where Hadoop 2.0 is
installed. The reason why Spark cannot only retain various features like
MapReduce fault tolerance, data localization, and scalability but also ensure high
performance and avoid busy disk I/Os is that a memory abstraction structure
called Resilient Distributed Dataset (RDD) is created for Spark.

Original distributed memory abstraction, for example, key-value store and
databases, supports small-granularity update of variable status. This requires
backup of data or log updates to ensure fault tolerance. Consequently, a large

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 139

https://spark.apache.org/

amount of I/O consumption is brought about to data-intensive workflows. For the
RDD, it has only one set of restricted APIs and only supports large-granularity
update, for example, map and join. In this way, Spark only needs to record the
transformation operation logs generated during data establishment to ensure
fault tolerance without recording a complete dataset. This data transformation
link record is a source for tracing a data set. Generally, parallel applications apply
the same computing process for a large dataset. Therefore, the limit to the
mentioned large-granularity update is not large. As described in Spark theses, the
RDD can function as multiple different computing frameworks, for example,
programming models of MapReduce and Pregel. In addition, Spark allows you to
explicitly make a data transformation process be persistent on hard disks. Data
localization is implemented by allowing you to control data partitions based on
the key value of each record. (An obvious advantage of this method is that two
copies of data to be associated will be hashed in the same mode.) If memory
usage exceeds the physical limit, Spark writes relatively large partitions into hard
disks, thereby ensuring scalability.

Spark has the following features:

● Fast: The data processing speed of Spark is 10 to 100 times higher than that
of MapReduce.

● Easy-to-use: Java, Scala, and Python can be used to simply and quickly
compile parallel applications for processing massive amounts of data. Spark
provides over 80 operators to help you compile parallel applications.

● Universal: Spark provides many tools, for example, Spark SQL and Spark
Streaming. These tools can be combined flexibly in an application.

● Integration with Hadoop: Spark can directly run in a Hadoop cluster and read
existing Hadoop data.

The Spark component of MRS has the following advantages:

● The Spark Streaming component of MRS supports real-time data processing
rather than triggering as scheduled.

● The Spark component of MRS provides Structured Streaming and allows you
to build streaming applications using the Dataset API. Spark supports exactly-
once semantics and inner and outer joins for streams.

● The Spark component of MRS uses pandas_udf to replace the original user-
defined functions (UDFs) in PySpark to process data, which reduces the
processing duration by 60% to 90% (affected by specific operations).

● The Spark component of MRS also supports graph data processing and allows
modeling using graphs during graph computing.

● Spark SQL of MRS is compatible with some Hive syntax (based on the 64 SQL
statements of the Hive-Test-benchmark test set) and standard SQL syntax
(based on the 99 SQL statements of the TPC-DS test set).

For details about Spark architecture and principles, visit https://spark.apache.org/
docs/3.1.1/quick-start.html.

Architecture

Figure 6-87 describes the Spark architecture and Table 6-23 lists the Spark
modules.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 140

https://spark.apache.org/sql/
https://spark.apache.org/streaming/
https://spark.apache.org/streaming/
https://spark.apache.org/docs/3.1.1/quick-start.html
https://spark.apache.org/docs/3.1.1/quick-start.html

Figure 6-87 Spark architecture

Table 6-23 Basic concepts

Module Description

Cluster Manager Cluster manager manages resources in the cluster. Spark
supports multiple cluster managers, including Mesos, Yarn,
and the Standalone cluster manager that is delivered with
Spark.

Application Spark application. It consists of one Driver Program and
multiple executors.

Deploy Mode Deployment in cluster or client mode. In cluster mode, the
driver runs on a node inside the cluster. In client mode, the
driver runs on the client (outside the cluster).

Driver Program The main process of the Spark application. It runs the
main() function of an application and creates SparkContext.
It is used for parsing applications, generating stages, and
scheduling tasks to executors. Usually, SparkContext
represents Driver Program.

Executor A process started on a Work Node. It is used to execute
tasks, and manage and process the data used in
applications. A Spark application usually contains multiple
executors. Each executor receives commands from the driver
and executes one or multiple tasks.

Worker Node A node that starts and manages executors and resources in
a cluster.

Job A job consists of multiple concurrent tasks. One action
operator (for example, a collect operator) maps to one job.

Stage Each job consists of multiple stages. Each stage is a task set,
which is separated by Directed Acyclic Graph (DAG).

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 141

Module Description

Task A task carries the computation unit of the service logics. It is
the minimum working unit that can be executed on the
Spark platform. An application can be divided into multiple
tasks based on the execution plan and computation
amount.

Spark Application Running Principle
Figure 6-88 shows the Spark application running architecture. The running
process is as follows:

1. An application is running in the cluster as a collection of processes. Driver
coordinates the running of the application.

2. To run an application, Driver connects to the cluster manager (such as
Standalone, Mesos, and Yarn) to apply for the executor resources, and start
ExecutorBackend. The cluster manager schedules resources between different
applications. Driver schedules DAGs, divides stages, and generates tasks for
the application at the same time.

3. Then, Spark sends the codes of the application (the codes transferred to
SparkContext, which is defined by JAR or Python) to an executor.

4. After all tasks are finished, the running of the user application is stopped.

Figure 6-88 Spark application running architecture

Figure 6-89 shows the Master and Worker modes adopted by Spark. A user
submits an application on the Spark client, and then the scheduler divides a job
into multiple tasks and sends the tasks to each Worker for execution. Each Worker
reports the computation results to Driver (Master), and then the Driver aggregates
and returns the results to the client.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 142

https://spark.apache.org/docs/2.3.2/api/scala/index.html#org.apache.spark.SparkContext

Figure 6-89 Spark Master-Worker mode

Note the following about the architecture:

● Applications are isolated from each other.
Each application has an independent executor process, and each executor
starts multiple threads to execute tasks in parallel. Whether in terms of
scheduling or task running on executors. Each driver independently schedules
its own tasks. Different application tasks run on different JVMs, that is,
different executors.

● Different Spark applications do not share data, unless data is stored in the
external storage system such as HDFS.

● You are advised to deploy the Driver program in a location that is close to the
Worker node because the Driver program schedules tasks in the cluster. For
example, deploy the Driver program on the network where the Worker node
is located.

Spark on YARN can be deployed in two modes:

● In Yarn-cluster mode, the Spark driver runs inside an ApplicationMaster
process which is managed by Yarn in the cluster. After the ApplicationMaster
is started, the client can exit without interrupting service running.

● In Yarn-client mode, the driver is started in the client process, and the
ApplicationMaster process is used only to apply for resources from the Yarn
cluster.

Spark Streaming Principle
Spark Streaming is a real-time computing framework built on the Spark, which
expands the capability for processing massive streaming data. Currently, Spark
supports the following data processing methods:

● Direct Streaming
In Direct Streaming approach, Direct API is used to process data. Take Kafka
Direct API as an example. Direct API provides offset location that each batch

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 143

range will read from, which is much simpler than starting a receiver to
continuously receive data from Kafka and written data to write-ahead logs
(WALs). Then, each batch job is running and the corresponding offset data is
ready in Kafka. These offset information can be securely stored in the
checkpoint file and read by applications that failed to start.

Figure 6-90 Data transmission through Direct Kafka API

After the failure, Spark Streaming can read data from Kafka again and
process the data segment. The processing result is the same no matter Spark
Streaming fails or not, because the semantic is processed only once.
Direct API does not need to use the WAL and Receivers, and ensures that each
Kafka record is received only once, which is more efficient. In this way, the
Spark Streaming and Kafka can be well integrated, making streaming
channels be featured with high fault-tolerance, high efficiency, and ease-of-
use. Therefore, you are advised to use Direct Streaming to process data.

● Receiver
When a Spark Streaming application starts (that is, when the driver starts),
the related StreamingContext (the basis of all streaming functions) uses
SparkContext to start the receiver to become a long-term running task. These
receivers receive and save streaming data to the Spark memory for
processing. Figure 6-91 shows the data transfer lifecycle.

Figure 6-91 Data transfer lifecycle

a. Receive data (blue arrow).

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 144

Receiver divides a data stream into a series of blocks and stores them in
the executor memory. In addition, after WAL is enabled, it writes data to
the WAL of the fault-tolerant file system.

b. Notify the driver (green arrow).
The metadata in the received block is sent to StreamingContext in the
driver. The metadata includes:

▪ Block reference ID used to locate the data position in the Executor
memory.

▪ Block data offset information in logs (if the WAL function is
enabled).

c. Process data (red arrow).
For each batch of data, StreamingContext uses block information to
generate resilient distributed datasets (RDDs) and jobs. StreamingContext
executes jobs by running tasks to process blocks in the executor memory.

d. Periodically set checkpoints (orange arrows).
For fault tolerance, StreamingContext periodically sets checkpoints and
saves them to external file systems.

Fault Tolerance

Spark and its RDD allow seamless processing of failures of any Worker node in the
cluster. Spark Streaming is built on top of Spark. Therefore, the Worker node of
Spark Streaming also has the same fault tolerance capability. However, Spark
Streaming needs to run properly in case of long-time running. Therefore, Spark
must be able to recover from faults through the driver process (main process that
coordinates all Workers). This poses challenges to the Spark driver fault-tolerance
because the Spark driver may be any user application implemented in any
computation mode. However, Spark Streaming has internal computation
architecture. That is, it periodically executes the same Spark computation in each
batch data. Such architecture allows it to periodically store checkpoints to reliable
storage space and recover them upon the restart of Driver.

For source data such as files, the Driver recovery mechanism can ensure zero data
loss because all data is stored in a fault-tolerant file system such as HDFS.
However, for other data sources such as Kafka and Flume, some received data is
cached only in memory and may be lost before being processed. This is caused by
the distribution operation mode of Spark applications. When the driver process
fails, all executors running in the Cluster Manager, together with all data in the
memory, are terminated. To avoid such data loss, the WAL function is added to
Spark Streaming.

WAL is often used in databases and file systems to ensure persistence of any data
operation. That is, first record an operation to a persistent log and perform this
operation on data. If the operation fails, the system is recovered by reading the log
and re-applying the preset operation. The following describes how to use WAL to
ensure persistence of received data:

Receiver is used to receive data from data sources such as Kafka. As a long-time
running task in Executor, Receiver receives data, and also confirms received data if
supported by data sources. Received data is stored in the Executor memory, and
Driver delivers a task to Executor for processing.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 145

After WAL is enabled, all received data is stored to log files in the fault-tolerant
file system. Therefore, the received data does not lose even if Spark Streaming
fails. Besides, receiver checks correctness of received data only after the data is
pre-written into logs. Data that is cached but not stored can be sent again by data
sources after the driver restarts. These two mechanisms ensure zero data loss.
That is, all data is recovered from logs or re-sent by data sources.

To enable the WAL function, perform the following operations:

● Set streamingContext.checkpoint to configure the checkpoint directory,
which is an HDFS file path used to store streaming checkpoints and WALs.

● Set spark.streaming.receiver.writeAheadLog.enable of SparkConf to true
(the default value is false).

After WAL is enabled, all receivers have the advantage of recovering from reliable
received data. You are advised to disable the multi-replica mechanism because the
fault-tolerant file system of WAL may also replicate the data.

NO TE

The data receiving throughput is lowered after WAL is enabled. All data is written into the
fault-tolerant file system. As a result, the write throughput of the file system and the
network bandwidth for data replication may become the potential bottleneck. To solve this
problem, you are advised to create more receivers to increase the degree of data receiving
parallelism or use better hardware to improve the throughput of the fault-tolerant file
system.

Recovery Process

When a failed driver is restarted, restart it as follows:

Figure 6-92 Computing recovery process

1. Recover computing. (Orange arrow)
Use checkpoint information to restart Driver, reconstruct SparkContext and
restart Receiver.

2. Recover metadata block. (Green arrow)
This operation ensures that all necessary metadata blocks are recovered to
continue the subsequent computing recovery.

3. Relaunch unfinished jobs. (Red arrow)
Recovered metadata is used to generate RDDs and corresponding jobs for
interrupted batch processing due to failures.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 146

4. Read block data saved in logs. (Blue arrow)
Block data is directly read from WALs during execution of the preceding jobs,
and therefore all essential data reliably stored in logs is recovered.

5. Resend unconfirmed data. (Purple arrow)
Data that is cached but not stored to logs upon failures is re-sent by data
sources, because the receiver does not confirm the data.

Therefore, by using WALs and reliable Receiver, Spark Streaming can avoid input
data loss caused by Driver failures.

SparkSQL and DataSet Principle

SparkSQL

Figure 6-93 SparkSQL and DataSet

Spark SQL is a module for processing structured data. In Spark application, SQL
statements or DataSet APIs can be seamlessly used for querying structured data.

Spark SQL and DataSet also provide a universal method for accessing multiple
data sources such as Hive, CSV, Parquet, ORC, JSON, and JDBC. These data sources
also allow data interaction. Spark SQL reuses the Hive frontend processing logic
and metadata processing module. With the Spark SQL, you can directly query
existing Hive data.

In addition, Spark SQL also provides API, CLI, and JDBC APIs, allowing diverse
accesses to the client.

Spark SQL Native DDL/DML

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 147

In Spark 1.5, lots of Data Definition Language (DDL)/Data Manipulation Language
(DML) commands are pushed down to and run on the Hive, causing coupling with
the Hive and inflexibility such as unexpected error reports and results.

Spark 3.1.1 realizes command localization and replaces the Hive with Spark SQL
Native DDL/DML to run DDL/DML commands. Additionally, the decoupling from
the Hive is realized and commands can be customized.

DataSet

A DataSet is a strongly typed collection of domain-specific objects that can be
transformed in parallel using functional or relational operations. Each Dataset also
has an untyped view called a DataFrame, which is a Dataset of Row.

The DataFrame is a structured and distributed dataset consisting of multiple
columns. The DataFrame is equal to a table in the relationship database or the
DataFrame in the R/Python. The DataFrame is the most basic concept in the Spark
SQL, which can be created by using multiple methods, such as the structured
dataset, Hive table, external database or RDD.

Operations available on DataSets are divided into transformations and actions.

● A transformation operation can generate a new DataSet,
for example, map, filter, select, and aggregate (groupBy).

● An action operation can trigger computation and return results,
for example, count, show, or write data to the file system.

You can use either of the following methods to create a DataSet:

● The most common way is by pointing Spark to some files on storage systems,
using the read function available on a SparkSession.
val people = spark.read.parquet("...").as[Person] // Scala
DataSet<Person> people = spark.read().parquet("...").as(Encoders.bean(Person.class));//Java

● You can also create a DataSet using the transformation operation available on
an existing one.
For example, apply the map operation on an existing DataSet to create a
DataSet:
val names = people.map(_.name) // In Scala: names is Dataset.
Dataset<String> names = people.map((Person p) -> p.name, Encoders.STRING)); // Java

CLI and JDBCServer

In addition to programming APIs, Spark SQL also provides the CLI/JDBC APIs.

● Both spark-shell and spark-sql scripts can provide the CLI for debugging.
● JDBCServer provides JDBC APIs. External systems can directly send JDBC

requests to calculate and parse structured data.

SparkSession Principle
SparkSession is a unified API for Spark programming and can be regarded as a
unified entry for reading data. SparkSession provides a single entry point to
perform many operations that were previously scattered across multiple classes,
and also provides accessor methods to these older classes to maximize
compatibility.

A SparkSession can be created using a builder pattern. The builder will
automatically reuse the existing SparkSession if there is a SparkSession; or create

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 148

a SparkSession if it does not exist. During I/O transactions, the configuration item
settings in the builder are automatically synchronized to Spark and Hadoop.

import org.apache.spark.sql.SparkSession
val sparkSession = SparkSession.builder
 .master("local")
 .appName("my-spark-app")
 .config("spark.some.config.option", "config-value")
 .getOrCreate()

● SparkSession can be used to execute SQL queries on data and return results
as DataFrame.
sparkSession.sql("select * from person").show

● SparkSession can be used to set configuration items during running. These
configuration items can be replaced with variables in SQL statements.
sparkSession.conf.set("spark.some.config", "abcd")
sparkSession.conf.get("spark.some.config")
sparkSession.sql("select ${spark.some.config}")

● SparkSession also includes a "catalog" method that contains methods to work
with Metastore (data catalog). After this method is used, a dataset is
returned, which can be run using the same Dataset API.
val tables = sparkSession.catalog.listTables()
val columns = sparkSession.catalog.listColumns("myTable")

● Underlying SparkContext can be accessed by SparkContext API of
SparkSession.
val sparkContext = sparkSession.sparkContext

Structured Streaming Principle
Structured Streaming is a stream processing engine built on the Spark SQL engine.
You can use the Dataset/DataFrame API in Scala, Java, Python, or R to express
streaming aggregations, event-time windows, and stream-stream joins. If
streaming data is incrementally and continuously produced, Spark SQL will
continue to process the data and synchronize the result to the result set. In
addition, the system ensures end-to-end exactly-once fault-tolerance guarantees
through checkpoints and WALs.

The core of Structured Streaming is to take streaming data as an incremental
database table. Similar to the data block processing model, the streaming data
processing model applies query operations on a static database table to streaming
computing, and Spark uses standard SQL statements for query, to obtain data
from the incremental and unbounded table.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 149

Figure 6-94 Unbounded table of Structured Streaming

Each query operation will generate a result table. At each trigger interval, updated
data will be synchronized to the result table. Whenever the result table is updated,
the updated result will be written into an external storage system.

Figure 6-95 Structured Streaming data processing model

Storage modes of Structured Streaming at the output phase are as follows:

● Complete Mode: The updated result sets are written into the external storage
system. The write operation is performed by a connector of the external
storage system.

● Append Mode: If an interval is triggered, only added data in the result table
will be written into an external system. This is applicable only on the queries
where existing rows in the result table are not expected to change.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 150

● Update Mode: If an interval is triggered, only updated data in the result table
will be written into an external system, which is the difference between the
Complete Mode and Update Mode.

Basic Concepts
● RDD

Resilient Distributed Dataset (RDD) is a core concept of Spark. It indicates a
read-only and partitioned distributed dataset. Partial or all data of this
dataset can be cached in the memory and reused between computations.
RDD Creation
– An RDD can be created from the input of HDFS or other storage systems

that are compatible with Hadoop.
– A new RDD can be converted from a parent RDD.
– An RDD can be converted from a collection of datasets through encoding.
RDD Storage
– You can select different storage levels to store an RDD for reuse. (There

are 11 storage levels to store an RDD.)
– By default, the RDD is stored in the memory. When the memory is

insufficient, the RDD overflows to the disk.
● RDD Dependency

The RDD dependency includes the narrow dependency and wide dependency.

Figure 6-96 RDD dependency

– Narrow dependency: Each partition of the parent RDD is used by at
most one partition of the child RDD.

– Wide dependency: Partitions of the child RDD depend on all partitions of
the parent RDD.

The narrow dependency facilitates the optimization. Logically, each RDD
operator is a fork/join (the join is not the join operator mentioned above but
the barrier used to synchronize multiple concurrent tasks); fork the RDD to

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 151

each partition, and then perform the computation. After the computation, join
the results, and then perform the fork/join operation on the next RDD
operator. It is uneconomical to directly translate the RDD into physical
implementation. The first is that every RDD (even intermediate result) needs
to be physicalized into memory or storage, which is time-consuming and
occupies much space. The second is that as a global barrier, the join operation
is very expensive and the entire join process will be slowed down by the
slowest node. If the partitions of the child RDD narrowly depend on that of
the parent RDD, the two fork/join processes can be combined to implement
classic fusion optimization. If the relationship in the continuous operator
sequence is narrow dependency, multiple fork/join processes can be combined
to reduce a large number of global barriers and eliminate the physicalization
of many RDD intermediate results, which greatly improves the performance.
This is called pipeline optimization in Spark.

● Transformation and Action (RDD Operations)
Operations on RDD include transformation (the return value is an RDD) and
action (the return value is not an RDD). Figure 6-97 shows the RDD
operation process. The transformation is lazy, which indicates that the
transformation from one RDD to another RDD is not immediately executed.
Spark only records the transformation but does not execute it immediately.
The real computation is started only when the action is started. The action
returns results or writes the RDD data into the storage system. The action is
the driving force for Spark to start the computation.

Figure 6-97 RDD operation

The data and operation model of RDD are quite different from those of Scala.
val file = sc.textFile("hdfs://...")
val errors = file.filter(_.contains("ERROR"))

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 152

errors.cache()
errors.count()

a. The textFile operator reads log files from the HDFS and returns files (as
an RDD).

b. The filter operator filters rows with ERROR and assigns them to errors (a
new RDD). The filter operator is a transformation.

c. The cache operator caches errors for future use.
d. The count operator returns the number of rows of errors. The count

operator is an action.

Transformation includes the following types:
– The RDD elements are regarded as simple elements.

The input and output has the one-to-one relationship, and the partition
structure of the result RDD remains unchanged, for example, map.
The input and output has the one-to-many relationship, and the partition
structure of the result RDD remains unchanged, for example, flatMap
(one element becomes a sequence containing multiple elements after
map and then flattens to multiple elements).
The input and output has the one-to-one relationship, but the partition
structure of the result RDD changes, for example, union (two RDDs
integrates to one RDD, and the number of partitions becomes the sum of
the number of partitions of two RDDs) and coalesce (partitions are
reduced).
Operators of some elements are selected from the input, such as filter,
distinct (duplicate elements are deleted), subtract (elements only exist in
this RDD are retained), and sample (samples are taken).

– The RDD elements are regarded as key-value pairs.
Perform the one-to-one calculation on the single RDD, such as
mapValues (the partition mode of the source RDD is retained, which is
different from map).
Sort the single RDD, such as sort and partitionBy (partitioning with
consistency, which is important to the local optimization).
Restructure and reduce the single RDD based on key, such as groupByKey
and reduceByKey.
Join and restructure two RDDs based on the key, such as join and
cogroup.

NO TE

The later three operations involving sorting are called shuffle operations.

Action includes the following types:
– Generate scalar configuration items, such as count (the number of

elements in the returned RDD), reduce, fold/aggregate (the number of
scalar configuration items that are returned), and take (the number of
elements before the return).

– Generate the Scala collection, such as collect (import all elements in the
RDD to the Scala collection) and lookup (look up all values corresponds
to the key).

– Write data to the storage, such as saveAsTextFile (which corresponds to
the preceding textFile).

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 153

– Check points, such as the checkpoint operator. When Lineage is quite
long (which occurs frequently in graphics computation), it takes a long
period of time to execute the whole sequence again when a fault occurs.
In this case, checkpoint is used as the check point to write the current
data to stable storage.

● Shuffle
Shuffle is a specific phase in the MapReduce framework, which is located
between the Map phase and the Reduce phase. If the output results of Map
are to be used by Reduce, the output results must be hashed based on a key
and distributed to each Reducer. This process is called Shuffle. Shuffle involves
the read and write of the disk and the transmission of the network, so that
the performance of Shuffle directly affects the operation efficiency of the
entire program.
The figure below shows the entire process of the MapReduce algorithm.

Figure 6-98 Algorithm process

Shuffle is a bridge connecting data. The following describes the
implementation of shuffle in Spark.
Shuffle divides a job of Spark into multiple stages. The former stages contain
one or more ShuffleMapTasks, and the last stage contains one or more
ResultTasks.

● Spark Application Structure
The Spark application structure includes the initialized SparkContext and the
main program.
– Initialized SparkContext: constructs the operating environment of the

Spark Application.
Constructs the SparkContext object. The following is an example:
new SparkContext(master, appName, [SparkHome], [jars])

Parameter description:
master: indicates the link string. The link modes include local, Yarn-
cluster, and Yarn-client.
appName: indicates the application name.
SparkHome: indicates the directory where Spark is installed in the cluster.
jars: indicates the code and dependency package of an application.

– Main program: processes data.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 154

For details about how to submit an application, visit https://
spark.apache.org/docs/3.1.1/submitting-applications.html.

● Spark Shell Commands
The basic Spark shell commands support the submission of Spark
applications. The Spark shell commands are as follows:
./bin/spark-submit \
 --class <main-class> \
 --master <master-url> \
 ... # other options
 <application-jar> \
 [application-arguments]

Parameter description:
--class: indicates the name of the class of a Spark application.
--master: indicates the master to which the Spark application links, such as
Yarn-client and Yarn-cluster.
application-jar: indicates the path of the JAR file of the Spark application.
application-arguments: indicates the parameter required to submit the Spark
application. This parameter can be left blank.

● Spark JobHistory Server
The Spark web UI is used to monitor the details in each phase of the Spark
framework of a running or historical Spark job and provide the log display,
which helps users to develop, configure, and optimize the job in more fine-
grained units.

6.28.2 Spark HA Solution

Spark Multi-Active Instance HA Principles and Implementation Solution
Based on existing JDBCServer in the community, multi-active-instance mode is
used to achieve HA. In this mode, multiple JDBCServers coexist in the cluster and
the client can randomly connect any JDBCServer to perform service operations.
When one or multiple JDBCServers stop working, a client can connect to another
normal JDBCServer.

Compared with active/standby HA mode, multi-active instance mode has
following advantages:

● In active/standby HA, when the active/standby switchover occurs, the
unavailable period cannot be controlled by JDBCServer, but it depends on Yarn
service resources.

● In Spark, the Thrift JDBC similar to HiveServer2 provides services and users
access services through Beeline and JDBC API. Therefore, the processing
capability of the JDBCServer cluster depends on the single-point capability of
the primary server, and the scalability is insufficient.

The multi-active instance HA mode not only can prevent service interruption
caused by switchover, but also enables cluster scale-out to improve high
concurrency.

● Implementation
The following figure shows the basic principle of multi-active instance HA of
Spark JDBCServer.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 155

https://spark.apache.org/docs/3.1.1/submitting-applications.html
https://spark.apache.org/docs/3.1.1/submitting-applications.html

Figure 6-99 Spark JDBCServer HA

1. When a JDBCServer is started, it registers with ZooKeeper by writing node
information in a specified directory. Node information includes the instance IP
address, port number, version, and serial number.

2. To connect to JDBCServer, the client must specify the namespace, which is the
directory of JDBCServer instances in ZooKeeper. During the connection, a
JDBCServer instance is randomly selected from the specified namespace.

3. After the connection succeeds, the client sends SQL statements to JDBCServer.

4. JDBCServer executes received SQL statements and returns results to the client.

If multi-active instance HA of Spark JDBCServer is enabled, all JDBCServer
instances are independent and equivalent. When one JDBCServer instance is
interrupted during upgrade, other JDBCServer instances can accept the connection
request from the client.

The rules below must be followed in the multi-active instance HA of Spark
JDBCServer.

● If a JDBCServer instance exits abnormally, no other instance will take over the
sessions and services running on the abnormal instance.

● When the JDBCServer process is stopped, corresponding nodes are deleted
from ZooKeeper.

● The client randomly selects the server, which may result in uneven session
allocation caused by random distribution of policy results, and finally result in
load imbalance of instances.

● After the instance enters the maintenance mode (in which no new connection
requests from clients are accepted), services running on the instance may fail
when the decommissioning times out.

● URL Connection

– Multi-active instance mode

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 156

In multi-active instance mode, the client reads content from the
ZooKeeper node and connects to JDBCServer. The connection strings are
list below.

▪ Security mode:

If Kinit authentication is enabled, the JDBCURL is as follows:
jdbc:hive2://
<zkNode1_IP>:<zkNode1_Port>,<zkNode2_IP>:<zkNode2_Port>,<zkNode3_IP>:<zkNode3_P
ort>/;serviceDiscoveryMode=zooKeeper;zooKeeperNamespace=sparkthriftserver2x;sasl
Qop=auth-conf;auth=KERBEROS;principal=spark/hadoop.<System domain
name>@<System domain name>;

NO TE

● In the above JDBCURL, <zkNode_IP>:<zkNode_Port> indicates the
ZooKeeper URL. Use commas (,) to separate multiple URLs,

Example: 192.168.81.37:2181,192.168.195.232:2181,192.168.169.84:2181.

● sparkthriftserver2x indicates the ZooKeeper directory, where a random
JDBCServer instance is connected to the client.

For example, when you use Beeline client to connect JDBCServer, run
the following command:

sh CLIENT_HOME/spark/bin/beeline -u "jdbc:hive2://
<zkNode1_IP>:<zkNode1_Port>,<zkNode2_IP>:<zkNode2_Port>,<zkN
ode3_IP>:<zkNode3_Port>/;serviceDiscoveryMode=zooKeeper;zooK
eeperNamespace=sparkthriftserver2x;saslQop=auth-
conf;auth=KERBEROS;principal=spark/hadoop.<System domain
name>@<System domain name>;"

If Keytab authentication is enabled, the JDBCURL is as follows:
jdbc:hive2://
<zkNode1_IP>:<zkNode1_Port>,<zkNode2_IP>:<zkNode2_Port>,<zkNode3_IP>:<zkNode3_P
ort>/;serviceDiscoveryMode=zooKeeper;zooKeeperNamespace=sparkthriftserver2x;sasl
Qop=auth-conf;auth=KERBEROS;principal=spark/hadoop.<System domain
name>@<System domain
name>;user.principal=<principal_name>;user.keytab=<path_to_keytab>

In the above URL, <principal_name> indicates the principal of the
Kerberos user, for example, test@<System domain name>;
<path_to_keytab> indicates the Keytab file path corresponding to
<principal_name>, for example, /opt/auth/test/user.keytab.

▪ Common mode:
jdbc:hive2://
<zkNode1_IP>:<zkNode1_Port>,<zkNode2_IP>:<zkNode2_Port>,<zkNode3_IP>:<zkNode3_P
ort>/;serviceDiscoveryMode=zooKeeper;zooKeeperNamespace=sparkthriftserver2x;

For example, when you use Beeline client, in normal mode, for
connection, run the following command:

sh CLIENT_HOME/spark/bin/beeline -u "jdbc:hive2://
<zkNode1_IP>:<zkNode1_Port>,<zkNode2_IP>:<zkNode2_Port>,<zkN
ode3_IP>:<zkNode3_Port>/;serviceDiscoveryMode=zooKeeper;zooK
eeperNamespace=sparkthriftserver2x;"

– Non-multi-active instance mode

In this mode, a client connects to a specified JDBCServer node. Compared
with multi-active instance mode, the connection string in this mode does
not contain serviceDiscoveryMode and zooKeeperNamespace
parameters about ZooKeeper.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 157

For example, when you use Beeline client, in security mode, to connect
JDBCServer in non-multi-active instance mode, run the following
command:
sh CLIENT_HOME/spark/bin/beeline -u "jdbc:hive2://
<server_IP>:<server_Port>/;user.principal=spark/hadoop.<System
domain name>@<System domain name>;saslQop=auth-
conf;auth=KERBEROS;principal=spark/hadoop.<System domain
name>@<System domain name>;"

NO TE

● In the above command, <server_IP>:<server_Port> indicates the URL of the
specified JDBCServer node.

● CLIENT_HOME indicates the client path.

Except the connection method, other operations of JDBCServer API in the
two modes are the same. Spark JDBCServer is another implementation of
HiveServer2 in Hive. For details about how to use Spark JDBCServer, see
https://cwiki.apache.org/confluence/display/Hive/
HiveServer2+Clients.

Spark Multi-Tenant HA
In the JDBCServer multi-active instance solution, JDBCServer uses the Yarn-client
mode, but there is only one Yarn resource queue available. To solve this resource
limitation problem, the multi-tenant mode is introduced.

In multi-tenant mode, JDBCServers are bound with tenants. Each tenant
corresponds to one or more JDBCServers, and a JDBCServer provides services for
only one tenant. Different tenants can be configured with different Yarn queues to
implement resource isolation. In addition, JDBCServer can be dynamically started
as required to avoid resource waste.

● Implementation
Figure 6-100 shows the HA solution of the multi-tenant mode.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 158

https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients
https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients

Figure 6-100 Multi-tenant mode of Spark JDBCServer

a. When ProxyServer is started, it registers with ZooKeeper by writing node
information in a specified directory. Node information includes the
instance IP address, port number, version, and serial number.

NO TE

In multi-tenant mode, the JDBCServer instance refers to the ProxyServer
(JDBCServer proxy).

b. To connect to ProxyServer, the client must specify a namespace, which is
the directory of the ProxyServer instance where you want to access
ZooKeeper. When the client connects to the ProxyServer, a random
instance under the namespace is selected for connection. For details
about the URL, see URL Connection Overview.

c. After the client successfully connects to the ProxyServer, which first
checks whether the JDBCServer of a tenant exists. If yes, Beeline connects
the JDBCServer. If no, a new JDBCServer is started in Yarn-cluster mode.
After the startup of JDBCServer, ProxyServer obtains the IP address of the
JDBCServer and establishes the connection between Beeline and
JDBCServer.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 159

d. The client sends SQL statements to ProxyServer, which forwards
statements to the connected JDBCServer. JDBCServer returns the results
to ProxyServer, which then returns the results to the client.

In the multi-active instance HA mode, all instances are independent and
equivalent. If one instance is interrupted during upgrade, other instances can
accept the connection request from the client.

● URL Connection Overview
– Multi-tenant mode

In multi-tenant mode, the client reads content from the ZooKeeper node
and connects to ProxyServer. The connection strings are list below.

▪ Security mode:
If Kinit authentication is enabled, the client URL is as follows:
jdbc:hive2://
<zkNode1_IP>:<zkNode1_Port>,<zkNode2_IP>:<zkNode2_Port>,<zkNode3_IP>:<zkNode3_P
ort>/;serviceDiscoveryMode=zooKeeper;zooKeeperNamespace=sparkthriftserver2x;sasl
Qop=auth-conf;auth=KERBEROS;principal=spark/hadoop.<System domain
name>@<System domain name>;

NO TE

● In the above URL, <zkNode_IP>:<zkNode_Port> indicates the ZooKeeper
URL. Use commas (,) to separate multiple URLs,
Example:
192.168.81.37:2181,192.168.195.232:2181,192.168.169.84:2181.

● sparkthriftserver2x indicates the ZooKeeper directory, where a random
JDBCServer instance is connected to the client.

For example, when you use Beeline client for connection, run the
following command:
sh CLIENT_HOME/spark/bin/beeline -u "jdbc:hive2://
<zkNode1_IP>:<zkNode1_Port>,<zkNode2_IP>:<zkNode2_Port>,<zkN
ode3_IP>:<zkNode3_Port>/;serviceDiscoveryMode=zooKeeper;zooK
eeperNamespace=sparkthriftserver2x;saslQop=auth-
conf;auth=KERBEROS;principal=spark/hadoop.<System domain
name>@<System domain name>;"
If Keytab authentication is enabled, the URL is as follows:
jdbc:hive2://
<zkNode1_IP>:<zkNode1_Port>,<zkNode2_IP>:<zkNode2_Port>,<zkNode3_IP>:<zkNode3_P
ort>/;serviceDiscoveryMode=zooKeeper;zooKeeperNamespace=sparkthriftserver2x;sasl
Qop=auth-conf;auth=KERBEROS;principal=spark/hadoop.<System domain
name>@<System domain
name>;user.principal=<principal_name>;user.keytab=<path_to_keytab>

In the above URL, <principal_name> indicates the principal of the
Kerberos user, for example, test@<System domain name>;
<path_to_keytab> indicates the Keytab file path corresponding to
<principal_name>, for example, /opt/auth/test/user.keytab.

▪ Common mode:
jdbc:hive2://
<zkNode1_IP>:<zkNode1_Port>,<zkNode2_IP>:<zkNode2_Port>,<zkNode3_IP>:<zkNode3_P
ort>/;serviceDiscoveryMode=zooKeeper;zooKeeperNamespace=sparkthriftserver2x;

For example, run the following command when you use Beeline
client for connection in normal mode:
sh CLIENT_HOME/spark/bin/beeline -u "jdbc:hive2://
<zkNode1_IP>:<zkNode1_Port>,<zkNode2_IP>:<zkNode2_Port>,<zkN

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 160

ode3_IP>:<zkNode3_Port>/;serviceDiscoveryMode=zooKeeper;zooK
eeperNamespace=sparkthriftserver2x;"

– Non-multi-tenant mode
In non-multi-tenant mode, a client connects to a specified JDBCServer
node. Compared with multi-tenant instance mode, the connection string
in this mode does not contain serviceDiscoveryMode and
zooKeeperNamespace parameters about ZooKeeper.
For example, when you use Beeline client to connect JDBCServer in non-
multi-tenant instance mode, run the following command:
sh CLIENT_HOME/spark/bin/beeline -u "jdbc:hive2://
<server_IP>:<server_Port>/;user.principal=spark/hadoop.<System
domain name>@<System domain name>;saslQop=auth-
conf;auth=KERBEROS;principal=spark/hadoop.<System domain
name>@<System domain name>;"

NO TE

● In the above command, <server_IP>:<server_Port> indicates the URL of the
specified JDBCServer node.

● CLIENT_HOME indicates the client path.

Except the connection method, other operations of JDBCServer API in
multi-tenant mode and non-multi-tenant mode are the same. Spark
JDBCServer is another implementation of HiveServer2 in Hive. For details
about how to use Spark JDBCServer, go to the official Hive website at
https://cwiki.apache.org/confluence/display/Hive/
HiveServer2+Clients.
Specifying a Tenant
Generally, the client submitted by a user connects to the default
JDBCServer of the tenant to which the user belongs. If you want to
connect the client to the JDBCServer of a specified tenant, add the --
hiveconf mapreduce.job.queuename parameter.
If you use Beeline client for connection, run the following command (aaa
is the tenant name):
beeline --hiveconf mapreduce.job.queuename=aaa -u
'jdbc:hive2://192.168.39.30:2181,192.168.40.210:2181,192.168.215.97:2
181;serviceDiscoveryMode=zooKeeper;zooKeeperNamespace=sparkthr
iftserver2x;saslQop=auth-conf;auth=KERBEROS;principal=spark/
hadoop.<System domain name>@<System domain name>;'

6.28.3 Relationship Among Spark, HDFS, and Yarn

Relationship Between Spark and HDFS

Data computed by Spark comes from multiple data sources, such as local files and
HDFS. Most data computed by Spark comes from the HDFS. The HDFS can read
data in large scale for parallel computing. After being computed, data can be
stored in the HDFS.

Spark involves Driver and Executor. Driver schedules tasks and Executor runs tasks.

Figure 6-101 shows the process of reading a file.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 161

https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients
https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients

Figure 6-101 File reading process

The file reading process is as follows:

1. Driver interconnects with the HDFS to obtain the information of File A.
2. The HDFS returns the detailed block information about this file.
3. Driver sets a parallel degree based on the block data amount, and creates

multiple tasks to read the blocks of this file.
4. Executor runs the tasks and reads the detailed blocks as part of the Resilient

Distributed Dataset (RDD).

Figure 6-102 shows the process of writing data to a file.

Figure 6-102 File writing process

The file writing process is as follows:

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 162

1. Driver creates a directory where the file is to be written.
2. Based on the RDD distribution status, the number of tasks related to data

writing is computed, and these tasks are sent to Executor.
3. Executor runs these tasks, and writes the RDD data to the directory created in

1.

Relationship Between Spark and Yarn

The Spark computing and scheduling can be implemented using Yarn mode. Spark
enjoys the computing resources provided by Yarn clusters and runs tasks in a
distributed way. Spark on Yarn has two modes: Yarn-cluster and Yarn-client.

● Yarn-cluster mode
Figure 6-103 shows the running framework of Spark on Yarn-cluster.

Figure 6-103 Spark on Yarn-cluster operation framework

Spark on Yarn-cluster implementation process:

a. The client generates the application information, and then sends the
information to ResourceManager.

b. ResourceManager allocates the first container (ApplicationMaster) to
SparkApplication and starts driver on the container.

c. ApplicationMaster applies for resources from ResourceManager to run
the container.
ResourceManager allocates the container to ApplicationMaster, which
communicates with NodeManager, and starts the executor in the
obtained container. After the executor is started, it registers with the
driver and applies for tasks.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 163

d. The driver allocates tasks to the executor.
e. The executor runs tasks and reports the operating status to the driver.

● Yarn-client mode
Figure 6-104 shows the running framework of Spark on Yarn-cluster.

Figure 6-104 Spark on Yarn-client operation framework

Spark on Yarn-client implementation process:

NO TE

In Yarn-client mode, Driver is deployed on the client and started on the client. In Yarn-
client mode, the client of the earlier version is incompatible. You are advised to use
the Yarn-cluster mode.

a. The client sends the Spark application request to ResourceManager, then
ResourceManager returns the results. The results include information
such as Application ID and the maximum and minimum available
resources. The client packages all information required to start
ApplicationMaster, and sends the information to ResourceManager.

b. After receiving the request, ResourceManager finds a proper node for
ApplicationMaster and starts it on this node. ApplicationMaster is a role
in Yarn, and the process name in Spark is ExecutorLauncher.

c. Based on the resource requirements of each task, ApplicationMaster can
apply for a series of Containers to run tasks from ResourceManager.

d. After receiving the newly allocated container list (from
ResourceManager), ApplicationMaster sends information to the related
NodeManagers to start the containers.
ResourceManager allocates the containers to ApplicationMaster, which
communicates with the related NodeManagers, and starts the executors
in the obtained containers. After the executors are started, it registers
with drivers and applies for tasks.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 164

NO TE

Running containers are not suspended and resources are not released.

e. The drivers allocate tasks to the executors. The executor executes tasks
and reports the operating status to the driver.

6.28.4 Spark Enhanced Open Source Feature: Optimized SQL
Query of Cross-Source Data

Scenario
Enterprises usually store massive data, such as from various databases and
warehouses, for management and information collection. However, diversified
data sources, hybrid dataset structures, and scattered data storage lower query
efficiency.

The open source Spark only supports simple filter pushdown during querying of
multi-source data. The SQL engine performance is deteriorated due of a large
amount of unnecessary data transmission. The pushdown function is enhanced, so
that aggregate, complex projection, and complex predicate can be pushed to
data sources, reducing unnecessary data transmission and improving query
performance.

Only the JDBC data source supports pushdown of query operations, such as
aggregate, projection, predicate, aggregate over inner join, and aggregate
over union all. All pushdown operations can be enabled based on your
requirements.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 165

Table 6-24 Enhanced query of cross-source query

Module Before
Enhancement

After Enhancement

aggregate The pushdown
of aggregate is
not supported.

● Aggregation functions including sum,
avg, max, min, and count are
supported.
Example: select count(*) from table

● Internal expressions of aggregation
functions are supported.
Example: select sum(a+b) from table

● Calculation of aggregation functions
is supported. Example: select avg(a) +
max(b) from table

● Pushdown of having is supported.
Example: select sum(a) from table
where a>0 group by b having
sum(a)>10

● Pushdown of some functions is
supported.
Pushdown of lines in mathematics,
time, and string functions, such as
abs(), month(), and length() are
supported. In addition to the
preceding built-in functions, you can
run the SET command to add
functions supported by data sources.
Example: select sum(abs(a)) from
table

● Pushdown of limit and order by after
aggregate is supported. However, the
pushdown is not supported in Oracle,
because Oracle does not support
limit.
Example: select sum(a) from table
where a>0 group by b order by
sum(a) limit 5

projection Only pushdown
of simple
projection is
supported.
Example: select
a, b from table

● Complex expressions can be pushed
down.
Example: select (a+b)*c from table

● Some functions can be pushed down.
For details, see the description below
the table.
Example: select length(a)+abs(b)
from table

● Pushdown of limit and order by after
projection is supported.
Example: select a, b+c from table
order by a limit 3

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 166

Module Before
Enhancement

After Enhancement

predicate Only simple
filtering with
the column
name on the
left of the
operator and
values on the
right is
supported.
Example:
select * from
table where
a>0 or b in
("aaa", "bbb")

● Complex expression pushdown is
supported.
Example: select * from table where a
+b>c*d or a/c in (1, 2, 3)

● Some functions can be pushed down.
For details, see the description below
the table.
Example: select * from table where
length(a)>5

aggregate over
inner join

Related data
from the two
tables must be
loaded to
Spark. The join
operation must
be performed
before the
aggregate
operation.

The following functions are supported:
● Aggregation functions including sum,

avg, max, min, and count are
supported.

● All aggregate operations can be
performed in a same table. The
group by operations can be
performed on one or two tables and
only inner join is supported.

The following scenarios are not
supported:
● aggregate cannot be pushed down

from both the left- and right-join
tables.

● aggregate contains operations, for
example, sum(a+b).

● aggregate operations, for example,
sum(a)+min(b).

aggregate over
union all

Related data
from the two
tables must be
loaded to
Spark. union
must be
performed
before
aggregate.

Supported scenarios:
Aggregation functions including sum,
avg, max, min, and count are
supported.
Unsupported scenarios:
● aggregate contains operations, for

example, sum(a+b).
● aggregate operations, for example,

sum(a)+min(b).

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 167

Precautions
● If external data source is Hive, query operation cannot be performed on

foreign tables created by Spark.
● Only MySQL and MPPDB data sources are supported.

6.29 Spark2x

6.29.1 Spark2x Basic Principles
NO TE

The Spark2x component applies to MRS 3.x and later versions.

Description
Spark is a memory-based distributed computing framework. In iterative
computation scenarios, the computing capability of Spark is 10 to 100 times
higher than MapReduce, because data is stored in memory when being processed.
Spark can use HDFS as the underlying storage system, enabling users to quickly
switch to Spark from MapReduce. Spark provides one-stop data analysis
capabilities, such as the streaming processing in small batches, offline batch
processing, SQL query, and data mining. Users can seamlessly use these functions
in a same application. For details about the new open-source features of Spark2x,
see Spark2x Open Source New Features.

Features of Spark are as follows:

● Improves the data processing capability through distributed memory
computing and directed acyclic graph (DAG) execution engine. The delivered
performance is 10 to 100 times higher than that of MapReduce.

● Supports multiple development languages (Scala/Java/Python) and dozens of
highly abstract operators to facilitate the construction of distributed data
processing applications.

● Builds data processing stacks using SQL, Streaming, MLlib, and GraphX to
provide one-stop data processing capabilities.

● Fits into the Hadoop ecosystem, allowing Spark applications to run on
Standalone, Mesos, or Yarn, enabling access of multiple data sources such as
HDFS, HBase, and Hive, and supporting smooth migration of the MapReduce
application to Spark.

Architecture
Figure 6-105 describes the Spark architecture and Table 6-25 lists the Spark
modules.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 168

https://spark.apache.org/docs/latest/
https://spark.apache.org/sql/
https://spark.apache.org/streaming/

Figure 6-105 Spark architecture

Table 6-25 Basic concepts

Module Description

Cluster Manager Cluster manager manages resources in the cluster. Spark
supports multiple cluster managers, including Mesos, Yarn,
and the Standalone cluster manager that is delivered with
Spark. By default, Spark clusters adopt the Yarn cluster
manager.

Application Spark application. It consists of one Driver Program and
multiple executors.

Deploy Mode Deployment in cluster or client mode. In cluster mode, the
driver runs on a node inside the cluster. In client mode, the
driver runs on the client (outside the cluster).

Driver Program The main process of the Spark application. It runs the
main() function of an application and creates SparkContext.
It is used for parsing applications, generating stages, and
scheduling tasks to executors. Usually, SparkContext
represents Driver Program.

Executor A process started on a Work Node. It is used to execute
tasks, and manage and process the data used in
applications. A Spark application usually contains multiple
executors. Each executor receives commands from the driver
and executes one or multiple tasks.

Worker Node A node that starts and manages executors and resources in
a cluster.

Job A job consists of multiple concurrent tasks. One action
operator (for example, a collect operator) maps to one job.

Stage Each job consists of multiple stages. Each stage is a task set,
which is separated by Directed Acyclic Graph (DAG).

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 169

Module Description

Task A task carries the computation unit of the service logics. It is
the minimum working unit that can be executed on the
Spark platform. An application can be divided into multiple
tasks based on the execution plan and computation
amount.

Spark Principle
Figure 6-106 describes the application running architecture of Spark.

1. An application is running in the cluster as a collection of processes. Driver
coordinates the running of the application.

2. To run an application, Driver connects to the cluster manager (such as
Standalone, Mesos, and Yarn) to apply for the executor resources, and start
ExecutorBackend. The cluster manager schedules resources between different
applications. Driver schedules DAGs, divides stages, and generates tasks for
the application at the same time.

3. Then, Spark sends the codes of the application (the codes transferred to
SparkContext, which is defined by JAR or Python) to an executor.

4. After all tasks are finished, the running of the user application is stopped.

Figure 6-106 Spark application running architecture

Spark uses Master and Worker modes, as shown in Figure 6-107. A user submits
an application on the Spark client, and then the scheduler divides a job into
multiple tasks and sends the tasks to each Worker for execution. Each Worker
reports the computation results to Driver (Master), and then the Driver aggregates
and returns the results to the client.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 170

https://spark.apache.org/docs/1.3.1/api/scala/index.html#org.apache.spark.SparkContext

Figure 6-107 Spark Master-Worker mode

Note the following about the architecture:

● Applications are isolated from each other.
Each application has an independent executor process, and each executor
starts multiple threads to execute tasks in parallel. Each driver schedules its
own tasks, and different application tasks run on different JVMs, that is,
different executors.

● Different Spark applications do not share data, unless data is stored in the
external storage system such as HDFS.

● You are advised to deploy the Driver program in a location that is close to the
Worker node because the Driver program schedules tasks in the cluster. For
example, deploy the Driver program on the network where the Worker node
is located.

Spark on YARN can be deployed in two modes:

● In Yarn-cluster mode, the Spark driver runs inside an ApplicationMaster
process which is managed by Yarn in the cluster. After the ApplicationMaster
is started, the client can exit without interrupting service running.

● In Yarn-client mode, Driver runs in the client process, and the
ApplicationMaster process is used only to apply for requesting resources from
Yarn.

Spark Streaming Principle
Spark Streaming is a real-time computing framework built on the Spark, which
expands the capability for processing massive streaming data. Spark supports two
data processing approaches: Direct Streaming and Receiver.

Direct Streaming computing process

In Direct Streaming approach, Direct API is used to process data. Take Kafka Direct
API as an example. Direct API provides offset location that each batch range will
read from, which is much simpler than starting a receiver to continuously receive

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 171

data from Kafka and written data to write-ahead logs (WALs). Then, each batch
job is running and the corresponding offset data is ready in Kafka. These offset
information can be securely stored in the checkpoint file and read by applications
that failed to start.

Figure 6-108 Data transmission through Direct Kafka API

After the failure, Spark Streaming can read data from Kafka again and process the
data segment. The processing result is the same no matter Spark Streaming fails
or not, because the semantic is processed only once.

Direct API does not need to use the WAL and Receivers, and ensures that each
Kafka record is received only once, which is more efficient. In this way, the Spark
Streaming and Kafka can be well integrated, making streaming channels be
featured with high fault-tolerance, high efficiency, and ease-of-use. Therefore, you
are advised to use Direct Streaming to process data.

Receiver computing process

When a Spark Streaming application starts (that is, when the driver starts), the
related StreamingContext (the basis of all streaming functions) uses SparkContext
to start the receiver to become a long-term running task. These receivers receive
and save streaming data to the Spark memory for processing. Figure 6-109 shows
the data transfer lifecycle.

Figure 6-109 Data transfer lifecycle

1. Receive data (blue arrow).

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 172

Receiver divides a data stream into a series of blocks and stores them in the
executor memory. In addition, after WAL is enabled, it writes data to the WAL
of the fault-tolerant file system.

2. Notify the driver (green arrow).
The metadata in the received block is sent to StreamingContext in the driver.
The metadata includes:
– Block reference ID used to locate the data position in the Executor

memory.
– Block data offset information in logs (if the WAL function is enabled).

3. Process data (red arrow).
For each batch of data, StreamingContext uses block information to generate
resilient distributed datasets (RDDs) and jobs. StreamingContext executes jobs
by running tasks to process blocks in the executor memory.

4. Periodically set checkpoints (orange arrows).
5. For fault tolerance, StreamingContext periodically sets checkpoints and saves

them to external file systems.

Fault Tolerance

Spark and its RDD allow seamless processing of failures of any Worker node in the
cluster. Spark Streaming is built on top of Spark. Therefore, the Worker node of
Spark Streaming also has the same fault tolerance capability. However, Spark
Streaming needs to run properly in case of long-time running. Therefore, Spark
must be able to recover from faults through the driver process (main process that
coordinates all Workers). This poses challenges to the Spark driver fault-tolerance
because the Spark driver may be any user application implemented in any
computation mode. However, Spark Streaming has internal computation
architecture. That is, it periodically executes the same Spark computation in each
batch data. Such architecture allows it to periodically store checkpoints to reliable
storage space and recover them upon the restart of Driver.

For source data such as files, the Driver recovery mechanism can ensure zero data
loss because all data is stored in a fault-tolerant file system such as HDFS.
However, for other data sources such as Kafka and Flume, some received data is
cached only in memory and may be lost before being processed. This is caused by
the distribution operation mode of Spark applications. When the driver process
fails, all executors running in the Cluster Manager, together with all data in the
memory, are terminated. To avoid such data loss, the WAL function is added to
Spark Streaming.

WAL is often used in databases and file systems to ensure persistence of any data
operation. That is, first record an operation to a persistent log and perform this
operation on data. If the operation fails, the system is recovered by reading the log
and re-applying the preset operation. The following describes how to use WAL to
ensure persistence of received data:

Receiver is used to receive data from data sources such as Kafka. As a long-time
running task in Executor, Receiver receives data, and also confirms received data if
supported by data sources. Received data is stored in the Executor memory, and
Driver delivers a task to Executor for processing.

After WAL is enabled, all received data is stored to log files in the fault-tolerant
file system. Therefore, the received data does not lose even if Spark Streaming

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 173

fails. Besides, receiver checks correctness of received data only after the data is
pre-written into logs. Data that is cached but not stored can be sent again by data
sources after the driver restarts. These two mechanisms ensure zero data loss.
That is, all data is recovered from logs or re-sent by data sources.

To enable the WAL function, perform the following operations:

● Set streamingContext.checkpoint (path-to-directory) to configure the
checkpoint directory, which is an HDFS file path used to store streaming
checkpoints and WALs.

● Set spark.streaming.receiver.writeAheadLog.enable of SparkConf to true
(the default value is false).

After WAL is enabled, all receivers have the advantage of recovering from reliable
received data. You are advised to disable the multi-replica mechanism because the
fault-tolerant file system of WAL may also replicate the data.

NO TE

The data receiving throughput is lowered after WAL is enabled. All data is written into the
fault-tolerant file system. As a result, the write throughput of the file system and the
network bandwidth for data replication may become the potential bottleneck. To solve this
problem, you are advised to create more receivers to increase the degree of data receiving
parallelism or use better hardware to improve the throughput of the fault-tolerant file
system.

Recovery Process

When a failed driver is restarted, restart it as follows:

Figure 6-110 Computing recovery process

1. Recover computing. (Orange arrow)
Use checkpoint information to restart Driver, reconstruct SparkContext and
restart Receiver.

2. Recover metadata block. (Green arrow)
This operation ensures that all necessary metadata blocks are recovered to
continue the subsequent computing recovery.

3. Relaunch unfinished jobs. (Red arrow)
Recovered metadata is used to generate RDDs and corresponding jobs for
interrupted batch processing due to failures.

4. Read block data saved in logs. (Blue arrow)

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 174

Block data is directly read from WALs during execution of the preceding jobs,
and therefore all essential data reliably stored in logs is recovered.

5. Resend unconfirmed data. (Purple arrow)

Data that is cached but not stored to logs upon failures is re-sent by data
sources, because the receiver does not confirm the data.

Therefore, by using WALs and reliable Receiver, Spark Streaming can avoid input
data loss caused by Driver failures.

SparkSQL and DataSet Principle

SparkSQL

Figure 6-111 SparkSQL and DataSet

Spark SQL is a module for processing structured data. In Spark application, SQL
statements or DataSet APIs can be seamlessly used for querying structured data.

Spark SQL and DataSet also provide a universal method for accessing multiple
data sources such as Hive, CSV, Parquet, ORC, JSON, and JDBC. These data sources
also allow data interaction. Spark SQL reuses the Hive frontend processing logic
and metadata processing module. With the Spark SQL, you can directly query
existing Hive data.

In addition, Spark SQL also provides API, CLI, and JDBC APIs, allowing diverse
accesses to the client.

Spark SQL Native DDL/DML

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 175

In Spark 1.5, lots of Data Definition Language (DDL)/Data Manipulation Language
(DML) commands are pushed down to and run on the Hive, causing coupling with
the Hive and inflexibility such as unexpected error reports and results.

Spark2x realizes command localization and replaces the Hive with Spark SQL
Native DDL/DML to run DDL/DML commands. Additionally, the decoupling from
the Hive is realized and commands can be customized.

DataSet

A DataSet is a strongly typed collection of domain-specific objects that can be
transformed in parallel using functional or relational operations. Each Dataset also
has an untyped view called a DataFrame, which is a Dataset of Row.

The DataFrame is a structured and distributed dataset consisting of multiple
columns. The DataFrame is equal to a table in the relationship database or the
DataFrame in the R/Python. The DataFrame is the most basic concept in the Spark
SQL, which can be created by using multiple methods, such as the structured
dataset, Hive table, external database or RDD.

Operations available on DataSets are divided into transformations and actions.

● A transformation operation can generate a new DataSet,
for example, map, filter, select, and aggregate (groupBy).

● An action operation can trigger computation and return results,
for example, count, show, or write data to the file system.

You can use either of the following methods to create a DataSet:

● The most common way is by pointing Spark to some files on storage systems,
using the read function available on a SparkSession.
val people = spark.read.parquet("...").as[Person] // Scala
DataSet<Person> people = spark.read().parquet("...").as(Encoders.bean(Person.class));//Java

● You can also create a DataSet using the transformation operation available on
an existing one. For example, apply the map operation on an existing DataSet
to create a DataSet:
val names = people.map(_.name) // In Scala: names is Dataset.
Dataset<String> names = people.map((Person p) -> p.name, Encoders.STRING)); // Java

CLI and JDBCServer

In addition to programming APIs, Spark SQL also provides the CLI/JDBC APIs.

● Both spark-shell and spark-sql scripts can provide the CLI for debugging.
● JDBCServer provides JDBC APIs. External systems can directly send JDBC

requests to calculate and parse structured data.

SparkSession Principle
SparkSession is a unified API in Spark2x and can be regarded as a unified entry for
reading data. SparkSession provides a single entry point to perform many
operations that were previously scattered across multiple classes, and also
provides accessor methods to these older classes to maximize compatibility.

A SparkSession can be created using a builder pattern. The builder will
automatically reuse the existing SparkSession if there is a SparkSession; or create
a SparkSession if it does not exist. During I/O transactions, the configuration item
settings in the builder are automatically synchronized to Spark and Hadoop.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 176

import org.apache.spark.sql.SparkSession
val sparkSession = SparkSession.builder
 .master("local")
 .appName("my-spark-app")
 .config("spark.some.config.option", "config-value")
 .getOrCreate()

● SparkSession can be used to execute SQL queries on data and return results
as DataFrame.
sparkSession.sql("select * from person").show

● SparkSession can be used to set configuration items during running. These
configuration items can be replaced with variables in SQL statements.
sparkSession.conf.set("spark.some.config", "abcd")
sparkSession.conf.get("spark.some.config")
sparkSession.sql("select ${spark.some.config}")

● SparkSession also includes a "catalog" method that contains methods to work
with Metastore (data catalog). After this method is used, a dataset is
returned, which can be run using the same Dataset API.
val tables = sparkSession.catalog.listTables()
val columns = sparkSession.catalog.listColumns("myTable")

● Underlying SparkContext can be accessed by SparkContext API of
SparkSession.
val sparkContext = sparkSession.sparkContext

Structured Streaming Principle
Structured Streaming is a stream processing engine built on the Spark SQL engine.
You can use the Dataset/DataFrame API in Scala, Java, Python, or R to express
streaming aggregations, event-time windows, and stream-stream joins. If
streaming data is incrementally and continuously produced, Spark SQL will
continue to process the data and synchronize the result to the result set. In
addition, the system ensures end-to-end exactly-once fault-tolerance guarantees
through checkpoints and WALs.

The core of Structured Streaming is to take streaming data as an incremental
database table. Similar to the data block processing model, the streaming data
processing model applies query operations on a static database table to streaming
computing, and Spark uses standard SQL statements for query, to obtain data
from the incremental and unbounded table.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 177

Figure 6-112 Unbounded table of Structured Streaming

Each query operation will generate a result table. At each trigger interval, updated
data will be synchronized to the result table. Whenever the result table is updated,
the updated result will be written into an external storage system.

Figure 6-113 Structured Streaming data processing model

Storage modes of Structured Streaming at the output phase are as follows:

● Complete Mode: The updated result sets are written into the external storage
system. The write operation is performed by a connector of the external
storage system.

● Append Mode: If an interval is triggered, only added data in the result table
will be written into an external system. This is applicable only on the queries
where existing rows in the result table are not expected to change.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 178

● Update Mode: If an interval is triggered, only updated data in the result table
will be written into an external system, which is the difference between the
Complete Mode and Update Mode.

Concepts
● RDD

Resilient Distributed Dataset (RDD) is a core concept of Spark. It indicates a
read-only and partitioned distributed dataset. Partial or all data of this
dataset can be cached in the memory and reused between computations.
RDD Creation
– An RDD can be created from the input of HDFS or other storage systems

that are compatible with Hadoop.
– A new RDD can be converted from a parent RDD.
– An RDD can be converted from a collection of datasets through encoding.
RDD Storage
– You can select different storage levels to store an RDD for reuse. (There

are 11 storage levels to store an RDD.)
– By default, the RDD is stored in the memory. When the memory is

insufficient, the RDD overflows to the disk.
● RDD Dependency

The RDD dependency includes the narrow dependency and wide dependency.

Figure 6-114 RDD dependency

– Narrow dependency: Each partition of the parent RDD is used by at
most one partition of the child RDD.

– Wide dependency: Partitions of the child RDD depend on all partitions of
the parent RDD.

The narrow dependency facilitates the optimization. Logically, each RDD
operator is a fork/join (the join is not the join operator mentioned above but
the barrier used to synchronize multiple concurrent tasks); fork the RDD to

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 179

each partition, and then perform the computation. After the computation, join
the results, and then perform the fork/join operation on the next RDD
operator. It is uneconomical to directly translate the RDD into physical
implementation. The first is that every RDD (even intermediate result) needs
to be physicalized into memory or storage, which is time-consuming and
occupies much space. The second is that as a global barrier, the join operation
is very expensive and the entire join process will be slowed down by the
slowest node. If the partitions of the child RDD narrowly depend on that of
the parent RDD, the two fork/join processes can be combined to implement
classic fusion optimization. If the relationship in the continuous operator
sequence is narrow dependency, multiple fork/join processes can be combined
to reduce a large number of global barriers and eliminate the physicalization
of many RDD intermediate results, which greatly improves the performance.
This is called pipeline optimization in Spark.

● Transformation and Action (RDD Operations)
Operations on RDD include transformation (the return value is an RDD) and
action (the return value is not an RDD). Figure 6-115 shows the RDD
operation process. The transformation is lazy, which indicates that the
transformation from one RDD to another RDD is not immediately executed.
Spark only records the transformation but does not execute it immediately.
The real computation is started only when the action is started. The action
returns results or writes the RDD data into the storage system. The action is
the driving force for Spark to start the computation.

Figure 6-115 RDD operation

The data and operation model of RDD are quite different from those of Scala.
val file = sc.textFile("hdfs://...")
val errors = file.filter(_.contains("ERROR"))

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 180

errors.cache()
errors.count()

a. The textFile operator reads log files from the HDFS and returns files (as
an RDD).

b. The filter operator filters rows with ERROR and assigns them to errors (a
new RDD). The filter operator is a transformation.

c. The cache operator caches errors for future use.
d. The count operator returns the number of rows of errors. The count

operator is an action.

Transformation includes the following types:
– The RDD elements are regarded as simple elements.

The input and output has the one-to-one relationship, and the partition
structure of the result RDD remains unchanged, for example, map.
The input and output has the one-to-many relationship, and the partition
structure of the result RDD remains unchanged, for example, flatMap
(one element becomes a sequence containing multiple elements after
map and then flattens to multiple elements).
The input and output has the one-to-one relationship, but the partition
structure of the result RDD changes, for example, union (two RDDs
integrates to one RDD, and the number of partitions becomes the sum of
the number of partitions of two RDDs) and coalesce (partitions are
reduced).
Operators of some elements are selected from the input, such as filter,
distinct (duplicate elements are deleted), subtract (elements only exist in
this RDD are retained), and sample (samples are taken).

– The RDD elements are regarded as key-value pairs.
Perform the one-to-one calculation on the single RDD, such as
mapValues (the partition mode of the source RDD is retained, which is
different from map).
Sort the single RDD, such as sort and partitionBy (partitioning with
consistency, which is important to the local optimization).
Restructure and reduce the single RDD based on key, such as groupByKey
and reduceByKey.
Join and restructure two RDDs based on the key, such as join and
cogroup.

NO TE

The later three operations involving sorting are called shuffle operations.

Action includes the following types:
– Generate scalar configuration items, such as count (the number of

elements in the returned RDD), reduce, fold/aggregate (the number of
scalar configuration items that are returned), and take (the number of
elements before the return).

– Generate the Scala collection, such as collect (import all elements in the
RDD to the Scala collection) and lookup (look up all values corresponds
to the key).

– Write data to the storage, such as saveAsTextFile (which corresponds to
the preceding textFile).

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 181

– Check points, such as the checkpoint operator. When Lineage is quite
long (which occurs frequently in graphics computation), it takes a long
period of time to execute the whole sequence again when a fault occurs.
In this case, checkpoint is used as the check point to write the current
data to stable storage.

● Shuffle
Shuffle is a specific phase in the MapReduce framework, which is located
between the Map phase and the Reduce phase. If the output results of Map
are to be used by Reduce, the output results must be hashed based on a key
and distributed to each Reducer. This process is called Shuffle. Shuffle involves
the read and write of the disk and the transmission of the network, so that
the performance of Shuffle directly affects the operation efficiency of the
entire program.
The figure below shows the entire process of the MapReduce algorithm.

Figure 6-116 Algorithm process

Shuffle is a bridge connecting data. The following describes the
implementation of shuffle in Spark.
Shuffle divides a job of Spark into multiple stages. The former stages contain
one or more ShuffleMapTasks, and the last stage contains one or more
ResultTasks.

● Spark Application Structure
The Spark application structure includes the initialized SparkContext and the
main program.
– Initialized SparkContext: constructs the operating environment of the

Spark Application.
Constructs the SparkContext object. The following is an example:
new SparkContext(master, appName, [SparkHome], [jars])

Parameter description:
master: indicates the link string. The link modes include local, Yarn-
cluster, and Yarn-client.
appName: indicates the application name.
SparkHome: indicates the directory where Spark is installed in the cluster.
jars: indicates the code and dependency package of an application.

– Main program: processes data.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 182

For details about how to submit an application, visit https://
spark.apache.org/docs/3.1.1/submitting-applications.html.

● Spark Shell Commands

The basic Spark shell commands support the submission of Spark
applications. The Spark shell commands are as follows:
./bin/spark-submit \
 --class <main-class> \
 --master <master-url> \
 ... # other options
 <application-jar> \
 [application-arguments]

Parameter description:

--class: indicates the name of the class of a Spark application.

--master: indicates the master to which the Spark application links, such as
Yarn-client and Yarn-cluster.

application-jar: indicates the path of the JAR file of the Spark application.

application-arguments: indicates the parameter required to submit the Spark
application. This parameter can be left blank.

● Spark JobHistory Server

The Spark web UI is used to monitor the details in each phase of the Spark
framework of a running or historical Spark job and provide the log display,
which helps users to develop, configure, and optimize the job in more fine-
grained units.

6.29.2 Spark2x HA Solution

6.29.2.1 Spark2x Multi-active Instance

Background

Based on existing JDBCServers in the community, multi-active-instance HA is used
to achieve the high availability. In this mode, multiple JDBCServers coexist in the
cluster and the client can randomly connect any JDBCServer to perform service
operations. When one or multiple JDBCServers stop working, a client can connect
to another normal JDBCServer.

Compared with active/standby HA, multi-active instance HA eliminates the
following restrictions:

● In active/standby HA, when the active/standby switchover occurs, the
unavailable period cannot be controlled by JDBCServer, but determined by
Yarn service resources.

● In Spark, the Thrift JDBC similar to HiveServer2 provides services and users
access services through Beeline and JDBC API. Therefore, the processing
capability of the JDBCServer cluster depends on the single-point capability of
the primary server, and the scalability is insufficient.

Multi-active instance HA not only prevents service interruption caused by
switchover, but also enables cluster scale-out to secure high concurrency.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 183

https://spark.apache.org/docs/3.1.1/submitting-applications.html
https://spark.apache.org/docs/3.1.1/submitting-applications.html

Implementation
The following figure shows the basic principle of multi-active instance HA of Spark
JDBCServer.

Figure 6-117 Spark JDBCServer HA

1. After JDBCServer is started, it registers with ZooKeeper by writing node
information in a specified directory. Node information includes the JDBCServer
instance IP, port number, version, and serial number (information of different
nodes is separated by commas).
An example is provided as follows:
[serverUri=192.168.169.84:22550
;version=8.1.0.1;sequence=0000001244,serverUri=192.168.195.232:22550 ;version=8.1.0.1;sequence=000
0001242,serverUri=192.168.81.37:22550 ;version=8.1.0.1;sequence=0000001243]

2. To connect to JDBCServer, the client must specify the namespace, which is the
directory of JDBCServer instances in ZooKeeper. During the connection, a
JDBCServer instance is randomly selected from the specified namespace. For
details about URL, see URL Connection.

3. After the connection succeeds, the client sends SQL statements to JDBCServer.
4. JDBCServer executes received SQL statements and sends results back to the

client.

In multi-active instance HA mode, all JDBCServer instances are independent and
equivalent. When one instance is interrupted during upgrade, other JDBCServer
instances can accept the connection request from the client.

Following rules must be followed in the multi-active instance HA of Spark
JDBCServer:
● If a JDBCServer instance exits abnormally, no other instance will take over the

sessions and services running on this abnormal instance.
● When the JDBCServer process is stopped, corresponding nodes are deleted

from ZooKeeper.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 184

● The client randomly selects the server, which may result in uneven session
allocation, and finally result in imbalance of instance load.

● After the instance enters the maintenance mode (in which no new connection
request from the client is accepted), services still running on the instance may
fail when the decommissioning times out.

URL Connection
Multi-active instance mode

In multi-active instance mode, the client reads content from the ZooKeeper node
and connects to JDBCServer. The connection strings are as follows:

● Security mode:
– If Kinit authentication is enabled, the JDBCURL is as follows:

jdbc:hive2://
<zkNode1_IP>:<zkNode1_Port>,<zkNode2_IP>:<zkNode2_Port>,<zkNode3_IP>:<zkNode3_Port>/;s
erviceDiscoveryMode=zooKeeper;zooKeeperNamespace=sparkthriftserver2x;saslQop=auth-
conf;auth=KERBEROS;principal=spark2x/hadoop.<System domain name>@<System domain
name>;

NO TE

● <zkNode_IP>:<zkNode_Port> indicates the ZooKeeper URL. Use commas (,)
to separate multiple URLs,
For example,
192.168.81.37:2181,192.168.195.232:2181,192.168.169.84:2181.

● sparkthriftserver2x indicates the directory in ZooKeeper, where a random
JDBCServer instance is connected to the client.

For example, when you use Beeline client for connection in security
mode, run the following command:
sh CLIENT_HOME/spark/bin/beeline -u "jdbc:hive2://
<zkNode1_IP>:<zkNode1_Port>,<zkNode2_IP>:<zkNode2_Port>,<zkNode3
_IP>:<zkNode3_Port>/;serviceDiscoveryMode=zooKeeper;zooKeeperNa
mespace=sparkthriftserver2x;saslQop=auth-
conf;auth=KERBEROS;principal=spark2x/hadoop.<System domain
name>@<System domain name>;"

– If Keytab authentication is enabled, the JDBCURL is as follows:
jdbc:hive2://
<zkNode1_IP>:<zkNode1_Port>,<zkNode2_IP>:<zkNode2_Port>,<zkNode3_IP>:<zkNode3_Port>/;s
erviceDiscoveryMode=zooKeeper;zooKeeperNamespace=sparkthriftserver2x;saslQop=auth-
conf;auth=KERBEROS;principal=spark2x/hadoop.<System domain name>@<System domain
name>;user.principal=<principal_name>;user.keytab=<path_to_keytab>

<principal_name> indicates the principal of Kerberos user, for example,
test@<System domain name>. <path_to_keytab> indicates the Keytab file
path corresponding to <principal_name>, for example, /opt/auth/test/
user.keytab.

● Common mode:
jdbc:hive2://
<zkNode1_IP>:<zkNode1_Port>,<zkNode2_IP>:<zkNode2_Port>,<zkNode3_IP>:<zkNode3_Port>/;service
DiscoveryMode=zooKeeper;zooKeeperNamespace=sparkthriftserver2x;

For example, when you use Beeline client for connection in common mode,
run the following command:
sh CLIENT_HOME/spark/bin/beeline -u "jdbc:hive2://
<zkNode1_IP>:<zkNode1_Port>,<zkNode2_IP>:<zkNode2_Port>,<zkNode3_IP>:

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 185

<zkNode3_Port>/;serviceDiscoveryMode=zooKeeper;zooKeeperNamespace=
sparkthriftserver2x;"

Non-multi-active instance mode

In non-multi-active instance mode, a client connects to a specified JDBCServer
node. Compared with multi-active instance mode, the connection string in non-
multi-active instance mode does not contain serviceDiscoveryMode and
zooKeeperNamespace parameters about ZooKeeper.

For example, when you use Beeline client to connect JDBCServer in non-multi-
active instance mode, run the following command:

sh CLIENT_HOME/spark/bin/beeline -u "jdbc:hive2://
<server_IP>:<server_Port>/;user.principal=spark2x/hadoop.<System domain
name>@<System domain name>;saslQop=auth-
conf;auth=KERBEROS;principal=spark2x/hadoop.<System domain
name>@<System domain name>;"

NO TE

● <server_IP>:<server_Port> indicates the URL of the specified JDBCServer node.
● CLIENT_HOME indicates the client path.

Except the connection method, operations of JDBCServer API in multi-active
instance mode and non-multi-active instance mode are the same. Spark
JDBCServer is another implementation of HiveServer2 in Hive. For details about
how to use Spark JDBCServer, go to the official Hive website at https://
cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients.

6.29.2.2 Spark2x Multi-tenant

Background
In the JDBCServer multi-active instance mode, JDBCServer implements the Yarn-
client mode but only one Yarn resource queue is available. To solve the resource
limitation problem, the multi-tenant mode is introduced.

In multi-tenant mode, JDBCServers are bound with tenants. Each tenant
corresponds to one or more JDBCServers, and a JDBCServer provides services for
only one tenant. Different tenants can be configured with different Yarn queues to
implement resource isolation. In addition, JDBCServer can be dynamically started
as required to avoid resource waste.

Implementation
Figure 6-118 shows the HA solution of the multi-tenant mode.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 186

https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients
https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients

Figure 6-118 Multi-tenant mode of Spark JDBCServer

1. When ProxyServer is started, it registers with ZooKeeper by writing node
information in a specified directory. Node information includes the instance IP,
port number, version, and serial number (information of different nodes is
separated by commas).

NO TE

In multi-tenant mode, the JDBCServer instance on MRS page indicates ProxyServer, the
JDBCServer agent.

An example is provided as follows:
serverUri=192.168.169.84:22550
;version=8.1.0.1;sequence=0000001244,serverUri=192.168.195.232:22550
;version=8.1.0.1;sequence=0000001242,serverUri=192.168.81.37:22550
;version=8.1.0.1;sequence=0000001243,

2. To connect to ProxyServer, the client must specify a namespace, which is the
directory of the ProxyServer instance that you want to access in ZooKeeper.
When the client connects to ProxyServer, an instance under Namespace is
randomly selected for connection. For details about the URL, see URL
Connection.

3. After the client successfully connects to ProxyServer, ProxyServer checks
whether the JDBCServer of a tenant exists. If yes, Beeline connects the

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 187

JDBCServer. If no, a new JDBCServer is started in Yarn-cluster mode. After the
startup of JDBCServer, ProxyServer obtains the IP address of the JDBCServer
and establishes the connection between Beeline and JDBCServer.

4. The client sends SQL statements to ProxyServer, which then forwards
statements to the connected JDBCServer. JDBCServer returns the results to
ProxyServer, which then returns the results to the client.

In multi-tenant HA mode, all ProxyServer instances are independent and
equivalent. If one instance is interrupted during upgrade, other instances can
accept the connection request from the client.

URL Connection
Multi-tenant mode

In multi-tenant mode, the client reads content from the ZooKeeper node and
connects to ProxyServer. The connection strings are as follows:

● Security mode:
– If Kinit authentication is enabled, the client URL is as follows:

jdbc:hive2://
<zkNode1_IP>:<zkNode1_Port>,<zkNode2_IP>:<zkNode2_Port>,<zkNode3_IP>:<zkNode3_Port>/;s
erviceDiscoveryMode=zooKeeper;zooKeeperNamespace=sparkthriftserver2x;saslQop=auth-
conf;auth=KERBEROS;principal=spark2x/hadoop.<System domain name>@<System domain
name>;

NO TE

● <zkNode_IP>:<zkNode_Port> indicates the ZooKeeper URL. Use commas (,)
to separate multiple URLs,
For example,
192.168.81.37:2181,192.168.195.232:2181,192.168.169.84:2181.

● sparkthriftserver2x indicates the ZooKeeper directory, where a random
JDBCServer instance is connected to the client.

For example, when you use Beeline client for connection in security
mode, run the following command:
sh CLIENT_HOME/spark/bin/beeline -u "jdbc:hive2://
<zkNode1_IP>:<zkNode1_Port>,<zkNode2_IP>:<zkNode2_Port>,<zkNode3
_IP>:<zkNode3_Port>/;serviceDiscoveryMode=zooKeeper;zooKeeperNa
mespace=sparkthriftserver2x;saslQop=auth-
conf;auth=KERBEROS;principal=spark2x/hadoop.<System domain
name>@<System domain name>;"

– If Keytab authentication is enabled, the URL is as follows:
jdbc:hive2://
<zkNode1_IP>:<zkNode1_Port>,<zkNode2_IP>:<zkNode2_Port>,<zkNode3_IP>:<zkNode3_Port>/;s
erviceDiscoveryMode=zooKeeper;zooKeeperNamespace=sparkthriftserver2x;saslQop=auth-
conf;auth=KERBEROS;principal=spark2x/hadoop.<System domain name>@<System domain
name>;user.principal=<principal_name>;user.keytab=<path_to_keytab>

<principal_name> indicates the principal of Kerberos user, for example,
test@<System domain name>. <path_to_keytab> indicates the Keytab file
path corresponding to <principal_name>, for example, /opt/auth/test/
user.keytab.

● Common mode:
jdbc:hive2://
<zkNode1_IP>:<zkNode1_Port>,<zkNode2_IP>:<zkNode2_Port>,<zkNode3_IP>:<zkNode3_Port>/;service
DiscoveryMode=zooKeeper;zooKeeperNamespace=sparkthriftserver2x;

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 188

For example, when you use Beeline client for connection in common mode,
run the following command:
sh CLIENT_HOME/spark/bin/beeline -u "jdbc:hive2://
<zkNode1_IP>:<zkNode1_Port>,<zkNode2_IP>:<zkNode2_Port>,<zkNode3_IP>:
<zkNode3_Port>/;serviceDiscoveryMode=zooKeeper;zooKeeperNamespace=
sparkthriftserver2x;"

Non-multi-tenant mode

In non-multi-tenant mode, a client connects to a specified JDBCServer node.
Compared with multi-active instance mode, the connection string in non-multi-
active instance mode does not contain serviceDiscoveryMode and
zooKeeperNamespace parameters about ZooKeeper.

For example, when you use Beeline client to connect JDBCServer in non-multi-
tenant instance mode, run the following command:

sh CLIENT_HOME/spark/bin/beeline -u "jdbc:hive2://
<server_IP>:<server_Port>/;user.principal=spark/hadoop.<System domain
name>@<System domain name>;saslQop=auth-
conf;auth=KERBEROS;principal=spark/hadoop.<System domain
name>@<System domain name>;"

NO TE

● <server_IP>:<server_Port> indicates the URL of the specified JDBCServer node.
● CLIENT_HOME indicates the client path.

Except the connection method, other operations of JDBCServer API in multi-tenant
mode and non-multi-tenant mode are the same. Spark JDBCServer is another
implementation of HiveServer2 in Hive. For details about how to use Spark
JDBCServer, go to the official Hive website at https://cwiki.apache.org/
confluence/display/Hive/HiveServer2+Clients.

Specifying a Tenant

Generally, the client submitted by a user connects to the default JDBCServer of the
tenant to which the user belongs. If you want to connect the client to the
JDBCServer of a specified tenant, add the --hiveconf mapreduce.job.queuename
parameter.

Command for connecting Beeline is as follows (aaa indicates the tenant name):

beeline --hiveconf mapreduce.job.queuename=aaa -u
'jdbc:hive2://192.168.39.30:2181,192.168.40.210:2181,192.168.215.97:2181;servi
ceDiscoveryMode=zooKeeper;zooKeeperNamespace=sparkthriftserver2x;saslQ
op=auth-conf;auth=KERBEROS;principal=spark2x/hadoop.<System domain
name>@<System domain name>;'

6.29.3 Relationship Between Spark2x and Other Components

Relationship Between Spark and HDFS
Data computed by Spark comes from multiple data sources, such as local files and
HDFS. Most data comes from HDFS which can read data in large scale for parallel
computing After being computed, data can be stored in HDFS.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 189

https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients
https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients

Spark involves Driver and Executor. Driver schedules tasks and Executor runs tasks.

Figure 6-119 describes the file reading process.

Figure 6-119 File reading process

The file reading process is as follows:
1. Driver interconnects with HDFS to obtain the information of File A.
2. The HDFS returns the detailed block information about this file.
3. Driver sets a parallel degree based on the block data amount, and creates

multiple tasks to read the blocks of this file.
4. Executor runs the tasks and reads the detailed blocks as part of the Resilient

Distributed Dataset (RDD).

Figure 6-120 describes the file writing process.

Figure 6-120 File writing process

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 190

The file writing process is as follows:

1. Driver creates a directory where the file is to be written.
2. Based on the RDD distribution status, the number of tasks related to data

writing is computed, and these tasks are sent to Executor.
3. Executor runs these tasks, and writes the RDD data to the directory created in

1.

Relationship with Yarn
The Spark computing and scheduling can be implemented using Yarn mode. Spark
enjoys the computing resources provided by Yarn clusters and runs tasks in a
distributed way. Spark on Yarn has two modes: Yarn-cluster and Yarn-client.

● Yarn-cluster mode
Figure 6-121 describes the operation framework.

Figure 6-121 Spark on Yarn-cluster operation framework

Spark on Yarn-cluster implementation process:

a. The client generates the application information, and then sends the
information to ResourceManager.

b. ResourceManager allocates the first container (ApplicationMaster) to
SparkApplication and starts the driver on the container.

c. ApplicationMaster applies for resources from ResourceManager to run
the container.
ResourceManager allocates the containers to ApplicationMaster, which
communicates with the related NodeManagers and starts the executor in
the obtained container. After the executor is started, it registers with
drivers and applies for tasks.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 191

d. Drivers allocate tasks to the executors.
e. Executors run tasks and report the operating status to Drivers.

● Yarn-client mode
Figure 6-122 describes the operation framework.

Figure 6-122 Spark on Yarn-client operation framework

Spark on Yarn-client implementation process:

NO TE

In Yarn-client mode, the Driver is deployed and started on the client. In Yarn-client
mode, the client of an earlier version is incompatible. The Yarn-cluster mode is
recommended.

a. The client sends the Spark application request to ResourceManager, and
packages all information required to start ApplicationMaster and sends
the information to ResourceManager. ResourceManager then returns the
results to the client. The results include information such as ApplicationId,
and the upper limit as well as lower limit of available resources. After
receiving the request, ResourceManager finds a proper node for
ApplicationMaster and starts it on this node. ApplicationMaster is a role
in Yarn, and the process name in Spark is ExecutorLauncher.

b. Based on the resource requirements of each task, ApplicationMaster can
apply for a series of containers to run tasks from ResourceManager.

c. After receiving the newly allocated container list (from
ResourceManager), ApplicationMaster sends information to the related
NodeManagers to start the containers.
ResourceManager allocates the containers to ApplicationMaster, which
communicates with the related NodeManagers and starts the executor in
the obtained container. After the executor is started, it registers with
drivers and applies for tasks.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 192

NO TE

Running Containers will not be suspended to release resources.

d. Drivers allocate tasks to the executors. Executors run tasks and report the
operating status to Drivers.

6.29.4 Spark2x Open Source New Features

Purpose
Compared with Spark 1.5, Spark2x has some new open-source features. The
specific features or concepts are as follows:

● DataSet: For details, see SparkSQL and DataSet Principle.
● Spark SQL Native DDL/DML: For details, see SparkSQL and DataSet

Principle.
● SparkSession: For details, see SparkSession Principle.
● Structured Streaming: For details, see Structured Streaming Principle.
● Optimizing Small Files
● Optimizing the Aggregate Algorithm
● Optimizing Datasource Tables
● Merging CBO

6.29.5 Spark2x Enhanced Open Source Features

6.29.5.1 CarbonData Overview
CarbonData is a new Apache Hadoop native data-store format. CarbonData
allows faster interactive queries over PetaBytes of data using advanced columnar
storage, index, compression, and encoding techniques to improve computing
efficiency. In addition, CarbonData is also a high-performance analysis engine that
integrates data sources with Spark.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 193

Figure 6-123 Basic architecture of CarbonData

The purpose of using CarbonData is to provide quick response to ad hoc queries of
big data. Essentially, CarbonData is an Online Analytical Processing (OLAP)
engine, which stores data by using tables similar to those in Relational Database
Management System (RDBMS). You can import more than 10 TB data to tables
created in CarbonData format, and CarbonData automatically organizes and
stores data using the compressed multi-dimensional indexes. After data is loaded
to CarbonData, CarbonData responds to ad hoc queries in seconds.

CarbonData integrates data sources into the Spark ecosystem and you can query
and analyze the data using Spark SQL. You can also use the third-party tool
JDBCServer provided by Spark to connect to SparkSQL.

Topology of CarbonData
CarbonData runs as a data source inside Spark. Therefore, CarbonData does not
start any additional processes on nodes in clusters. CarbonData engine runs inside
the Spark executor.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 194

Figure 6-124 Topology of CarbonData

Data stored in CarbonData Table is divided into several CarbonData data files.
Each time when data is queried, CarbonData Engine reads and filters data sets.
CarbonData Engine runs as a part of the Spark Executor process and is responsible
for handling a subset of data file blocks.

Table data is stored in HDFS. Nodes in the same Spark cluster can be used as
HDFS data nodes.

CarbonData Features
● SQL: CarbonData is compatible with Spark SQL and supports SQL query

operations performed on Spark SQL.
● Simple Table dataset definition: CarbonData allows you to define and create

datasets by using user-friendly Data Definition Language (DDL) statements.
CarbonData DDL is flexible and easy to use, and can define complex tables.

● Easy data management: CarbonData provides various data management
functions for data loading and maintenance. CarbonData supports bulk
loading of historical data and incremental loading of new data. Loaded data
can be deleted based on load time and a specific loading operation can be
undone.

● CarbonData file format is a columnar store in HDFS. This format has many
new column-based file storage features, such as table splitting and data
compression. CarbonData has the following characteristics:
– Stores data along with index: Significantly accelerates query performance

and reduces the I/O scans and CPU resources, when there are filters in
the query. CarbonData index consists of multiple levels of indices. A
processing framework can leverage this index to reduce the task that
needs to be schedules and processed, and it can also perform skip scan in
more finer grain unit (called blocklet) in task side scanning instead of
scanning the whole file.

– Operable encoded data: Through supporting efficient compression and
global encoding schemes, CarbonData can query on compressed/encoded

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 195

data. The data can be converted just before returning the results to the
users, which is called late materialized.

– Supports various use cases with one single data format: like interactive
OLAP-style query, sequential access (big scan), and random access
(narrow scan).

Key Technologies and Advantages of CarbonData
● Quick query response: CarbonData features high-performance query. The

query speed of CarbonData is 10 times of that of Spark SQL. It uses dedicated
data formats and applies multiple index technologies, global dictionary code,
and multiple push-down optimizations, providing quick response to TB-level
data queries.

● Efficient data compression: CarbonData compresses data by combining the
lightweight and heavyweight compression algorithms. This significantly saves
60% to 80% data storage space and the hardware storage cost.

CarbonData Index Cache Server
To solve the pressure and problems brought by the increasing data volume to the
driver, an independent index cache server is introduced to separate the index from
the Spark application side of Carbon query. All index content is managed by the
index cache server. Spark applications obtain required index data in RPC mode. In
this way, a large amount of memory on the service side is released so that services
are not affected by the cluster scale and the performance or functions are not
affected.

6.29.5.2 Optimizing SQL Query of Data of Multiple Sources

Scenario
Enterprises usually store massive data, such as from various databases and
warehouses, for management and information collection. However, diversified
data sources, hybrid dataset structures, and scattered data storage lower query
efficiency.

The open source Spark only supports simple filter pushdown during querying of
multi-source data. The SQL engine performance is deteriorated due of a large
amount of unnecessary data transmission. The pushdown function is enhanced, so
that aggregate, complex projection, and complex predicate can be pushed to
data sources, reducing unnecessary data transmission and improving query
performance.

Only the JDBC data source supports pushdown of query operations, such as
aggregate, projection, predicate, aggregate over inner join, and aggregate
over union all. All pushdown operations can be enabled based on your
requirements.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 196

Table 6-26 Enhanced query of cross-source query

Module Before
Enhancement

After Enhancement

aggregate The pushdown
of aggregate is
not supported.

● Aggregation functions including sum,
avg, max, min, and count are
supported.
Example: select count(*) from table

● Internal expressions of aggregation
functions are supported.
Example: select sum(a+b) from table

● Calculation of aggregation functions
is supported. Example: select avg(a) +
max(b) from table

● Pushdown of having is supported.
Example: select sum(a) from table
where a>0 group by b having
sum(a)>10

● Pushdown of some functions is
supported.
Pushdown of lines in mathematics,
time, and string functions, such as
abs(), month(), and length() are
supported. In addition to the
preceding built-in functions, you can
run the SET command to add
functions supported by data sources.
Example: select sum(abs(a)) from
table

● Pushdown of limit and order by after
aggregate is supported. However, the
pushdown is not supported in Oracle,
because Oracle does not support
limit.
Example: select sum(a) from table
where a>0 group by b order by
sum(a) limit 5

projection Only pushdown
of simple
projection is
supported.
Example: select
a, b from table

● Complex expressions can be pushed
down.
Example: select (a+b)*c from table

● Some functions can be pushed down.
For details, see the description below
the table.
Example: select length(a)+abs(b)
from table

● Pushdown of limit and order by after
projection is supported.
Example: select a, b+c from table
order by a limit 3

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 197

Module Before
Enhancement

After Enhancement

predicate Only simple
filtering with
the column
name on the
left of the
operator and
values on the
right is
supported.
Example:
select * from
table where
a>0 or b in
("aaa", "bbb")

● Complex expression pushdown is
supported.
Example: select * from table where a
+b>c*d or a/c in (1, 2, 3)

● Some functions can be pushed down.
For details, see the description below
the table.
Example: select * from table where
length(a)>5

aggregate over
inner join

Related data
from the two
tables must be
loaded to
Spark. The join
operation must
be performed
before the
aggregate
operation.

The following functions are supported:
● Aggregation functions including sum,

avg, max, min, and count are
supported.

● All aggregate operations can be
performed in a same table. The
group by operations can be
performed on one or two tables and
only inner join is supported.

The following scenarios are not
supported:
● aggregate cannot be pushed down

from both the left- and right-join
tables.

● aggregate contains operations, for
example, sum(a+b).

● aggregate operations, for example,
sum(a)+min(b).

aggregate over
union all

Related data
from the two
tables must be
loaded to
Spark. union
must be
performed
before
aggregate.

Supported scenarios:
Aggregation functions including sum,
avg, max, min, and count are
supported.
Unsupported scenarios:
● aggregate contains operations, for

example, sum(a+b).
● aggregate operations, for example,

sum(a)+min(b).

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 198

Precautions
● If external data source is Hive, query operation cannot be performed on

foreign tables created by Spark.
● Only MySQL and MPPDB data sources are supported.

6.30 Storm

6.30.1 Storm Basic Principles
Apache Storm is a distributed, reliable, and fault-tolerant real-time stream data
processing system. In Storm, a graph-shaped data structure called topology needs
to be designed first for real-time computing. The topology will be submitted to a
cluster. Then a master node in the cluster distributes codes and assigns tasks to
worker nodes. A topology contains two roles: spout and bolt. A spout sends
messages and sends data streams in tuples. A bolt converts the data streams and
performs computing and filtering operations. The bolt can randomly send data to
other bolts. Tuples sent by a spout are unchangeable arrays and map to fixed key-
value pairs.

Figure 6-125 System architecture of Storm

Service processing logic is encapsulated in the topology of Storm. A topology is a
set of spout (data sources) and bolt (logical processing) components that are
connected using Stream Groupings in DAG mode. All components (spout and bolt)
in a topology are working in parallel. In a topology, you can specify the parallelism
for each node. Then, Storm allocates tasks in the cluster for computing to improve
system processing capabilities.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 199

Figure 6-126 Topology

Storm is applicable to real-time analysis, continuous computing, and distributed
extract, transform, and load (ETL). It has the following advantages:

● Wide applications
● High scalability
● Zero data loss
● High fault tolerance
● Easy to construct and control
● Multi-language support

Storm is a computing platform and provides Continuous Query Language (CQL) in
the service layer to facilitate service implementation. CQL has the following
features:

● Easy to use: The CQL syntax is similar to the SQL syntax. Users who have
basic knowledge of SQL can easily learn CQL and use it to develop services.

● Rich functions: In addition to basic expressions provided by SQL, CQL provides
functions, such as windows, filtering, and concurrency setting, for stream
processing.

● Easy to scale: CQL provides an extension API to support increasingly complex
service scenarios. Users can customize the input, output, serialization, and
deserialization to meet specific service requirements.

● Easy to debug: CQL provides detailed explanation of error codes, facilitating
users to rectify faults.

For details about Storm architecture and principles, see https://
storm.apache.org/.

Principle
● Basic Concepts

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 200

https://storm.apache.org/
https://storm.apache.org/

Table 6-27 Concepts

Concept Description

Tuple A tuple is an invariable key-value pair used to transfer
data. Tuples are created and processed in distributed
manner.

Stream A stream is an unbounded sequence of tuples.

Topology A topology is a real-time application running on the
Storm platform. It is a Directed Acyclic Graph (DAG)
composed of components. A topology can concurrently
run on multiple machines. Each machine runs a part of
the DAG. A topology is similar to a MapReduce job. The
difference is that the topology is a resident program.
Once started, the topology cannot stop unless it is
manually terminated.

Spout A spout is the source of tuples. For example, a spout may
read data from a message queue, database, file system,
or TCP connection and converts them as tuples, which are
processed by the next component.

Bolt In a Topology, a bolt is a component that receives data
and executes specific logic, such as filtering or converting
tuples, joining or aggregating streams, and performing
statistics and result persistence.

Worker A Worker is a physical processing in running state in a
Topology. Each Worker is a JVM process. Each Topology
may be executed by multiple Workers. Each Worker
executes a logic subset of the Topology.

Task A task is a spout or bolt thread of a Worker.

Stream
groupings

A stream grouping specifies the tuple dispatching policies.
It instructs the subsequent bolt how to receive tuples. The
supported policies include Shuffle Grouping, Fields
Grouping, All Grouping, Global Grouping, Non Grouping,
and Directed Grouping.

Figure 6-127 shows a Topology (DAG) consisting of a Spout and Bolt. In the
figure, a rectangle indicates a Spout or Bolt, the node in each rectangle
indicate tasks, and the lines between tasks indicate streams.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 201

Figure 6-127 Topology

● Reliability
Storm provides three levels of data reliability:
– At Most Once: The processed data may be lost, but it cannot be

processed repeatedly. This reliability level offers the highest throughput.
– At Least Once: Data may be processed repeatedly to ensure reliable data

transmission. If a response is not received within the specified time, the
Spout resends the data to Bolts for processing. This reliability level may
slightly affect system performance.

– Exactly Once: Data is successfully transmitted without loss or redundancy
processing. This reliability level delivers the poorest performance.

Select the reliability level based on service requirements. For example, for the
services requiring high data reliability, use Exactly Once to ensure that data is
processed only once. For the services insensitive to data loss, use other levels
to improve system performance.

● Fault Tolerance
Storm is a fault-tolerant system that offers high availability. Table 6-28
describes the fault tolerance of the Storm components.

Table 6-28 Fault tolerance

Scenario Description

Nimbus failed Nimbus is fail-fast and stateless. If the active Nimbus is
faulty, the standby Nimbus takes over services
immediately, and provide external services.

Supervisor
failed

Supervisor is a background daemon of Workers. It is fail-
fast and stateless. If a Supervisor is faulty, the Workers
running on the node are not affected but cannot receive
new tasks. The OMS can detect the fault of the
Supervisor and restart the processes.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 202

Scenario Description

Worker failed If a Worker is faulty, the Supervisor on the Worker will
restart it again. If the restart fails for multiple times,
Nimbus reassigns tasks to other nodes.

Node failed If a node is faulty, all the tasks being processed by the
node time out and Nimbus will assign the tasks to
another node for processing.

Open Source Features
● Distributed real-time computing

In a Storm cluster, each machine supports the running of multiple work
processes and each work process can create multiple threads. Each thread can
execute multiple tasks. A task indicates concurrent data processing.

● High fault tolerance
During message processing, if a node or a process is faulty, the message
processing unit can be redeployed.

● Reliable messages
Data processing methods including At-Least Once, At-Most Once, and Exactly
Once are supported.

● Security mechanism
Storm provides Kerberos-based authentication and pluggable authorization
mechanisms, supports SSL Storm UI and Log Viewer UI, and supports security
integration with other big data platform components (such as ZooKeeper and
HDFS).

● Flexible topology defining and deployment
The Flux framework is used to define and deploy service topologies. If the
service DAG is changed, users only need to modify YAML domain specific
language (DSL), but do not need to recompile or package service code.

● Integration with external components
Storm supports integration with multiple external components such as Kafka,
HDFS, HBase, Redis, and JDBC/RDBMS, implementing services that involve
multiple data sources.

6.30.2 Relationships Between Storm and Other Components
Storm provides a real-time distributed computing framework. It can obtain real-
time messages from data sources (such as Kafka and TCP connection), perform
high-throughput and low-latency real-time computing on a real-time platform,
and export results to message queues or implement data persistence. Figure
6-128 shows the relationship between Storm and other components.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 203

Figure 6-128 Relationship with other components

Relationship between Storm and Streaming
Both Storm and Streaming use the open source Apache Storm kernel. However,
the kernel version used by Storm is 1.2.1 whereas that used by Streaming is 0.10.0.
Streaming is used to inherit transition services in upgrade scenarios. For example,
if Streaming has been deployed in an earlier version and services are running,
Streaming can still be used after the upgrade. Storm is recommended in a new
cluster.

Storm 1.2.1 has the following new features:

● Distributed cache: Provides external resources (configurations) required for
sharing and updating the topology using CLI tools. You do not need to re-
package and re-deploy the topology.

● Native Streaming Window API: Provides window-based APIs.
● Resource scheduler: Added the resource scheduler plug-in. When defining a

topology, you can specify the maximum resources available and assign
resource quotas to users, thus to manage topology resources of the users.

● State management: Provides the Bolt API with the checkpoint mechanism.
When an event fails, Storm automatically manages the Bolt status and restore
the event.

● Message sampling and debugging: On the Storm UI, you can enable or
disable topology- or component-level debugging to output stream messages
to specified logs based on the sampling ratio.

● Worker dynamic analysis: On the Storm UI, you can collect jstack and heap
logs of the Worker process and restart the Worker process.

● Dynamic adjustment of topology logs: You can dynamically change the
running topology logs on the CLI or Storm UI.

● Improved performance: Compared with earlier versions, the performance of
Storm is greatly improved. Although the topology performance is closely
related to the use case scenario and dependency on external services, the
performance is three times higher in most scenarios.

6.30.3 Storm Enhanced Open Source Features
● CQL

Continuous Query Language (CQL) is an SQL-like language used for real-time
stream processing. Compared with SQL, CQL has introduced the concept of

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 204

(time-sequencing) window, which allows data to be stored and processed in
the memory. The CQL output is the computing results of data streams at
specific time. The use of CQL accelerates service development, enables tasks
to be easily submitted to the Storm platform for real-time processing,
facilitates output of results, and allows tasks to be terminated at the
appropriate time.

● High Availability
Nimbus HA ensures continuous service processing such as adding topologies
and management even if one Nimbus is faulty, improving cluster availability.

6.31 Tez
Tez is Apache's latest open source computing framework that supports Directed
Acyclic Graph (DAG) jobs. It can convert multiple dependent jobs into one job,
greatly improving the performance of DAG jobs.

MRS uses Tez as the default execution engine of Hive. Tez remarkably surpasses
the original MapReduce computing engine in terms of execution efficiency.

For details about Tez, see https://tez.apache.org/.

Relationship Between Tez and MapReduce

Tez uses a DAG to organize MapReduce tasks. In the DAG, a node is an RDD, and
an edge indicates an operation on the RDD. The core idea is to further split Map
tasks and Reduce tasks. A Map task is split into the Input-Processor-Sort-Merge-
Output tasks, and the Reduce task is split into the Input-Shuffle-Sort-Merge-
Process-output tasks. Tez flexibly regroups several small tasks to form a large DAG
job.

Figure 6-129 Processes for submitting tasks using Hive on MapReduce and Hive
on Tez

A Hive on MapReduce task contains multiple MapReduce tasks. Each task stores
intermediate results to HDFS. The reducer in the previous step provides data for
the mapper in the next step. A Hive on Tez task can complete the same processing
process in only one task, and HDFS does not need to be accessed between tasks.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 205

https://tez.apache.org/

Relationship Between Tez and Yarn

Tez is a computing framework running on Yarn. The runtime environment consists
of ResourceManager and ApplicationMaster of Yarn. ResourceManager is a brand
new resource manager system, and ApplicationMaster is responsible for cutting
MapReduce job data, assigning tasks, applying for resources, scheduling tasks, and
tolerating faults. In addition, TezUI depends on TimelineServer provided by Yarn to
display the running process of Tez tasks.

6.32 YARN

6.32.1 YARN Basic Principles
The Apache open source community introduces the unified resource management
framework YARN to share Hadoop clusters, improve their scalability and reliability,
and eliminate a performance bottleneck of JobTracker in the early MapReduce
framework.

The fundamental idea of YARN is to split up the two major functionalities of the
JobTracker, resource management and job scheduling/monitoring, into separate
daemons. The idea is to have a global ResourceManager (RM) and per-application
ApplicationMaster (AM).

NO TE

● To use Yarn, ensure that the Hadoop service has been installed in the MRS cluster.

● An application is either a single job in the classical sense of MapReduce jobs or a
Directed Acyclic Graph (DAG) of jobs.

Architecture

ResourceManager is the essence of the layered structure of YARN. This entity
controls an entire cluster and manages the allocation of applications to underlying
compute resources. The ResourceManager carefully allocates various resources
(compute, memory, bandwidth, and so on) to underlying NodeManagers (YARN's
per-node agents). The ResourceManager also works with ApplicationMasters to
allocate resources, and works with the NodeManagers to start and monitor their
underlying applications. In this context, the ApplicationMaster has taken some of
the role of the prior TaskTracker, and the ResourceManager has taken the role of
the JobTracker.

ApplicationMaster manages each instance of an application running in YARN. The
ApplicationMaster negotiates resources from the ResourceManager and works
with the NodeManagers to monitor container execution and resource usage (CPU
and memory resource allocation).

The NodeManager manages each node in a YARN cluster. The NodeManager
provides per-node services in a cluster, from overseeing the management of a
container over its lifecycle to monitoring resources and tracking the health of its
nodes. MRv1 manages execution of the Map and Reduce tasks through slots,
whereas the NodeManager manages abstract containers, which represent per-
node resources available for a particular application.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 206

Figure 6-130 Architecture

Table 6-29 describes the components shown in Figure 6-130.

Table 6-29 Architecture description

Name Description

Client Client of a YARN application. You can submit a task to
ResourceManager and query the operating status of an application
using the client.

ResourceM
anager(R
M)

RM centrally manages and allocates all resources in the cluster. It
receives resource reporting information from each node
(NodeManager) and allocates resources to applications on the
basis of the collected resources according a specified policy.

NodeMan
ager(NM)

NM is the agent on each node of YARN. It manages the computing
node in Hadoop cluster, establishes communication with
ResourceManger, monitors the lifecycle of containers, monitors the
usage of resources such as memory and CPU of each container,
traces node health status, and manages logs and auxiliary services
used by different applications.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 207

Name Description

Applicatio
nMaster(A
M)

AM (App Mstr in the figure above) is responsible for all tasks
through the lifecycle of in an application. The tasks include the
following: Negotiate with an RM scheduler to obtain a resource;
further allocate the obtained resources to internal tasks (secondary
allocation of resources); communicate with the NM to start or stop
tasks; monitor the running status of all tasks; and apply for
resources for tasks again to restart the tasks when the tasks fail to
be executed.

Container A resource abstraction in YARN. It encapsulates multi-dimensional
resources (including only memory and CPU) on a certain node.
When ApplicationMaster applies for resources from
ResourceManager, the ResourceManager returns resources to the
ApplicationMaster in a container. YARN allocates one container for
each task and the task can only use the resources encapsulated in
the container.

In YARN, resource schedulers organize resources through hierarchical queues. This
ensures that resources are allocated and shared among queues, thereby improving
the usage of cluster resources. The core resource allocation model of Superior
Scheduler is the same as that of Capacity Scheduler, as shown in the following
figure.

A scheduler maintains queue information. You can submit applications to one or
more queues. During each NM heartbeat, the scheduler selects a queue according
to a specific scheduling rule, selects an application in the queue, and then
allocates resources to the application. If resources fail to be allocated to the
application due to the limit of some parameters, the scheduler will select another
application. After the selection, the scheduler processes the resource request of
this application. The scheduler gives priority to the requests for local resources
first, and then for resources on the same rack, and finally for resources from any
machine.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 208

Figure 6-131 Resource allocation model

Principle

The new Hadoop MapReduce framework is named MRv2 or YARN. YARN consists
of ResourceManager, ApplicationMaster, and NodeManager.

● ResourceManager is a global resource manager that manages and allocates
resources in the system. ResourceManager consists of Scheduler and
Applications Manager.
– Scheduler allocates system resources to all running applications based on

the restrictions such as capacity and queue (for example, allocates a
certain amount of resources for a queue and executes a specific number
of jobs). It allocates resources based on the demand of applications, with
container being used as the resource allocation unit. Functioning as a
dynamic resource allocation unit, Container encapsulates memory, CPU,
disk, and network resources, thereby limiting the resource consumed by
each task. In addition, the Scheduler is a pluggable component. You can
design new schedulers as required. YARN provides multiple directly
available schedulers, such as Fair Scheduler and Capacity Scheduler.

– Applications Manager manages all applications in the system and
involves submitting applications, negotiating with schedulers about
resources, enabling and monitoring ApplicationMaster, and restarting
ApplicationMaster upon the startup failure.

● NodeManager is the resource and task manager of each node. On one hand,
NodeManager periodically reports resource usage of the local node and the
running status of each Container to ResourceManager. On the other hand,
NodeManager receives and processes requests from ApplicationMaster for
starting or stopping Containers.

● ApplicationMaster is responsible for all tasks through the lifecycle of an
application, these channels include the following:
– Negotiate with the RM scheduler to obtain resources.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 209

– Assign resources to internal components (secondary allocation of
resources).

– Communicates with NodeManager to start or stop tasks.
– Monitor the running status of all tasks, and applies for resources again

for tasks when tasks fail to run to restart the tasks.

Capacity Scheduler Principle
Capacity Scheduler is a multi-user scheduler. It allocates resources by queue and
sets the minimum/maximum resources that can be used for each queue. In
addition, the upper limit of resource usage is set for each user to prevent resource
abuse. Remaining resources of a queue can be temporarily shared with other
queues.

Capacity Scheduler supports multiple queues. It configures a certain amount of
resources for each queue and adopts the first-in-first-out queuing (FIFO)
scheduling policy. To prevent one user's applications from exclusively using the
resources in a queue, Capacity Scheduler sets a limit on the number of resources
used by jobs submitted by one user. During scheduling, Capacity Scheduler first
calculates the number of resources required for each queue, and selects the queue
that requires the least resources. Then, it allocates resources based on the job
priority and time that jobs are submitted as well as the limit on resources and
memory. Capacity Scheduler supports the following features:

● Guaranteed capacity: As the MRS cluster administrator, you can set the lower
and upper limits of resource usage for each queue. All applications submitted
to this queue share the resources.

● High flexibility: Temporarily, the remaining resources of a queue can be
shared with other queues. However, such resources must be released in case
of new application submission to the queue. Such flexible resource allocation
helps notably improve resource usage.

● Multi-tenancy: Multiple users can share a cluster, and multiple applications
can run concurrently. To avoid exclusive resource usage by a single
application, user, or queue, the MRS cluster administrator can add multiple
constraints (for example, limit on concurrent tasks of a single application).

● Assured protection: An ACL list is provided for each queue to strictly limit user
access. You can specify the users who can view your application status or
control the applications. Additionally, the MRS cluster administrator can
specify a queue administrator and a cluster system administrator.

● Dynamic update of configuration files: MRS cluster administrators can
dynamically modify configuration parameters to manage clusters online.

Each queue in Capacity Scheduler can limit the resource usage. However, the
resource usage of a queue determines its priority when resources are allocated to
queues, indicating that queues with smaller capacity are competitive. If the
throughput of a cluster is big, delay scheduling enables an application to give up
cross-machine or cross-rack scheduling, and to request local scheduling.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 210

6.32.2 YARN HA Solution

HA Principles and Implementation Solution
ResourceManager in YARN manages resources and schedules tasks in the cluster.
In versions earlier than Hadoop 2.4, SPOFs may occur on ResourceManager in the
YARN cluster. The YARN HA solution uses redundant ResourceManager nodes to
tackle challenges of service reliability and fault tolerance.

Figure 6-132 ResourceManager HA architecture

ResourceManager HA is achieved using active-standby ResourceManager nodes, as
shown in Figure 6-132. Similar to the HDFS HA solution, the ResourceManager
HA allows only one ResourceManager node to be in the active state at any time.
When the active ResourceManager fails, the active-standby switchover can be
triggered automatically or manually.

When the automatic failover function is not enabled, after the YARN cluster is
enabled, MRS cluster administrators need to run the yarn rmadmin command to
manually switch one of the ResourceManager nodes to the active state. Upon a
planned maintenance event or a fault, they are expected to first demote the active
ResourceManager to the standby state and the standby ResourceManager
promote to the active state.

When automatic failover is enabled, a built-in ActiveStandbyElector that is based
on ZooKeeper is used to decide which ResourceManager node should be the active
one. When the active ResourceManager is faulty, another ResourceManager node
is automatically selected to be the active one to take over the faulty node.

When ResourceManager nodes in the cluster are deployed in HA mode, the
configuration yarn-site.xml used by clients needs to list all the ResourceManager
nodes. The client (including ApplicationMaster and NodeManager) searches for
the active ResourceManager in polling mode. That is, the client needs to provide
the fault tolerance mechanism. If the active ResourceManager cannot be
connected with, the client continuously searches for a new one in polling mode.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 211

After the standby ResourceManager node becomes the active one, the upper-layer
applications can recover to their status when the fault occurs. For details, see
ResourceManager Restart. When ResourceManager Restart is enabled, the
restarted ResourceManager node loads the information of the previous active
ResourceManager node, and takes over container status information on all
NodeManager nodes to continue service running. In this way, status information
can be saved by periodically executing checkpoint operations, avoiding data loss.
Ensure that both active and standby ResourceManager nodes can access the
status information. Currently, three methods are provided for sharing status
information by file system (FileSystemRMStateStore), LevelDB database
(LeveldbRMStateStore), and ZooKeeper (ZKRMStateStore). Among them, only
ZKRMStateStore supports the Fencing mechanism. By default, Hadoop uses
ZKRMStateStore.

For more information about the YARN HA solution, visit the following website:

http://hadoop.apache.org/docs/r3.1.1/hadoop-yarn/hadoop-yarn-site/
ResourceManagerHA.html

6.32.3 Relationships Between YARN and Other Components

Relationship Between YARN and Spark

The Spark computing and scheduling can be implemented using YARN mode.
Spark enjoys the compute resources provided by YARN clusters and runs tasks in a
distributed way. Spark on YARN has two modes: YARN-cluster and YARN-client.

● YARN Cluster mode
Figure 6-133 describes the operation framework.

Figure 6-133 Spark on YARN-cluster operation framework

Spark on YARN-cluster implementation process:

a. The client generates the application information, and then sends the
information to ResourceManager.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 212

https://hadoop.apache.org/docs/r3.1.1/hadoop-yarn/hadoop-yarn-site/ResourceManagerRestart.html
http://hadoop.apache.org/docs/r3.1.1/hadoop-yarn/hadoop-yarn-site/ResourceManagerHA.html
http://hadoop.apache.org/docs/r3.1.1/hadoop-yarn/hadoop-yarn-site/ResourceManagerHA.html

b. ResourceManager allocates the first container (ApplicationMaster) to
SparkApplication and starts the driver on the container.

c. ApplicationMaster applies for resources from ResourceManager to run
the container.
ResourceManager allocates the containers to ApplicationMaster, which
communicates with the related NodeManagers and starts the executor in
the obtained container. After the executor is started, it registers with
drivers and applies for tasks.

d. Drivers allocate tasks to the executors.
e. Executors run tasks and report the operating status to Drivers.

● YARN Client mode
Figure 6-134 describes the operation framework.

Figure 6-134 Spark on YARN-client operation framework

Spark on YARN-client implementation process:

NO TE

In YARN-client mode, the driver is deployed and started on the client. In YARN-client
mode, the client of an earlier version is incompatible. You are advised to use the
YARN-cluster mode.

a. The client sends the Spark application request to ResourceManager, then
ResourceManager returns the results. The results include information
such as Application ID and the maximum and minimum available
resources. The client packages all information required to start
ApplicationMaster, and sends the information to ResourceManager.

b. After receiving the request, ResourceManager finds a proper node for
ApplicationMaster and starts it on this node. ApplicationMaster is a role
in YARN, and the process name in Spark is ExecutorLauncher.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 213

c. Based on the resource requirements of each task, ApplicationMaster can
apply for a series of containers to run tasks from ResourceManager.

d. After receiving the newly allocated container list (from
ResourceManager), ApplicationMaster sends information to the related
NodeManagers to start the containers.
ResourceManager allocates the containers to ApplicationMaster, which
communicates with the related NodeManagers and starts the executor in
the obtained container. After the executor is started, it registers with
drivers and applies for tasks.

NO TE

Running containers are not suspended and resources are not released.

e. Drivers allocate tasks to the executors. Executors run tasks and report the
operating status to Drivers.

Relationship Between YARN and MapReduce
MapReduce is a computing framework running on YARN, which is used for batch
processing. MRv1 is implemented based on MapReduce in Hadoop 1.0, which is
composed of programming models (new and old programming APIs), running
environment (JobTracker and TaskTracker), and data processing engine (MapTask
and ReduceTask). This framework is still weak in scalability, fault tolerance
(JobTracker SPOF), and compatibility with multiple frameworks. (Currently, only
the MapReduce computing framework is supported.) MRv2 is implemented based
on MapReduce in Hadoop 2.0. The source code reuses MRv1 programming models
and data processing engine implementation, and the running environment is
composed of ResourceManager and ApplicationMaster. ResourceManager is a
brand new resource manager system, and ApplicationMaster is responsible for
cutting MapReduce job data, assigning tasks, applying for resources, scheduling
tasks, and tolerating faults.

Relationship Between YARN and ZooKeeper
Figure 6-135 shows the relationship between ZooKeeper and YARN.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 214

Figure 6-135 Relationship Between ZooKeeper and YARN

1. When the system is started, ResourceManager attempts to write state
information to ZooKeeper. ResourceManager that first writes state
information to ZooKeeper is selected as the active ResourceManager, and
others are standby ResourceManagers. The standby ResourceManagers
periodically monitor active ResourceManager election information in
ZooKeeper.

2. The active ResourceManager creates the Statestore directory in ZooKeeper to
store application information. If the active ResourceManager is faulty, the
standby ResourceManager obtains application information from the
Statestore directory and restores the data.

Relationship Between YARN and Tez

The Hive on Tez job information requires the TimeLine Server capability of YARN
so that Hive tasks can display the current and historical status of applications,
facilitating storage and retrieval.

6.32.4 Yarn Enhanced Open Source Features

Priority-based task scheduling

In the native Yarn resource scheduling mechanism, if the whole Hadoop cluster
resources are occupied by those MapReduce jobs submitted earlier, jobs submitted
later will be kept in pending state until all running jobs are executed and
resources are released.

The MRS cluster provides the task priority scheduling mechanism. With this
feature, you can define jobs of different priorities. Jobs of high priority can
preempt resources released from jobs of low priority though the high-priority jobs
are submitted later. The low-priority jobs that are not started will be suspended
unless those jobs of high priority are completed and resources are released, then
they can properly be started.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 215

This feature enables services to control computing jobs more flexibly, thereby
achieving higher cluster resource utilization.

NO TE

Container reuse is in conflict with task priority scheduling. If container reuse is enabled,
resources are being occupied, and task priority scheduling does not take effect.

Yarn Permission Control

The permission mechanism of Hadoop Yarn is implemented through ACLs. The
following describes how to grant different permission control to different users:

● Admin ACL

An O&M administrator is specified for the YARN cluster. The Admin ACL is
determined by yarn.admin.acl. The cluster O&M administrator can access the
ResourceManager web UI and operate NodeManager nodes, queues, and
NodeLabel, but cannot submit tasks.

● Queue ACL

To facilitate user management in the cluster, users or user groups are divided
into several queues to which each user and user group belongs. Each queue
contains permissions to submit and manage applications (for example,
terminate any application).

Open source functions:

Currently, Yarn supports the following roles for users:

● Cluster O&M administrator

● Queue administrator

● Common user

However, the APIs (such as the web UI, REST API, and Java API) provided by Yarn
do not support role-specific permission control. Therefore, all users have the
permission to access the application and cluster information, which does not meet
the isolation requirements in the multi-tenant scenario.

This is an enhanced function.

In security mode, permission management is enhanced for the APIs such as web
UI, REST API, and Java API provided by Yarn. Permission control can be performed
based on user roles.

Role-based permissions are as follows:

● Cluster O&M administrator: performs management operations in the Yarn
cluster, such as accessing the ResourceManager web UI, refreshing queues,
setting NodeLabel, and performing active/standby switchover.

● Queue administrator: has the permission to modify and view queues
managed by the Yarn cluster.

● Common user: has the permission to modify and view self-submitted
applications in the Yarn cluster.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 216

Superior Scheduler Principle (Self-developed)
Superior Scheduler is a scheduling engine designed for the Hadoop Yarn
distributed resource management system. It is a high-performance and enterprise-
level scheduler designed for converged resource pools and multi-tenant service
requirements.

Superior Scheduler achieves all functions of open source schedulers, Fair
Scheduler, and Capacity Scheduler. Compared with the open source schedulers,
Superior Scheduler is enhanced in the enterprise multi-tenant resource scheduling
policy, resource isolation and sharing among users in a tenant, scheduling
performance, system resource usage, and cluster scalability. Superior Scheduler is
designed to replace open source schedulers.

Similar to open source Fair Scheduler and Capacity Scheduler, Superior Scheduler
follows the Yarn scheduler plugin API to interact with Yarn ResourceManager to
offer resource scheduling functionalities. Figure 6-136 shows the overall system
diagram.

Figure 6-136 Internal architecture of Superior Scheduler

In Figure 6-136, Superior Scheduler consists of the following modules:

● Superior Scheduler Engine is a high performance scheduler engine with rich
scheduling policies.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 217

● Superior Yarn Scheduler Plugin functions as a bridge between Yarn
ResourceManager and Superior Scheduler Engine and interacts with Yarn
ResourceManager.
The scheduling principle of open source schedulers is that resources match
jobs based on the heartbeats of computing nodes. Specifically, each
computing node periodically sends heartbeat messages to ResourceManager
of Yarn to notify the node status and starts the scheduler to assign jobs to the
node itself. In this scheduling mechanism, the scheduling period depends on
the heartbeat. If the cluster scale increases, bottleneck on system scalability
and scheduling performance may occur. In addition, because resources match
jobs, the scheduling accuracy of an open source scheduler is limited. For
example, data affinity is random and the system does not support load-based
scheduling policies. The scheduler may not make an optimal choice due to
lack of the global resource view when selecting jobs.
Superior Scheduler adopts multiple scheduling mechanisms. There are
dedicated scheduling threads in Superior Scheduler, separating heartbeats
with scheduling and preventing system heartbeat storms. Additionally,
Superior Scheduler matches jobs with resources, providing each scheduled job
with a global resource view and increasing the scheduling accuracy. Compared
with the open source scheduler, Superior Scheduler excels in system
throughput, resource usage, and data affinity.

Figure 6-137 Comparison of Superior Scheduler with open source schedulers

Apart from the enhanced system throughput and utilization, Superior Scheduler
provides following major scheduling features:

● Multiple resource pools
Multiple resource pools help logically divide cluster resources and share them
among multiple tenants or queues. The division of resource pools supports
heterogeneous resources. Resource pools can be divided exactly according to
requirements on the application resource isolation. You can configure further
policies for different queues in a pool.

● Multi-tenant scheduling (reserve, min, share, and max) in each resource pool
Superior Scheduler provides flexible hierarchical multi-tenant scheduling
policy. Different policies can be configured for different tenants or queues that

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 218

can access different resource pools. The following figure lists supported
policies:

Table 6-30 Policy description

Name Description

reserve This policy is used to reserve resources for a tenant. Even
though tenant has no jobs available, other tenant cannot use
the reserved resource. The value can be a percentage or an
absolute value. If both the percentage and absolute value are
configured, the percentage is automatically calculated into
an absolute value, and the larger value is used. The default
reserve value is 0. Compared with the method of specifying
a dedicated resource pool and hosts, the reserve policy
provides a flexible floating reservation function. In addition,
because no specific hosts are specified, the data affinity for
calculation is improved and the impact by the faulty hosts is
avoided.

min This policy allows preemption of minimum resources. Other
tenants can use these resources, but the current tenant has
the priority to use them. The value can be a percentage or an
absolute value. If both the percentage and absolute value are
configured, the percentage is automatically calculated into
an absolute value, and the larger value is used. The default
value is 0.

share This policy is used for shared resources that cannot be
preempted. To use these resources, the current tenant needs
to wait for other tenants to complete jobs and release
resources. The value can be a percentage or an absolute
value.

max This policy is used for the maximum resources that can be
utilized. The tenant cannot obtain more resources than the
allowed maximum value. The value can be a percentage or
an absolute value. If both the percentage and absolute value
are configured, the percentage is automatically calculated
into an absolute value, and the larger value is used. By
default value, there is no restriction on resources.

Figure 6-138 shows the tenant resource allocation policy.

Figure 6-138 Resource scheduling policies

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 219

NO TE

In the above figure, Total indicates the total number of resources, not the scheduling
policy.

Compared with open source schedulers, Superior Scheduler supports both
percentage and absolute value of tenants for allocating resources, flexibly
addressing resource scheduling requirements of enterprise-level tenants. For
example, resources can be allocated according to the absolute value of level-1
tenants, avoiding impact caused by changes of cluster scale. However,
resources can be allocated according to the allocation percentage of sub-
tenants, improving resource usages in the level-1 tenant.

● Heterogeneous and multi-dimensional resource scheduling
Superior Scheduler supports following functions except CPU and memory
scheduling:
– Node labels can be used to identify multi-dimensional attributes of nodes

such as GPU_ENABLED and SSD_ENABLED, and can be scheduled based
on these labels.

– Resource pools can be used to group resources of the same type and
allocate them to specific tenants or queues.

● Fair scheduling of multiple users in a tenant
In a leaf tenant, multiple users can use the same queue to submit jobs.
Compared with the open source schedulers, Superior Scheduler supports
configuring flexible resource sharing policy among different users in a same
tenant. For example, VIP users can be configured with higher resource access
weight.

● Data locality aware scheduling
Superior Scheduler adopts the job-to-node scheduling policy. That is, Superior
Scheduler attempts to schedule specified jobs between available nodes so
that the selected node is suitable for the specified jobs. By doing so, the
scheduler will have an overall view of the cluster and data. Localization is
ensured if there is an opportunity to place tasks closer to the data. The open
source scheduler uses the node-to-job scheduling policy to match the
appropriate jobs to a given node.

● Dynamic resource reservation during container scheduling
In a heterogeneous and diversified computing environment, some containers
need more resources or multiple resources. For example, Spark job may
require large memory. When such containers compete with containers
requiring fewer resources, containers requiring more resources may not obtain
sufficient resources within a reasonable period. Open source schedulers
allocate resources to jobs, which may cause unreasonable resource reservation
for these jobs. This mechanism leads to the waste of overall system resources.
Superior Scheduler differs from open source schedulers in following aspects:
– Requirement-based matching: Superior Scheduler schedules jobs to nodes

and selects appropriate nodes to reserve resources to improve the startup
time of containers and avoid waste.

– Tenant rebalancing: When the reservation logic is enabled, the open
source schedulers do not comply with the configured sharing policy.
Superior Scheduler uses different methods. In each scheduling period,
Superior Scheduler traverses all tenants and attempts to balance

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 220

resources based on the multi-tenant policy. In addition, Superior
Scheduler attempts to meet all policies (reserve, min, and share) to
release reserved resources and direct available resources to other
containers that should obtain resources under different tenants.

● Dynamic queue status control (Open/Closed/Active/Inactive)
Multiple queue statuses are supported, helping MRS cluster administrators
manage and maintain multiple tenants.
– Open status (Open/Closed): If the status is Open by default, applications

submitted to the queue are accepted. If the status is Closed, no
application is accepted.

– Active status (Active/Inactive): If the status is Active by default,
resources can be scheduled and allocated to applications in the tenant.
Resources will not be scheduled to queues in Inactive status.

● Application pending reason
If the application is not started, provide the job pending reasons.

Table 6-31 describes the comparison result of Superior Scheduler and Yarn open
source schedulers.

Table 6-31 Comparative analysis

Schedulin
g

Yarn Open Source Scheduler Superior Scheduler

Multi-
tenant
schedulin
g

In homogeneous clusters, either
Capacity Scheduler or Fair
Scheduler can be selected and
the cluster does not support
Fair Scheduler. Capacity
Scheduler supports the
scheduling by percentage and
Fair Scheduler supports the
scheduling by absolute value.

● Supports heterogeneous
clusters and multiple resource
pools.

● Supports reservation to
ensure direct access to
resources.

Data
locality
aware
schedulin
g

The node-to-job scheduling
policy reduces the success rate
of data localization and
potentially affects application
execution performance.

The job-to-node scheduling
policy can aware data location
more accurately, and the job hit
rate of data localization
scheduling is higher.

Balanced
schedulin
g based
on load of
hosts

Not supported Balanced scheduling can be
achieved when Superior
Scheduler considers the host
load and resource allocation
during scheduling.

Fair
schedulin
g of
multiple
users in a
tenant

Not supported Supports keywords default and
others.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 221

Schedulin
g

Yarn Open Source Scheduler Superior Scheduler

Job
waiting
reason

Not supported Job waiting reasons illustrate
why a job needs to wait.

In conclusion, Superior Scheduler is a high-performance scheduler with various
scheduling policies and is better than Capacity Scheduler in terms of functionality,
performance, resource usage, and scalability.

CPU Hard Isolation
Yarn cannot strictly control the CPU resources used by each container. When the
CPU subsystem is used, a container may occupy excessive resources. In this case,
CPUset is used to control resource allocation.

To solve this problem, the CPU resources are allocated to each container based on
the ratio of virtual cores (vCores) to physical cores. If a container requires an
entire physical core, the container has it. If a container needs only some physical
cores, several containers may share the same physical core. The following figure
shows an example of the CPU quota. The given ratio of vCores to physical cores is
2:1.

Figure 6-139 CPU quota

Enhanced Open Source Feature: Optimizing Restart Performance
Generally, the recovered ResourceManager can obtain running and completed
applications. However, a large number of completed applications may cause

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 222

problems such as slow startup and long HA switchover/restart time of
ResourceManagers.

To speed up the startup, obtain the list of unfinished applications before starting
the ResourceManagers. In this case, the completed application continues to be
recovered in the background asynchronous thread. The following figure shows
how the ResourceManager recovery starts.

Figure 6-140 Starting the ResourceManager recovery

6.33 ZooKeeper

6.33.1 ZooKeeper Basic Principles

Overview

ZooKeeper is a distributed, highly available coordination service. ZooKeeper is
used to provide following functions:

● Prevents the system from SPOFs and provides reliable services for
applications.

● Provides distributed coordination services and manages configuration
information.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 223

https://zookeeper.apache.org/

Architecture
Nodes in a ZooKeeper cluster have three roles: Leader, Follower, and Observer, as
shown in Figure 6-141. Generally, an odd number of (2N+1) ZooKeeper services
need to be configured in the cluster, and at least (N+1) vote majority is required
to successfully perform the write operation.

Figure 6-141 Architecture

Table 6-32 describes the functions of each module shown in Figure 6-141.

Table 6-32 Architecture description

Name Description

Leader Only one node serves as the Leader in a ZooKeeper cluster. The
Leader, elected by Followers using the ZooKeeper Atomic Broadcast
(ZAB) protocol, receives and coordinates all write requests and
synchronizes written information to Followers and Observers.

Followe
r

Follower has two functions:
● Prevents SPOFs. A new Leader is elected from Followers when the

Leader is faulty.
● Processes read requests and interact with the Leader to process

write requests.

Observ
er

The Observer does not take part in voting for election and write
requests. It only processes read requests and forwards write requests
to the Leader, increasing system processing efficiency.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 224

Name Description

Client Reads and writes data from or to the ZooKeeper cluster. For example,
HBase can serve as a ZooKeeper client and use the arbitration
function of the ZooKeeper cluster to control the active/standby status
of HMaster.

If security services are enabled in the cluster, authentication is required during the
connection to ZooKeeper. The authentication modes are as follows:

● Keytab mode: You need to obtain a human-machine user from the MRS
cluster administrator for MRS console login and authentication, and obtain
the Keytab file of the user.

● Ticket mode: Obtain a human-machine user from the MRS cluster
administrator for subsequent secure login, enable the renewable and
forwardable functions of the Kerberos service, set the ticket update period,
and restart Kerberos and related components.

NO TE

● By default, the validity period of the user password is 90 days. Therefore, the
validity period of the obtained Keytab file is 90 days.

● The parameters for enabling the renewable and forwardable functions and setting
the ticket update interval are on the System tab of the Kerberos service
configuration page. The ticket update interval can be set to kdc_renew_lifetime or
kdc_max_renewable_life based on the actual situation.

Principles
● Write Request

a. After the Follower or Observer receives a write request, the Follower or
Observer sends the request to the Leader.

b. The Leader coordinates Followers to determine whether to accept the
write request by voting.

c. If more than half of voters return a write success message, the Leader
submits the write request and returns a success message. Otherwise, a
failure message is returned.

d. The Follower or Observer returns the processing results.

● Read-Only Request

The client directly reads data from the Leader, Follower, or Observer.

6.33.2 Relationships Between ZooKeeper and Other
Components

Relationship Between ZooKeeper and HDFS

Figure 6-142 shows the relationship between ZooKeeper and HDFS.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 225

Figure 6-142 Relationship between ZooKeeper and HDFS

As the client of a ZooKeeper cluster, ZKFailoverController (ZKFC) monitors the
status of NameNode. ZKFC is deployed only in the node where NameNode is
deployed, and in both the active and standby HDFS NameNodes.

1. The ZKFC connects to ZooKeeper and saves information such as host names
to ZooKeeper under the znode directory /hadoop-ha. NameNode that creates
the directory first is considered as the active node, and the other is the
standby node. NameNodes read the NameNode information periodically
through ZooKeeper.

2. When the process of the active node ends abnormally, the standby
NameNode detects changes in the /hadoop-ha directory through ZooKeeper,
and then takes over the service of the active NameNode.

Relationship Between ZooKeeper and YARN
Figure 6-143 shows the relationship between ZooKeeper and YARN.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 226

Figure 6-143 Relationship Between ZooKeeper and YARN

1. When the system is started, ResourceManager attempts to write state
information to ZooKeeper. ResourceManager that first writes state
information to ZooKeeper is selected as the active ResourceManager, and
others are standby ResourceManagers. The standby ResourceManagers
periodically monitor active ResourceManager election information in
ZooKeeper.

2. The active ResourceManager creates the Statestore directory in ZooKeeper to
store application information. If the active ResourceManager is faulty, the
standby ResourceManager obtains application information from the
Statestore directory and restores the data.

Relationship Between ZooKeeper and HBase
Figure 6-144 shows the relationship between ZooKeeper and HBase.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 227

Figure 6-144 Relationship between ZooKeeper and HBase

1. RegionServer registers itself to ZooKeeper on Ephemeral node. ZooKeeper
stores the HBase information, including the HBase metadata and HMaster
addresses.

2. HMaster detects the health status of each RegionServer using ZooKeeper, and
monitors them.

3. HBase supports multiple HMaster nodes (like HDFS NameNodes). When the
active HMatser is faulty, the standby HMaster obtains the state information
about the entire cluster using ZooKeeper. That is, using ZooKeeper can avoid
HBase SPOFs.

Relationship Between ZooKeeper and Kafka
Figure 6-145 shows the relationship between ZooKeeper and Kafka.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 228

Figure 6-145 Relationship between ZooKeeper and Kafka

1. Broker uses ZooKeeper to register broker information and elect a partition
leader.

2. The consumer uses ZooKeeper to register consumer information, including the
partition list of consumer. In addition, ZooKeeper is used to discover the
broker list, establish a socket connection with the partition leader, and obtain
messages.

6.33.3 ZooKeeper Enhanced Open Source Features

Enhanced Log
In security mode, an ephemeral node is deleted as long as the session that created
the node expires. Ephemeral node deletion is recorded in audit logs so that
ephemeral node status can be obtained.

Usernames must be added to audit logs for all operations performed on
ZooKeeper clients.

On the ZooKeeper client, create a znode, of which the Kerberos principal is zkcli/
hadoop.<System domain name>@<System domain name>.

For example, open the <ZOO_LOG_DIR>/zookeeper_audit.log file. The file
content is as follows:

2016-12-28 14:17:10,505 | INFO | CommitProcWorkThread-4 | session=0x12000007553b4903?
user=10.177.223.78,zkcli/hadoop.hadoop.com@HADOOP.COM?ip=10.177.223.78?operation=create znode?
target=ZooKeeperServer?znode=/test1?result=success
2016-12-28 14:17:10,530 | INFO | CommitProcWorkThread-4 | session=0x12000007553b4903?
user=10.177.223.78,zkcli/hadoop.hadoop.com@HADOOP.COM?ip=10.177.223.78?operation=create znode?
target=ZooKeeperServer?znode=/test2?result=success
2016-12-28 14:17:10,550 | INFO | CommitProcWorkThread-4 | session=0x12000007553b4903?
user=10.177.223.78,zkcli/hadoop.hadoop.com@HADOOP.COM?ip=10.177.223.78?operation=create znode?
target=ZooKeeperServer?znode=/test3?result=success
2016-12-28 14:17:10,570 | INFO | CommitProcWorkThread-4 | session=0x12000007553b4903?
user=10.177.223.78,zkcli/hadoop.hadoop.com@HADOOP.COM?ip=10.177.223.78?operation=create znode?
target=ZooKeeperServer?znode=/test4?result=success
2016-12-28 14:17:10,592 | INFO | CommitProcWorkThread-4 | session=0x12000007553b4903?
user=10.177.223.78,zkcli/hadoop.hadoop.com@HADOOP.COM?ip=10.177.223.78?operation=create znode?
target=ZooKeeperServer?znode=/test5?result=success
2016-12-28 14:17:10,613 | INFO | CommitProcWorkThread-4 | session=0x12000007553b4903?
user=10.177.223.78,zkcli/hadoop.hadoop.com@HADOOP.COM?ip=10.177.223.78?operation=create znode?
target=ZooKeeperServer?znode=/test6?result=success
2016-12-28 14:17:10,633 | INFO | CommitProcWorkThread-4 | session=0x12000007553b4903?

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 229

user=10.177.223.78,zkcli/hadoop.hadoop.com@HADOOP.COM?ip=10.177.223.78?operation=create znode?
target=ZooKeeperServer?znode=/test7?result=success

The content shows that logs of the ZooKeeper client user zkcli/
hadoop.hadoop.com@HADOOP.COM are added to the audit log.

User details in ZooKeeper

In ZooKeeper, different authentication schemes use different credentials as users.
Based on the authentication provider requirement, any parameter can be
considered as users.

Example:

● SAMLAuthenticationProvider uses the client principal as a user.
● X509AuthenticationProvider uses the user client certificate as a user.
● IAuthenticationProvider uses the client IP address as a user.
● A username can be obtained from the custom authentication provider by

implementing the
org.apache.zookeeper.server.auth.ExtAuthenticationProvider.getUserNam
e(String) method. If the method is not implemented, getting the username
from the authentication provider instance will be skipped.

Enhanced Open Source Feature: ZooKeeper SSL Communication (Netty
Connection)

The ZooKeeper design contains the Nio package and does not support SSL later
than version 3.5. To solve this problem, Netty is added to ZooKeeper. Therefore, if
you need to use SSL, enable Netty and set the following parameters on the server
and client:

The open source server supports only plain text passwords, which may cause
security problems. Therefore, such text passwords are no longer used on the
server.

● Client

a. Set -Dzookeeper.client.secure in the zkCli.sh/zkEnv.sh file to true to use
secure communication on the client. Then, the client can connect to the
secureClientPort on the server.

b. Set the following parameters in the zkCli.sh/zkEnv.sh file to configure
the client environment:

Parameter Description

-Dzookeeper.clientCnxnSocket Used for Netty communication
between clients.
Default value:
org.apache.zookeeper.ClientCnx
nSocketNetty

-Dzookeeper.ssl.keyStore.location Indicates the path for storing the
keystore file.

-Dzookeeper.ssl.keyStore.password Encrypts a password.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 230

Parameter Description

-Dzookeeper.ssl.trustStore.location Indicates the path for storing the
truststore file.

-
Dzookeeper.ssl.trustStore.password

Encrypts a password.

-Dzookeeper.config.crypt.class Decrypts an encrypted password.

-
Dzookeeper.ssl.password.encrypte
d

Default value: false
If the keystore and truststore
passwords are encrypted, set this
parameter to true.

-Dzookeeper.ssl.enabled.protocols Defines the SSL protocols to be
enabled for the SSL context.

-Dzookeeper.ssl.exclude.cipher.ext Defines the list of passwords
separated by a comma which
should be excluded from the SSL
context.

NO TE

The preceding parameters must be set in the zkCli.sh/zk.Env.sh file.

● Server

a. Set secureClientPort to 3381 in the zoo.cfg file.
b. Set zookeeper.serverCnxnFactory to

org.apache.zookeeper.server.NettyServerCnxnFactory in the zoo.cfg file
on the server.

c. Set the following parameters in the zoo.cfg file (in the zookeeper/conf/
zoo.cfg path) to configure the server environment:

Parameter Description

ssl.keyStore.location Path for storing the keystore.jks
file

ssl.keyStore.password Encrypts a password.

ssl.trustStore.location Indicates the path for storing the
truststore file.

ssl.trustStore.password Encrypts a password.

config.crypt.class Decrypts an encrypted password.

ssl.keyStore.password.encrypted Default value: false
If this parameter is set to true, the
encrypted password can be used.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 231

Parameter Description

ssl.trustStore.password.encrypted Default value: false
If this parameter is set to true, the
encrypted password can be used.

ssl.enabled.protocols Defines the SSL protocols to be
enabled for the SSL context.

ssl.exclude.cipher.ext Defines the list of passwords
separated by a comma which
should be excluded from the SSL
context.

d. Start ZKserver and connect the security client to the security port.

● Credential
The credential used between client and server in ZooKeeper is
X509AuthenticationProvider. This credential is initialized using the server
certificates specified and trusted by the following parameters:
– zookeeper.ssl.keyStore.location
– zookeeper.ssl.keyStore.password
– zookeeper.ssl.trustStore.location
– zookeeper.ssl.trustStore.password

NO TE

If you do not want to use default mechanism of ZooKeeper, then it can be configured
with different trust mechanisms as needed.

MapReduce Service
Product Introduction 6 Components

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 232

7 Functions

7.1 Multi-tenant

Feature Introduction
Modern enterprises' data clusters are developing towards centralization and
cloudification. Enterprise-class big data clusters must meet the following
requirements:

● Carry data of different types and formats and run jobs and applications of
different types (analysis, query, and stream processing).

● Isolate data of a user from that of another user who has demanding
requirements on data security, such as a bank or government institute.

The preceding requirements bring the following challenges to the big data cluster:

● Proper allocation and scheduling of resources to ensure stable operating of
applications and jobs

● Strict access control to ensure data and service security

Multi-tenant isolates the resources of a big data cluster into resource sets. Users
can lease desired resource sets to run applications and jobs and store data. In a
big data cluster, multiple resource sets can be deployed to meet diverse
requirements of multiple users.

The MRS big data cluster provides a complete enterprise-class big data multi-
tenant solution. Multi-tenant is a collection of multiple resources (each resource
set is a tenant) in an MRS big data cluster. It can allocate and schedule resources,
including computing and storage resources.

Advantages
● Proper resource configuration and isolation

The resources of a tenant are isolated from those of another tenant. The
resource use of a tenant does not affect other tenants. This mechanism
ensures that each tenant can configure resources based on service
requirements, improving resource utilization.

MapReduce Service
Product Introduction 7 Functions

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 233

● Resource consumption measurement and statistics
Tenants are system resource applicants and consumers. System resources are
planned and allocated based on tenants. Resource consumption by tenants
can be measured and recorded.

● Ensured data security and access security
In multi-tenant scenarios, the data of each tenant is stored separately to
ensure data security. The access to tenants' resources is controlled to ensure
access security.

Enhanced Schedulers
Schedulers are divided into the open source Capacity scheduler and Huawei
proprietary Superior scheduler.

To meet enterprise requirements and tackle challenges facing the Yarn community
in scheduling, Huawei develops the Superior scheduler. In addition to inheriting
the advantages of the Capacity scheduler and Fair scheduler, this scheduler is
enhanced in the following aspects:

● Enhanced resource sharing policy
The Superior scheduler supports queue hierarchy. It integrates the functions of
open source schedulers and shares resources based on configurable policies. In
terms of instances, MRS cluster administrators can use the Superior scheduler
to configure an absolute value or percentage policy for queue resources. The
resource sharing policy of the Superior scheduler enhances the label
scheduling policy of Yarn as a resource pool feature. The nodes in the Yarn
cluster can be grouped based on the capacity or service type to ensure that
queues can more efficiently utilize resources.

● Tenant-based resource reservation policy
Resources required by tenants must be ensured for running critical tasks. The
Superior scheduler builds a mechanism to support the resource reservation
policy. By doing so, reserved resources can be allocated to the tasks run by the
tenant queues in a timely manner to ensure proper task execution.

● Fair sharing among tenants and resource pool users
The Superior scheduler allows shared resources to be configured for users in a
queue. Each tenant may have users with different weights. Heavily weighted
users may require more shared resources.

● Ensured scheduling performance in a big cluster
The Superior scheduler receives heartbeats from each NodeManager and
saves resource information in memory, which enables the scheduler to control
cluster resource usage globally. The Superior scheduler uses the push
scheduling model, which makes the scheduling more precise and efficient and
remarkably improves cluster resource utilization. Additionally, the Superior
scheduler delivers excellent performance when the interval between
NodeManager heartbeats is long and prevents heartbeat storms in big
clusters.

● Priority policy
If the minimum resource requirement of a service cannot be met after the
service obtains all available resources, a preemption occurs. The preemption
function is disabled by default.

MapReduce Service
Product Introduction 7 Functions

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 234

7.2 Security Hardening
MRS is a platform for massive data management and analysis and has high
security. MRS protects user data and service running from the following aspects:

● Network isolation
The entire system is deployed in a VPC on the public cloud to provide an
isolated network environment and ensure service and management security
of the cluster. By combining the subnet division, route control, and security
group functions of VPC, MRS provides a secure and reliable isolated network
environment.

● Resource isolation
MRS supports resource deployment and isolation of physical resources in
dedicated zones. You can flexibly combine computing and storage resources,
such as dedicated computing resources + shared storage resources, shared
computing resources + dedicated storage resources, and dedicated computing
resources + dedicated storage resources.

● Host security
MRS can be integrated with public cloud security services, including
Vulnerability Scan Service (VSS), Host Security Service (HSS), Web Application
Firewall (WAF), Cloud Bastion Host (CBH), and Web Tamper Protection
(WTP). The following measures are provided by Huawei Cloud to improve
security of the OS and ports:
– Security hardening of OS kernels
– OS permission control
– OS port management

● Application security
The following measures are used to ensure normal running of big data
services:
– Identification and authentication
– Web application security
– Access control
– Audit security
– Password security

● Data security
The following measures are provided to ensure the confidentiality, integrity,
and availability of massive amounts of user data:
– Disaster recovery: MRS supports data backup to OBS and cross-region

high reliability.
– Backup: MRS supports backup of DBService, NameNode, and LDAP

metadata and backup of HDFS and HBase service data.
● Data integrity

Data is verified to ensure its integrity during storage and transmission.
– CRC32C is used by default to verify the correctness of user data stored in

HDFS.

MapReduce Service
Product Introduction 7 Functions

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 235

– DataNodes of HDFS store the verified data. If the data transmitted from
a client is abnormal (incomplete), DataNodes report the abnormality to
the client, and the client rewrites the data.

– The client checks data integrity when reading data from a DataNode. If
the data is incomplete, the client will read data from another DataNode.

● Data confidentiality
Based on Apache Hadoop, the distributed file system of MRS supports
encrypted storage of files to prevent sensitive data from being stored in
plaintext, improving data security. Applications need only to encrypt specified
sensitive data. Services are not affected during the encryption process. Based
on file system data encryption, Hive provides table-level encryption and
HBase provides column family-level encryption. Sensitive data can be
encrypted and stored after you specify an encryption algorithm during table
creation.
Encrypted storage and access control of data are used to ensure user data
security.
– HBase stores service data to the HDFS after compression. Users can

configure the AES and SMS4 encryption algorithm to encrypt data.
– All the components allow access permissions to be set for local data

directories. Unauthorized users are not allowed to access data.
– All cluster user information is stored in ciphertext.

● Security authentication
– Uses a unified user- and role-based authentication system as well as an

account- and role-based access control (RBAC) model to centrally control
user permissions and batch manage user authorization.

– Employs Lightweight Directory Access Protocol (LDAP) as an account
management system and performs the Kerberos authentication on
accounts.

– Provides the single sign-on (SSO) function that centrally manages and
authenticates MRS system and component users.

– Audits users who have logged in to Manager.

7.3 Easy Access to Web UIs of Components
Big data components have their own web UIs to manage their own systems.
However, you cannot easily access the web UIs due to network isolation. For
example, to access the HDFS web UI, you need to create an ECS to remotely log in
to the web UI. This makes the UI access complex and unfriendly.

MRS provides an EIP-based secure channel for you to easily access the web UIs of
components. This is more convenient than binding an EIP by yourself, and you can
access the web UIs with a few clicks, avoiding the steps for logging in to a VPC,
adding security group rules, and obtaining a public IP address. For the Hadoop,
Spark, HBase, and Hue components in analysis clusters and the Storm component
in streaming clusters, you can quickly access their web UIs from the entries on
Manager.

MapReduce Service
Product Introduction 7 Functions

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 236

7.4 Reliability Enhancement
Based on Apache Hadoop open source software, MRS optimizes and improves the
reliability and performance of main service components.

System Reliability
● HA for all management nodes

In the Hadoop open source version, data and compute nodes are managed in
a distributed system, in which a single point of failure (SPOF) does not affect
the operation of the entire system. However, a SPOF may occur on
management nodes running in centralized mode, which becomes the
weakness of the overall system reliability.
MRS provides similar double-node mechanisms for all management nodes of
the service components, such as Manager, HDFS NameNodes, HiveServers,
HBase HMasters, Yarn ResourceManagers, KerberosServers, and LdapServers.
All of them are deployed in active/standby mode or configured with load
sharing, effectively preventing SPOFs from affecting system reliability.

● Reliability guarantee in case of exceptions
By reliability analysis, the following measures to handle software and
hardware exceptions are provided to improve the system reliability:
– After power supply is restored, services are running properly regardless of

a power failure of a single node or the whole cluster, ensuring data
reliability in case of unexpected power failures. Key data will not be lost
unless the hard disk is damaged.

– Health status checks and fault handling of the hard disk do not affect
services.

– The file system faults can be automatically handled, and affected services
can be automatically restored.

– The process and node faults can be automatically handled, and affected
services can be automatically restored.

– The network faults can be automatically handled, and affected services
can be automatically restored.

● Data backup and restoration
MRS provides full backup, incremental backup, and restoration functions
based on service requirements, preventing the impact of data loss and
damages on services and ensuring fast system restoration in case of
exceptions.
– Automatic backup

MRS provides automatic backup for data on Manager. Based on the
customized backup policy, data on clusters, including LdapServer and
DBService data, can be automatically backed up.

– Manual backup
You can also manually back up data of the cluster management system
before the capacity expansion and patch installation to recover the
cluster management system functions upon faults.

MapReduce Service
Product Introduction 7 Functions

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 237

To improve the system reliability, data on Manager and HBase is backed
up to a third-party server manually.

Node Reliability
● OS health status monitoring

MRS periodically collects OS hardware resource usage data, including usage
of CPUs, memory, hard disks, and network resources.

● Process health status monitoring

MRS checks the status of service instances and health indicators of service
instance processes, enabling you to know the health status of processes in a
timely manner.

● Automatic disk troubleshooting

MRS is enhanced based on the open source version. It can monitor the status
of hardware and file systems on all nodes. If an exception occurs, the
corresponding partitions will be removed from the storage pool. If a disk is
faulty and replaced, a new hard disk will be added for running services. In this
case, maintenance operations are simplified. Replacement of faulty disks can
be completed online. In addition, users can set hot backup disks to reduce the
faulty disk restoration time and improve the system reliability.

● LVM configuration for node disks

MRS allows you to configure Logic Volume Management (LVM) to plan
multiple disks as a logical volume group. Configuring LVM can avoid uneven
usage of disks. It is especially important to ensure even usage of disks on
components that can use multiple disk capabilities, such as HDFS and Kafka.
In addition, LVM supports disk capacity expansion without re-attaching,
preventing service interruption.

Data Reliability

MRS can use the anti-affinity node groups and placement group capabilities
provided by ECS and the rack awareness capability of Hadoop to redundantly
distribute data to multiple physical host machines, preventing data loss caused by
physical hardware failures.

7.5 Job Management
The job management function provides an entry for you to submit jobs in a
cluster, including MapReduce, Spark, HiveQL, and SparkSQL jobs. MRS works with
Huawei Cloud DataArts Studio to provide a one-stop big data collaboration
development environment and fully-managed big data scheduling capabilities,
helping you effortlessly build big data processing centers.

DataArts Studio allows you to develop and debug MRS HiveQL/SparkSQL scripts
online and develop MRS jobs by performing drag-and-drop operations to migrate
and integrate data between MRS and over 20 heterogeneous data sources.
Powerful job scheduling and flexible monitoring and alarming help you easily
manage data and job O&M.

MapReduce Service
Product Introduction 7 Functions

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 238

7.6 Bootstrap Actions

Feature Introduction

MRS provides standard elastic big data clusters on the cloud. Big data
components, such as Hadoop and Spark, can be installed and deployed. Currently,
standard cloud big data clusters cannot meet all user requirements, for example,
in the following scenarios:

● Common operating system configurations cannot meet data processing
requirements, for example, increasing the maximum number of system
connections.

● Software tools or running environments need to be installed, for example,
Gradle and dependency R language package.

● Big data component packages need to be modified based on service
requirements, for example, modifying the Hadoop or Spark installation
package.

● Other big data components that are not supported by MRS need to be
installed.

To meet the preceding customization requirements, you can manually perform
operations on the existing and newly added nodes. The overall process is complex
and error-prone. In addition, manual operations cannot be traced, and data cannot
be processed immediately after creating a cluster based on your demand.

Therefore, MRS supports custom bootstrap actions that enable you to run scripts
on a specified node before or after a cluster component is started. You can run
bootstrap actions to install third-party software that is not supported by MRS,
modify the cluster running environment, and perform other customizations. If you
choose to run bootstrap actions when expanding a cluster, the bootstrap actions
will be run on the newly added nodes in the same way. MRS runs the script you
specify as user root. You can run the su - xxx command in the script to switch the
user.

Customer Benefits

You can use the custom bootstrap actions to flexibly and easily configure your
dedicated clusters and customize software installation.

7.7 Enterprise Project Management
An enterprise project is a cloud resource management mode. Enterprise
Management provides users with comprehensive management of cloud-based
resources, personnel, permissions, and finances. Common management consoles
are oriented to the control and configuration of individual cloud products. The
Enterprise Management console, in contrast, is more focused on resource
management. It is designed to help enterprises manage cloud-based resources,
personnel, permissions, and finances, in a hierarchical management manner, such
as management of companies, departments, and projects.

MapReduce Service
Product Introduction 7 Functions

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 239

MRS allows users who have enabled Enterprise Project Management Service (EPS)
to configure enterprise projects for a cluster during cluster creation and use EPS to
manage MRS resources by group.

● The users can manage multiple resources by group.
● The users can view resource information and expenditure details of enterprise

projects.
● The users can control access permissions at the enterprise project level.
● The users can view detailed financial information by enterprise project,

including orders, expenditure summary, and expenditure details.

NO TE

If the MRS cluster and VPC are not in the same enterprise project, you need to add the VPC
view permission in the IAM view to view VPC and cluster information.

7.8 Metadata
MRS provides multiple metadata storage methods. When deploying Hive and
Ranger during MRS cluster creation, select one of the following storage modes as
required:

● Local: Metadata is stored in the local GaussDB of a cluster. When the cluster
is deleted, the metadata is also deleted. To retain the metadata, manually
back up the metadata in the database in advance.

● External data connection: You can select RDS PostgreSQL database or RDS
MySQL database that is associated with the same VPC and subnet as the
current cluster. Metadata is stored in the associated database and is not
deleted when the current cluster is deleted. Multiple MRS clusters can share
the same metadata.

NO TE

Hive in MRS 1.9.x or later allows you to specify a metadata storage method.

7.9 Cluster Management

7.9.1 Cluster Lifecycle Management
MRS supports cluster lifecycle management, including creating and terminating
clusters.

● Creating a cluster: After you specify a cluster type, components, number of
nodes of each type, VM specifications, AZ, VPC, and authentication
information, MRS automatically creates a cluster that meets the configuration
requirements. You can run customized scripts in the cluster. In addition, you
can create clusters of different types for multiple application scenarios, such
as Hadoop analysis clusters, HBase clusters, and Kafka clusters. The big data
platform supports heterogeneous cluster deployment. That is, VMs of
different specifications can be combined in a cluster based on CPU types, disk
capacities, disk types, and memory sizes. Various VM specifications can be
mixed in a cluster.

MapReduce Service
Product Introduction 7 Functions

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 240

● Terminating a cluster: You can terminate a pay-per-use cluster that is no
longer needed (including data and configurations in the cluster). MRS will
delete all resources related to the cluster.

● Renewal: MRS provides two billing modes: pay-per-use and yearly/monthly. In
pay-per-use mode, fees are deducted every hour and insufficient balance can
lead to overdue payments. In yearly/monthly mode, clusters need to be
renewed before they expire. If your subscription for the pay-per-use or yearly/
monthly cluster is not renewed, your services will keep running, but enter into
a retention period, during which the MRS clusters will stop running but data
is retained.

● Unsubscription: If you have purchased a yearly/monthly cluster and do not
need the cluster resources before the cluster resources expire, you can
unsubscribe from the cluster resources on MRS.

Buying a Cluster

On the MRS management console, you can buy an MRS cluster on a pay-per-use
or yearly/monthly basis. You can select a region and cloud resource specifications
to buy an MRS cluster that is suitable for enterprise services with one click. MRS
automatically installs and deploys the Huawei Cloud enterprise-level big data
platform and optimizes parameters based on the selected cluster type, version,
and node specifications.

MRS provides you with fully managed big data clusters. When creating a cluster,
you can set a VM login mode (password or key pair). You can use all resources of
the created MRS cluster. In addition, MRS allows you to deploy a big data cluster
on only two ECSs with 4 vCPUs and 8 GB memory, providing more flexible choices
for testing and development.

MRS clusters are classified into analysis, streaming, and hybrid clusters.

● Analysis cluster: is used for offline data analysis and provides Hadoop
components.

● Streaming cluster: is used for streaming tasks and provides stream processing
components.

● Hybrid cluster: is used for not only offline data analysis but also streaming
processing, and provides Hadoop components and stream processing
components.

● Custom: You can flexibly combine required components (MRS 3.x and later
versions) based on service requirements.

MRS cluster nodes are classified into Master, Core, and Task nodes.

● Master node: management node in a cluster. Master processes of a distributed
system, Manager, and databases are deployed on Master nodes. Master nodes
cannot be scaled out. The processing capability of Master nodes determines
the upper limit of the management capability of the entire cluster. MRS
supports scale-up of Master node specifications to provide support for
management of a larger cluster.

● Core node: used for both storage and computing and can be scaled in or out.
Since Core nodes bear data storage, there are many restrictions on scale-in to
prevent data loss and auto scaling cannot be performed.

MapReduce Service
Product Introduction 7 Functions

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 241

● Task node: used only for computing only and can be scaled in or out. Task
nodes bear only computing tasks. Therefore, auto scaling can be performed.

You can buy a cluster in two modes: custom buying and quick buying.

● Custom buying: On the Custom Config page, you can flexibly configure
cluster parameters based on application scenarios, such as the billing mode
and ECS specifications to better suit your service requirements.

● Quick buying: On the Quick Config page, you can quickly buy a cluster based
on application scenarios, improving cluster configuration efficiency. Currently,
Hadoop analysis clusters, HBase clusters, Kafka clusters, ClickHouse clusters,
and real-time analysis clusters are supported.
– Hadoop analysis cluster: uses components in the open-source Hadoop

ecosystem to analyze and query vast amounts of data. For example, use
Yarn to manage cluster resources, Hive and Spark to provide offline
storage and computing of large-scale distributed data, Spark Streaming
and Flink to offer streaming data computing, and Presto to enable
interactive queries, and Tez to provide a distributed computing
framework of directed acyclic graphs (DAGs).

– HBase cluster: uses Hadoop and HBase components to provide a column-
oriented distributed cloud storage system featuring enhanced reliability,
great performance, and elastic scalability. It applies to the storage and
distributed computing of massive amounts of data. You can use HBase to
build a storage system capable of storing TB- or even PB-level data. With
HBase, you can filter and analyze data with ease and get responses in
milliseconds, rapidly mining data value.

– Kafka cluster: uses Kafka and Storm to provide an open source message
system with high throughput and scalability. It is widely used in scenarios
such as log collection and monitoring data aggregation to implement
efficient streaming data collection and real-time data processing and
storage.

– ClickHouse cluster: ClickHouse is a columnar database management
system used for online analysis. It features the optimal compression rate
and fast query performance. It is widely used in Internet advertisement,
app and web traffic analysis, telecom, finance, and IoT fields.

– Real-time analysis clusters: uses Hadoop, Kafka, Flink, and ClickHouse
components to provide a system for collection, real-time analysis, and
query of data at scale.

Terminating a Cluster
MRS allows you to terminate a cluster when it is no longer needed. After the
cluster is terminated, all cloud resources used by the cluster will be released.
Before terminating a cluster, you are advised to migrate or back up data.
Terminate the cluster only when no service is running in the cluster or the cluster
is abnormal and cannot provide services based on O&M analysis. If data is stored
on EVS disks or pass-through disks in a big data cluster, the data will be deleted
after the cluster is terminated. Therefore, exercise caution when terminating a
cluster.

MapReduce Service
Product Introduction 7 Functions

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 242

7.9.2 Cluster Scaling
The processing capability of a big data cluster can be horizontally expanded by
adding nodes. If the cluster scale does not meet service requirements, you can
manually scale out or scale in the cluster. MRS intelligently selects the node with
the least load or the minimum amount of data to be migrated for scale-in. The
node to be scaled in will not receive new tasks, and continues to execute the
existing tasks. At the same time, MRS copies its data to other nodes and the node
is decommissioned. If the tasks on the node cannot be completed after a long
time, MRS migrates the tasks to other nodes, minimizing the impact on cluster
services.

Scaling Out a Cluster
Currently, you can add Core or Task nodes to scale out a cluster to handle peak
service loads. Adding MRS cluster nodes does not affect the services of the existing
cluster. For details about how to rectify data skew caused by capacity expansion,
see Configuring HDFS DataNode Data Balancing.

Scaling Out a Cluster Charged in Yearly/Monthly Mode
If your service growth rate exceeds the expected value after you subscribe to an
MRS cluster charged in Yearly/Monthly mode, cluster scale-out beyond your
subscription is required. MRS allows you to scale out clusters charged in Yearly/
Monthly mode while enjoying the subscription discounts.

You can access the MRS management console and add nodes to a cluster with a
few clicks. The cluster scale-out process does not require manual intervention and
takes only a few minutes, which helps ease pressure on growing service data
processing needs.

Scaling In a Cluster
You can reduce the number of Core or Task nodes to scale in a cluster so that MRS
delivers better storage and computing capabilities at lower O&M costs based on
service requirements. After you scale in an MRS cluster, MRS automatically selects
nodes that can be scaled in based on the type of services installed on the nodes.

During the scale-in of Core nodes, data on the original nodes is migrated. If the
data location is cached, the client automatically updates the location information,
which may affect the latency. Node scale-in may affect the response duration of
the first access to some HBase on HDFS data. You can restart HBase or disable or
enable related tables to avoid this problem.

Task nodes do not store cluster data. They are compute nodes and do not involve
migration of data on the nodes.

7.9.3 Auto Scaling

Feature Introduction
More and more enterprises use technologies such as Spark and Hive to analyze
data. Processing a large amount of data consumes huge resources and costs
much. Typically, enterprises regularly analyze data in a fixed period of time every

MapReduce Service
Product Introduction 7 Functions

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 243

https://support.huaweicloud.com/intl/en-us/cmpntguide-mrs/mrs_01_1667.html

day rather than all day long. To meet enterprises' requirements, MRS provides the
auto scaling function to apply for extra resources during peak hours and release
resources during off-peak hours. This enables users to use resources on demand
and focus on core business at lower costs.

In big data applications, especially in periodic data analysis and processing
scenarios, cluster computing resources need to be dynamically adjusted based on
service data changes to meet service requirements. The auto scaling function of
MRS enables clusters to be elastically scaled out or in based on cluster loads. In
addition, if the data volume changes regularly and you want to scale out or in a
cluster before the data volume changes, you can use the MRS resource plan
feature.

MRS supports two types of auto scaling policies: auto scaling rules and resource
plans

● Auto scaling rules: You can increase or decrease Task nodes based on real-
time cluster loads. Auto scaling will be triggered when the data volume
changes but there may be some delay.

● Resource plans: If the data volume changes periodically, you can create
resource plans to resize the cluster before the data volume changes, thereby
avoiding a delay in increasing or decreasing resources.

Both auto scaling rules and resource plans can trigger auto scaling. You can
configure both of them or configure one of them. Configuring both resource plans
and auto scaling rules improves the cluster node scalability to cope with
occasionally unexpected data volume peaks.

In some service scenarios, resources need to be reallocated or service logic needs
to be modified after cluster scale-out or scale-in. If you manually scale out or
scale in a cluster, you can log in to cluster nodes to reallocate resources or modify
service logic. If you use auto scaling, MRS enables you to customize automation
scripts for resource reallocation and service logic modification. Automation scripts
can be executed before and after auto scaling and automatically adapt to service
load changes, all of which eliminates manual operations. In addition, automation
scripts can be fully customized and executed at various moments, which can meet
your personalized requirements and improve auto scaling flexibility.

Customer Benefits
MRS auto scaling provides the following benefits:

● Reducing costs
Enterprises do not analyze data all the time but perform a batch data analysis
in a specified period of time, for example, 03:00 a.m. The batch analysis may
take only two hours.
The auto scaling function enables enterprises to add nodes for batch analysis
and automatically releases the nodes after completion of the analysis,
minimizing costs.

● Meeting instant query requirements
Enterprises usually encounter instant analysis tasks, for example, data reports
for supporting enterprise decision-making. As a result, resource consumption
increases sharply in a short period of time. With the auto scaling function,
compute nodes can be added for emergent big data analysis, avoiding a

MapReduce Service
Product Introduction 7 Functions

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 244

service breakdown due to insufficient compute resources. In this way, you do
not need to buycreate extra resources. After the emergency ends, MRS
automatically releases the nodes.

● Focusing on core business
It is difficult for developers to determine resource consumption on the big
data secondary development platform because of complex query analysis
conditions (such as global sorting, filtering, and merging) and data
complexity, for example, uncertainty of incremental data. As a result,
estimating the computing volume is difficult. MRS's auto scaling function
enable developers to focus on service development without the need for
resource estimation.

7.9.4 Task Node Creation

Feature Introduction
Task nodes can be created and used for computing only. They do not store
persistent data and are the basis for implementing auto scaling.

Customer Benefits
When MRS is used only as a computing resource, Task nodes can be used to
reduce costs and facilitate cluster node scaling, flexibly meeting users'
requirements for increasing or decreasing cluster computing capabilities.

Application Scenarios
When the data volume change is small in a cluster but the cluster's service
processing capabilities need to be remarkably and temporarily improved, add Task
nodes to address the following situations:
● The number of temporary services is increased, for example, report processing

at the end of the year.
● Long-term tasks need to be completed in a short time, for example, some

urgent analysis tasks.

7.9.5 Scaling Up Master Node Specifications
MRS provides Manager for managing clusters and services in the clusters, such as
NameNodes of HDFS, ResourceManagers of Yarn, and Manager management
services of MRS, are deployed on the Master node of the clusters.

With the rollout of new services, a cluster scale increases continuously, and Master
nodes bear more and more loads. Enterprise users are faced with the problem that
CPU loads are too high and memory usage exceeds the threshold. Generally, in an
on-premises big data cluster, you need to migrate data and purchase hardware
with advanced configurations to scale up the Master node specifications. MRS
leverages the advantages of cloud services to enable you to scale up Master node
specifications in one click. During the scale-up, the active/standby HA mode of the
Master nodes ensures that existing services are not interrupted.

For details about how to scale up master node specifications, see Scaling Up
Master Node Specifications.

MapReduce Service
Product Introduction 7 Functions

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 245

https://support.huaweicloud.com/intl/en-us/usermanual-mrs/mrs_01_0626.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/mrs_01_0626.html

7.9.6 Isolating a Host
When detecting that a host is abnormal or faulty and cannot provide services or
affects cluster performance, you can exclude the host from the available nodes in
the cluster temporarily so that the client can access other available nodes. In
scenarios where patches are to be installed in a cluster, you can also exclude a
specified node from patch installation. Only non-management nodes can be
isolated.

After a host is isolated, all role instances on the host will be stopped, and you
cannot start, stop, or configure the host and all instances on the host. In addition,
after a host is isolated, statistics about the monitoring status and metric data of
hardware and instances on the host cannot be collected or displayed.

7.9.7 Managing Tags
Tags are cluster identifiers. Adding tags to clusters can help you identify and
manage your cluster resources. By associating with Tag Management Service
(TMS), MRS allows users with a large number of cloud resources to tag cloud
resources, quickly search for cloud resources with the same tag attribute, and
perform unified management operations such as review, modification, and
deletion, facilitating unified management of big data clusters and other cloud
resources.

You can add a maximum of 10 tags to a cluster when creating the cluster or add
them on the details page of the created cluster.

7.10 Cluster O&M

Alarm Management
MRS can monitor big data clusters in real time and identify system health status
based on alarms and events. In addition, MRS allows you to customize monitoring
and alarm thresholds to focus on the health status of each metric. When
monitoring data reaches the alarm threshold, the system triggers an alarm.

MRS can also interconnect with the message service system of the Huawei Cloud
Simple Message Notification (SMN) service to push alarm information to users by
SMS message or email. For details, see Message Notification.

Patch Management
MRS supports cluster patching operations and will release patches for open source
big data components in a timely manner. On the MRS cluster management page,
you can view patch release information related to running clusters, including the
detailed description of the resolved issues and impacts. You can determine
whether to install a patch based on the service running status. One-click patch
installation involves no manual intervention, and will not cause service
interruption through rolling installation, ensuring long-term availability of the
clusters.

MRS can display the detailed patch installation process. Patch management also
supports patch uninstallation and rollback.

MapReduce Service
Product Introduction 7 Functions

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 246

NO TE

MRS 3.x or later does not support patch management on the management console.

O&M Support
Cluster resources provided by MRS belong to users. Generally, when O&M
personnel's support is required for troubleshooting of a cluster, O&M personnel
cannot directly access the cluster. To better serve customers, MRS provides the
following two methods to improve communication efficiency during fault locating:

● Log sharing: You can initiate log sharing on the MRS management console to
share a specified log scope with O&M personnel, so that O&M personnel can
locate faults without accessing the cluster.

● O&M authorization: If a problem occurs when you use an MRS cluster, you
can initiate O&M authorization on the MRS management console. O&M
personnel can help you quickly locate the problem, and you can revoke the
authorization at any time.

Health Check
MRS provides automatic inspection on system running environments for you to
check and audit system running health status in one click, ensuring proper system
running and lowering system operation and maintenance costs. After viewing
inspection results, you can export reports for archiving and fault analysis.

7.11 Message Notification

Feature Introduction
The following operations are often performed during the running of a big data
cluster:

● Big data clusters often change, for example, cluster scale-out and scale-in.
● When a service data volume changes abruptly, auto scaling will be triggered.
● After related services are stopped, a big data cluster needs to be stopped.

To immediately notify you of successful operations, cluster unavailability, and node
faults, MRS uses Simple Message Notification (SMN) to send notifications to you
through SMS and emails, facilitating maintenance.

Customer Benefits
After configuring SMN, you can receive MRS cluster health status, updates, and
component alarms through SMS or emails in real time. MRS sends real-time
monitoring and alarm notification to help you easily perform O&M and efficiently
deploy big data services.

Feature Description
MRS uses SMN to provide one-to-multiple message subscription and notification
over a variety of protocols.

MapReduce Service
Product Introduction 7 Functions

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 247

You can create a topic and configure topic policies to control publisher and
subscriber permissions on the topic. MRS sends cluster messages to the topic to
which you have permission to publish messages. Then, all subscribers who
subscribe to the topic can receive cluster updates and component alarms through
SMS and emails.

Figure 7-1 Implementation process

MapReduce Service
Product Introduction 7 Functions

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 248

8 Security

8.1 Shared Responsibilities
Huawei Cloud guarantees that its commitment to cyber security will never be
outweighed by the consideration of commercial interests. To cope with emerging
cloud security challenges and pervasive cloud security threats and attacks, Huawei
Cloud builds a comprehensive cloud service security assurance system for different
regions and industries based on Huawei's unique software and hardware
advantages, laws, regulations, industry standards, and security ecosystem.

Figure 8-1 illustrates the responsibilities shared by Huawei Cloud and users.

● Huawei Cloud: ensures the security of cloud services and provides secure
clouds. Huawei Cloud's security responsibilities include ensuring the security
of our IaaS, PaaS, and SaaS services, as well as the physical environments of
the Huawei Cloud data centers where our IaaS, PaaS, and SaaS services
operate. Huawei Cloud is responsible for not only the security functions and
performance of our infrastructure, cloud services, and technologies, but also
for the overall cloud O&M security and, in the broader sense, the security
compliance of our infrastructure and services.

● Tenant: uses the cloud securely. Tenants of Huawei Cloud are responsible for
the secure and effective management of the internal security as well as the
tenant-customized configurations of cloud services including IaaS, PaaS, and
SaaS. This includes but is not limited to operating systems like virtual
networks, virtual machine host and guest virtual machines, virtual firewall,
API Gateway and advanced security services, all types of cloud services, tenant
data, identity accounts, and key management.

Huawei Cloud Security White Paper introduces in detail the building ideas and
measures of Huawei cloud security, including cloud security strategy, responsibility
sharing model, compliance and privacy, security organization and personnel,
infrastructure security, tenant service and tenant security, engineering security,
O&M and operation security, and ecosystem security.

MapReduce Service
Product Introduction 8 Security

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 249

https://res-static.hc-cdn.cn/cloudbu-site/intl/en-us/TrustCenter/WhitePaper/Best%20Practices/SecurityWhitepaper_intl_en.pdf

Figure 8-1 Huawei Cloud shared security responsibility model

8.2 Asset Identification and Management

Secure Communications

In an MRS cluster, you can provision, manage, and use big data components
through the management console. Big data components are deployed in users'
VPCs. To allow the MRS console to directly access big data components, you must
enable the corresponding security group rules after granting authorization. This
authorization process is called secure communications.

You need to enable secure communications when creating a cluster, as shown in
Figure 8-2.

Figure 8-2 Secure communications

You are advised to enable security group rules only for trusted IP addresses.
Exercise caution when using 0.0.0.0/0 as the security group source address.

Protection for Critical Operations

MRS provides protection for critical operations. If you have enabled operation
protection (for details, see Critical Operation Protection of IAM), enter the
verification code obtained using the verification method you selected (as shown in
Figure 8-3) to prevent risks and losses caused by misoperations.

MapReduce Service
Product Introduction 8 Security

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 250

https://support.huaweicloud.com/intl/en-us/usermanual-iam/iam_07_0002.html

Figure 8-3 Identity verification

8.3 Identity Authentication and Access Control

Identity Authentication

MRS supports security protocol Kerberos. FusionInsight MRS employs LDAP for the
account management system and performs security authentication on account
information via Kerberos.

For details about the Kerberos security authentication mechanism, see Security
Authentication Principles and Mechanisms.

Access Control

MRS provides two access control models: role-based access control and policy-
based access control. For details, see Right Model.

● Role-based Access Control
By employing a unified user- and role-based authentication system and
complying with the account-/role-based access control (RBAC) model, MRS
implements role-based permission management and batch user authorization
management. It also provides the single sign-on (SSO) capability to offer
unified management and authentication for FusionInsight MRS system users
and component users. For details about the mechanism, see Right
Mechanism.

● Policy-based Access Control
– Ranger authentication

MRS supports Ranger authentication. For an MRS cluster in security
mode, Ranger authentication is enabled by default. For a normal cluster

MapReduce Service
Product Introduction 8 Security

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 251

https://support.huaweicloud.com/intl/en-us/usermanual-mrs/mrs_07_020001.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/mrs_07_020001.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/admin_guide_000235.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/admin_guide_000236.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/admin_guide_000236.html

with the Ranger service installed, Ranger supports permission control on
component resources based on OS users.
For details about Ranger authentication policies, see Permission
Verification Policies.

– Fine-grained authentication for OBS storage-compute decoupled clusters
If you want to perform fine-grained permission control on OBS resources
in OBS storage-compute decoupled clusters, MRS provides you with a
fine-grained permission control solution based on the IAM agency.
For details, see Configuring Fine-Grained Permissions for MRS Multi-
User Access to OBS.

8.4 Data Protection Technologies

Data Integrity
Data is verified to ensure its integrity during storage and transmission.

User data of MRS is stored in HDFS, which uses CRC32C to verify data. HDFS also
supports CRC32 verification, which is much faster than CRC32C. HDFS DataNodes
store the verified data. If detecting that the data transmitted from the client is
incomplete, they report the exception to the client and notify the client of
retransmitting data. The client checks data integrity when reading data from a
DataNode. If the data is incomplete, the client will read data from another
DataNode.

Data Confidentiality
Based on Apache Hadoop, the distributed file system of FusionInsight MRS
provides encrypted storage of files to prevent sensitive data from being stored in
plaintext, improving data security.

Applications need to encrypt only specified sensitive data. Services are not affected
during the encryption and decryption. In addition to data encryption of the file
system, Hive provides column encryption (see Using the Hive Column Encryption
Function). Sensitive data can be encrypted and stored after you specify an
encryption algorithm during table creation. HBase supports encryption of HFiles
and WALs (see HFile and WAL Encryption). You can configure the AES and SMS4
algorithms to encrypt them.

Data Transmission Security
In an MRS cluster, HTTPS encryption is supported for access over web channels.
RPC communication supports SASL authentication and supports data encryption
using symmetric keys. The encrypted transmission configuration of each
component is as follows:

● HDFS encrypted transmission configuration: See Configuring HDFS Data
Encryption During Transmission.

● Kafka encrypted transmission configuration: See Configuring Kafka Data
Encryption During Transmission.

● Flume encrypted transmission configuration: See Configuring the Encrypted
Transmission.

MapReduce Service
Product Introduction 8 Security

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 252

https://support.huaweicloud.com/intl/en-us/usermanual-mrs/admin_guide_000238.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/admin_guide_000238.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/mrs_01_0632.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/mrs_01_0632.html
https://support.huaweicloud.com/intl/en-us/cmpntguide-mrs/mrs_01_0954.html
https://support.huaweicloud.com/intl/en-us/cmpntguide-mrs/mrs_01_0954.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/admin_guide_000276.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/admin_guide_000282.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/admin_guide_000282.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/admin_guide_000281.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/admin_guide_000281.html
https://support.huaweicloud.com/intl/en-us/cmpntguide-mrs/mrs_01_1069.html
https://support.huaweicloud.com/intl/en-us/cmpntguide-mrs/mrs_01_1069.html

● Flink encrypted transmission configuration: See Encrypted Transmission in
Authentication and Encryption.

Data Backup and Disaster Recovery
● Disaster recovery (DR): MRS supports data backup to Huawei Cloud OBS and

offers cross-region high reliability.
● Backup: FusionInsight MRS can back up the metadata of OMS, Kafka,

DBService, and NameNodes as well as the service data of HDFS, HBase, and
Hive.

For details, see Introduction to Backup and Recovery Management.

8.5 Audit and Logging

Audit

Cloud Trace Service (CTS) records MRS operation logs on the management
console, such as creating or deleting MRS clusters. CTS is a log audit service
intended for cloud security. It records operations on the cloud resources in your
account. You can use the logs generated by CTS to perform security analysis, track
resource changes, audit compliance, and locate faults.

After you enable CTS and configure a tracker, CTS can record management and
data traces of MRS for auditing.

Figure 8-4 MRS event recording on CTS

FusionInsight Manager provides the audit function to record user operations on
Manager of clusters. On the Audit page, administrators can view users' historical
operation records on Manager. The records can be used to locate faults and
determine responsibilities in security events. For details about the Audit page, see
Audit Overview. The audit logs of FusionInsight Manager are stored in the
database by default. If the audit logs are retained for a long time, the disk space
of the data directory may become insufficient. To store audit logs to another
archive server, administrators can set the required dump parameters to
automatically dump these logs. This facilitates the management of audit logs. For
details about how to dump audit logs, see Configuring Audit Log Dumping.

MapReduce Service
Product Introduction 8 Security

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 253

https://support.huaweicloud.com/intl/en-us/cmpntguide-mrs/mrs_01_1583.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/admin_guide_000399.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/admin_guide_000085.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/admin_guide_000086.html

Logging

Logs of all components in an MRS cluster (for example, all HDFS logs) can be
collected by connecting hosts to Log Tank Service (LTS). LTS collects log data from
hosts and cloud services. By analyzing and processing massive amounts of logs
efficiently, securely, and in real time, LTS provides useful insights for you to
optimize the availability and performance of cloud services and applications. It
also helps you efficiently perform real-time decision-making, device O&M
management, and service trend analysis. For details about the interconnection, see
How Do I Interconnect MRS with LTS.

FusionInsight Manager also supports online search of component logs for fault
locating and other scenarios. For details, see Log Online Search. In addition,
FusionInsight Manager allows you to export logs generated by all instances of
each service role in batches, without the need to manually log in to every node.
For details, see Log Download.

8.6 Service Resilience

Cross-AZ DR Deployment

The management plane of MRS provides the dual-cluster cross-AZ DR capability.
You can deploy a homogeneous MRS DR cluster in another AZ. If your production
cluster fails to provide read and write services because of a natural disaster or
internal cluster faults, the DR cluster will become the production cluster to ensure
service continuity.

8.7 Security Risk Monitoring
Manager of the MRS service provides cluster-level monitoring capabilities to help
you monitor the health status of big data components and nodes in clusters. It
also provides the alarm notification capability so that you can learn about the
metrics and health status of MRS clusters in real time.

For details, see Viewing and Customizing Cluster Monitoring Metrics and
Managing Components and Monitoring Hosts.

8.8 Update Management

Password Update

MRS supports password update. You are advised to change the password
periodically according to the following guidance to improve system security:

● Changing the password of a system user: See Changing the Password for
User admin and Changing the Password for an OS User.

● Changing the Password for a System Internal User

● Changing the Password for a Database User

MapReduce Service
Product Introduction 8 Security

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 254

https://support.huaweicloud.com/intl/en-us/mrs_faq/mrs_03_1244.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/admin_guide_000074.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/admin_guide_000075.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/mrs_01_0606.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/mrs_01_0515.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/mrs_01_0517.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/admin_guide_000250.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/admin_guide_000250.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/admin_guide_000251.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/admin_guide_000252.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/admin_guide_000258.html

Certificate Update

Both the CA certificate and HA certificate of MRS can be replaced. You can replace
the default certificates of a cluster according to the following guidance:

● The MRS CA certificate is used to encrypt data during the communication
between the client and the server of a component to ensure communication
security. For details about how to replace a CA certificate, see Replacing the
CA Certificate.

● The HA certificate is used to encrypt data during the communication between
active/standby processes and HA processes to ensure communication security.
For details about how to replace an HA certificate, see Replacing HA
Certificates.

8.9 Security Hardening

Tomcat Hardening

During the installation and use of FusionInsight Manager, the following Tomcat
functions are enhanced on the basis of the open-source version:
● Tomcat is upgraded to a stable official version.
● Permissions on the directories under applications are set to 500, and the write

permission on some directories is supported.
● The Tomcat installation package is automatically deleted after the system

software is installed.
● The automatic deployment function is disabled for projects in application

directories. Only the web, cas, and client projects are deployed.
● Some unused http methods are disabled, preventing attacks that may be

launched by using the http methods.
● The default shutdown port and command of the Tomcat server are changed

to prevent hackers from shutting down the server and attacking the server
and applications.

● To ensure security, the value of maxHttpHeaderSize is changed, which
enables server administrators to control abnormal requests of clients.

● The Tomcat version description file is modified after Tomcat is installed.
● To prevent disclosure of Tomcat information, the Server attributes of

Connector are modified so that attackers cannot obtain information about the
server.

● Permissions on files and directories of Tomcat, such as the configuration files,
executable files, log directories, and temporary folders, are under control.

● Session facade recycling is disabled to prevent request leakage.
● LegacyCookieProcessor is used as CookieProcessor to prevent the leakage of

sensitive data in cookies.

LDAP Hardening

LDAP is hardened as follows after a cluster is installed:

MapReduce Service
Product Introduction 8 Security

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 255

https://support.huaweicloud.com/intl/en-us/usermanual-mrs/admin_guide_000264.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/admin_guide_000264.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/admin_guide_000265.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/admin_guide_000265.html

● In the LDAP configuration file, the password of the administrator account is
encrypted using SHA. After the OpenLDAP is upgraded to 2.4.39 or later, data
is automatically synchronized between the active and standby LDAP nodes
using the SASL External mechanism, which prevents disclosure of the
password.

● The LDAP service in the cluster supports the SSLv3 protocol by default, which
can be used securely. When OpenLDAP is upgraded to 2.4.39 or later, LDAP
automatically uses TLS1.0 or later to prevent unknown security risks.

Other Security Hardening
For details about other security hardening guidance, see Security Hardening.

MapReduce Service
Product Introduction 8 Security

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 256

https://support.huaweicloud.com/intl/en-us/usermanual-mrs/admin_guide_000271.html

9 Constraints

Before using MRS, ensure that you have read and understand the following
restrictions.

● MRS clusters must be created in VPC subnets.
● You are advised to use any of the following browsers to access MRS:

– Google Chrome: 36.0 or later
– Internet Explorer: 9.0 or later

If you use Internet Explorer 9.0, you may fail to log in to the MRS
management console because user Administrator is disabled by default
in some Windows systems, such as Windows 7 Ultimate. Internet Explorer
automatically selects a system user for installation. As a result, Internet
Explorer cannot access the management console. Reinstall Internet
Explorer 9.0 or later (recommended) or run Internet Explorer 9.0 as user
Administrator.

– Microsoft Edge is updated with the Windows operating system.
● When you create an MRS cluster, you can select Auto create from the drop-

down list of Security Group to create a security group or select an existing
security group. After the MRS cluster is created, do not delete or modify the
used security group. Otherwise, a cluster exception may occur.

● To prevent illegal access, only assign access permission for security groups
used by MRS where necessary.

● Do not perform the following operations because they will cause cluster
exceptions:
– Shutting down, restarting, or deleting MRS cluster nodes displayed in ECS,

changing or reinstalling their OS, or modifying their specifications.
– Deleting the existing processes, applications or files on cluster nodes.
– Deleting MRS cluster nodes. Deleted nodes will still be charged.

● If a cluster exception occurs when no incorrect operations have been
performed, contact technical support engineers. They will ask you for your
password and then perform troubleshooting.

● Keep the initial password for logging in to the master node properly because
MRS will not save it. Use a complex password to avoid malicious attacks.

● MRS clusters are still charged during exceptions. Contact technical support
engineers to handle cluster exceptions.

MapReduce Service
Product Introduction 9 Constraints

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 257

● Plan disks of cluster nodes based on service requirements. If you want to store
a large volume of service data, add EVS disks or storage space to prevent
insufficient storage space from affecting node running.

● The cluster nodes store only users' service data. Non-service data can be
stored in the OBS or other ECS nodes.

● The cluster nodes only run MRS cluster programs. Other client applications or
user service programs are deployed on separate ECS nodes.

● The capacity (including storage and computing capabilities) of an MRS cluster
can be expanded by adding core or task nodes.

● If a Master node in an MRS cluster is shut down and the cluster is still used to
execute jobs or modify component configurations, you must start the stopped
Master node before stopping other nodes. Otherwise, data may be lost due to
an active/standby switchover.

● If all nodes in an MRS cluster have been stopped, start them in the reverse
order of node shutdown.

● The Capacity and Superior scheduler switchover is complete when the MRS
cluster is used, while configuration synchronization is not complete. Configure
synchronization again based on the new scheduler if necessary.

MapReduce Service
Product Introduction 9 Constraints

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 258

10 Technical Support

MRS is a one-stop big data platform that provides enterprise-class clusters on the
cloud. Tenants can fully control clusters and easily run big data components such
as Hadoop, Hive, Spark, HBase, Kafka, and Flink. In addition, MRS helps
enterprises quickly build a system to process massive amounts of data and
discover new value and business opportunities in real time or in non-real time.

Maintenance Policy Statement

MRS provides tenants with fully controllable clusters and semi-hosting cloud
services. By default, cloud services do not have permissions to perform operations
on the clusters. Tenants are responsible for routine cluster O&M and management.
They can contact the technical support team for help if any technical issues occur,
excluding those not related to MRS, for example, how to build an application
system based on the big data platform.

Technical Support Scope
● Supported services

– The MRS console provides the following functions:

▪ Creating, deleting, and scaling in or out a cluster

▪ Managing cluster jobs

▪ Managing cluster alarms

▪ Managing cluster patches

▪ Managing IAM users

▪ Managing external APIs

– MRS provides open-source big data components. For details, see the List
of MRS Component Versions.

– MRS supports vulnerability analysis of open-source components, such as
impact analysis and fixing suggestions. It enables tenants to evaluate the
impact of vulnerabilities on services and fix the vulnerabilities.

● Services not supported

MapReduce Service
Product Introduction 10 Technical Support

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 259

– Huawei is not responsible for providing O&M operations for MRS clusters
and open-source big data components, including configuration
modification, restart, capacity planning, component performance
optimization, and any O&M operations on clusters.

– Huawei is not responsible for answering and handling questions about
application development on MRS clusters, such as service design, coding,
job performance optimization, and workload migration.

– If the MRS cluster component service has no exception or quality defect,
Huawei is not responsible for troubleshooting and analyzing running
exceptions of your big data jobs.

– Huawei is not responsible for analyzing or resolving unexpected problems
caused by any non-standard operations on MRS clusters. Common high-
risk operations include reinstalling the OS, deleting data by mistake,
deleting service directories and files, modifying OS system configurations
and file permissions, deleting /etc/hosts configurations, uninstalling disks
in the background, changing node IP addresses, and deleting default
security group rules. For more information about these operations, see
High-Risk Operations.

– Huawei is not responsible for troubleshooting and resolving problems of
third-party components that are not provided by MRS and installed by
users of the MRS cluster environment.

MapReduce Service
Product Introduction 10 Technical Support

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 260

https://support.huaweicloud.com/intl/en-us/usermanual-mrs/mrs_01_0785.html

11 Billing

MapReduce Service (MRS) billing is simple and predictable and supports a pay-
per-use basis. You can also select a yearly or monthly package depending on what
is more economical. The total price of an MRS cluster will be automatically
calculated so that you can purchase a cluster with one click.

Billing Items
The price of an MRS cluster consists of two parts:

● MRS management fee

MapReduce Service
Product Introduction 11 Billing

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 261

NO TE

You can view detailed MRS management fee by logging in to the Billing Center,
choosing Billing > Bills, and filtering management fees.

Figure 11-1 Viewing MRS management fee

● If Cluster Type is LTS, filter management fees by MRS-LTS Service Fee.
● If Cluster Type is Normal, filter management fees by:

● MapReduce Service VM for clusters purchased in June 2022 or earlier
● MRS-BASIC Service Fee for clusters purchased after June 2022

● Fees of IaaS infrastructure resources, including Elastic Cloud Server (ECS),
Elastic Volume Service (EVS), elastic IP (EIP), and bandwidth

For details about the MRS management fee, see Product Pricing Details.

You can use the price calculator of MRS to quickly obtain an estimate price of a
cluster with the specifications you select.

The terminated or unsubscribed MRS cluster is no longer billed.

Billing Modes
Before using MRS, you must purchase an MRS cluster.

● Yearly/Monthly: You can pay for clusters by year or month. The minimum
duration is 1 month and the maximum duration is 1 year.

● Pay-per-use: Nodes are billed by actual duration of use, with a billing cycle of
one hour.

Changing Billing Mode
Before subscribing to MRS, choose Master and Core node instances that best fit
your needs. MRS provides the following methods for you to change cluster
configuration after a cluster is started.

● Configure Task Node: Add Task nodes. For details, see Related Operations
in Manually Scaling Out a Cluster.

MapReduce Service
Product Introduction 11 Billing

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 262

https://www.huaweicloud.com/intl/en-us/pricing/index.html#/mrs
https://www.huaweicloud.com/intl/en-us/pricing/index.html#/mrs
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/mrs_01_0063.html

● Scale Out: Manually add Core or Task nodes. For details, see Manually
Scaling Out a Cluster.

● Auto Scaling: The number of nodes in a cluster can be automatically adjusted
based on the service data volume to increase or decrease resources. For
details, see Configuring Auto Scaling Rules.

If the configuration change methods provided by MRS do not meet your
requirements, you can create a cluster again and migrate data to the cluster to
realize cluster configuration change.

Renewal
To renew the subscription, go to the Renewals page.

Overdue Payment
Overdue payment does not apply to yearly or monthly subscribed clusters.

In pay-per-use mode, cluster fees are deducted every hour. If your account balance
is insufficient to pay for the expense occurred in the last hour, your account will be
in arrears, and MRS clusters have a retention period. If the clusters are renewed
within the retention period, they will be available and charged from the original
expiration date.

You are advised to renew the cluster as soon as possible if your cluster is in
arrears. Otherwise, the following operations are restricted:
● Creating Clusters
● Scaling out a cluster
● Scaling in a cluster
● Adding a Task node
● Scaling up Master node specifications

Expiration
● Expiration does not apply to pay-per-use clusters.
● If your yearly or monthly subscription expires, the cluster will enter into a

retention period. During the grace period and retention period, you cannot
perform operations on the cluster on the MRS management console, related
APIs cannot be called, and O&M operations such as automatic monitoring
and alarm reporting will be stopped. If your subscription is not renewed at the
end of the retention period, services in the cluster will be terminated and data
in the system will be deleted permanently.

MapReduce Service
Product Introduction 11 Billing

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 263

https://support.huaweicloud.com/intl/en-us/usermanual-mrs/mrs_01_0063.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/mrs_01_0063.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/mrs_01_0061.html
https://account-intl.huaweicloud.com/usercenter/#/userindex/renewalManagement
https://support.huaweicloud.com/intl/en-us/usermanual-billing/en-us_topic_0083039587.html
https://support.huaweicloud.com/intl/en-us/usermanual-billing/en-us_topic_0083039587.html

12 Permissions Management

If you need to assign different permissions to employees in your enterprise to
access your MRS resources on Huawei Cloud, IAM is a good choice for fine-grained
permissions management. IAM provides identity authentication, permissions
management, and access control, helping you secure access to your Huawei Cloud
resources.

With IAM, you can create IAM users under your Huawei Cloud account, and assign
permissions to these users to control their access to specific resources. For
example, some software developers in your enterprise need to use MRS resources
but must not delete MRS clusters or perform any high-risk operations. To achieve
this goal, you can create IAM users for the software developers and grant them
only the permissions required for using MRS cluster resources.

If your Huawei Cloud account does not require individual IAM users for
permissions management, skip this section.

IAM is free of charge. You pay only for the resources you use. For more
information about IAM, see IAM Service Overview.

MRS Permission Description
By default, new IAM users do not have any permissions. To assign permissions to a
user, add the user to one or more groups and assign permissions policies or roles
to these groups. The user then inherits permissions from the groups it is a
member of and can perform specified operations on cloud services based on the
permissions.

MRS is a project-level service deployed and accessed in specific physical regions.
To assign permissions to a user group, specify Scope as Region-specific projects
and select projects in the corresponding region for the permissions to take effect.
If All projects is selected, the permissions will take effect for the user group in all
region-specific projects. When accessing MRS, the users need to switch to a region
where they have been authorized to use the MRS service.

You can grant users permissions by using roles and policies.

● Roles: A type of coarse-grained authorization mechanism that defines
permissions related to user responsibilities. This mechanism provides only a
limited number of service-level roles for authorization. When using roles to
grant permissions, you need to also assign other roles on which the

MapReduce Service
Product Introduction 12 Permissions Management

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 264

https://support.huaweicloud.com/intl/en-us/productdesc-iam/iam_01_0026.html

permissions depend to take effect. However, roles are not an ideal choice for
fine-grained authorization and secure access control.

● Policies: A type of fine-grained authorization mechanism that defines
permissions required to perform operations on specific cloud resources under
certain conditions. This mechanism allows for more flexible policy-based
authorization, meeting requirements for secure access control. For example,
you can grant MRS users only the permissions for performing specified
operations on MRS clusters, such as creating a cluster and querying a cluster
list rather than deleting a cluster. Most policies define permissions based on
APIs. For the API actions supported by MRS, see Permissions Policies and
Supported Actions.

Table 12-1 lists all the system policies supported by MRS.

Table 12-1 MRS system policies

Policy Description Type

MRS FullAccess Administrator permissions for MRS.
Users granted these permissions can
operate and use all MRS resources.

Fine-grained
policy

MRS
CommonOperations

Common user permissions for MRS.
Users granted these permissions can
use MRS but cannot add or delete
resources.

Fine-grained
policy

MRS
ReadOnlyAccess

Read-only permission for MRS. Users
granted these permissions can only
view MRS resources.

Fine-grained
policy

MRS Administrator Permissions:
● All operations on MRS
● Users with permissions of this

policy must also be granted
permissions of the Tenant Guest
and Server Administrator
policies.

RBAC policy

Table 12-2 lists the common operations supported by each system-defined policy
or role of MRS. Select the policies or roles as required.

Table 12-2 Common operations supported by each system-defined policy

Operation MRS
FullAccess

MRS
CommonOperati
ons

MRS
ReadOnlyAcce
ss

MRS
Administrat
or

Creating a
cluster

√ x x √

MapReduce Service
Product Introduction 12 Permissions Management

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 265

https://support.huaweicloud.com/intl/en-us/api-mrs/mrs_02_0083.html
https://support.huaweicloud.com/intl/en-us/api-mrs/mrs_02_0083.html

Operation MRS
FullAccess

MRS
CommonOperati
ons

MRS
ReadOnlyAcce
ss

MRS
Administrat
or

Resizing a
cluster

√ x x √

Upgrading
node
specificatio
ns

√ x x √

Deleting a
cluster

√ x x √

Querying
cluster
details

√ √ √ √

Querying a
cluster list

√ √ √ √

Configurin
g an auto
scaling
rule

√ x x √

Querying a
host list

√ √ √ √

Querying
operation
logs

√ √ √ √

Creating
and
executing
a job

√ √ x √

Stopping a
job

√ √ x √

Deleting a
single job

√ √ x √

Deleting
jobs in
batches

√ √ x √

Querying
job details

√ √ √ √

Querying a
job list

√ √ √ √

Creating a
folder

√ √ x √

MapReduce Service
Product Introduction 12 Permissions Management

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 266

Operation MRS
FullAccess

MRS
CommonOperati
ons

MRS
ReadOnlyAcce
ss

MRS
Administrat
or

Deleting a
file

√ √ x √

Querying a
file list

√ √ √ √

Operating
cluster
tags in
batches

√ √ x √

Creating a
single
cluster tag

√ √ x √

Deleting a
single
cluster tag

√ √ x √

Querying a
resource
list by tag

√ √ √ √

Querying
cluster
tags

√ √ √ √

Accessing
Manager

√ √ x √

Querying a
patch list

√ √ √ √

Installing a
patch

√ √ x √

Uninstallin
g a patch

√ √ x √

Authorizin
g O&M
channels

√ √ x √

Sharing
O&M
channel
logs

√ √ x √

Querying
an alarm
list

√ √ √ √

MapReduce Service
Product Introduction 12 Permissions Management

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 267

Operation MRS
FullAccess

MRS
CommonOperati
ons

MRS
ReadOnlyAcce
ss

MRS
Administrat
or

Subscribin
g to alarm
notificatio
n

√ √ x √

Submitting
an SQL
statement

√ √ x √

Querying
SQL results

√ √ x √

Canceling
an SQL
execution
task

√ √ x √

MRS FullAccess
{
 "Version": "1.1",
 "Statement": [
 {
 "Action": [
 "mrs:*:*",
 "ecs:*:*",
 "bms:*:*",
 "evs:*:*",
 "vpc:*:*",
 "bss:*:*",
 "kms:*:*",
 "rds:*:*"
],
 "Effect": "Allow"
 }
]
}

MRS CommonOperations
{
 "Version": "1.1",
 "Statement": [
 {
 "Action": [
 "mrs:*:get*",
 "mrs:*:list*",
 "ecs:*:get*",
 "ecs:*:list*",
 "bms:*:get*",
 "bms:*:list*",
 "evs:*:get*",
 "evs:*:list*",

MapReduce Service
Product Introduction 12 Permissions Management

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 268

 "vpc:*:get*",
 "vpc:*:list*",
 "mrs:job:submit",
 "mrs:job:stop",
 "mrs:job:delete",
 "mrs:job:checkSql",
 "mrs:job:batchDelete",
 "mrs:file:create",
 "mrs:file:delete",
 "mrs:tag:batchOperate",
 "mrs:tag:create",
 "mrs:tag:delete",
 "mrs:manager:access",
 "mrs:patch:install",
 "mrs:patch:uninstall",
 "mrs:ops:grant",
 "mrs:ops:shareLog",
 "mrs:alarm:subscribe",
 "mrs:alarm:delete",
 "bss:*:get*",
 "bss:*:list*",
 "kms:*:get*",
 "kms:*:list*",
 "rds:*:get*",
 "rds:*:list*",
 "mrs:bootstrap:*"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "mrs:cluster:create",
 "mrs:cluster:resize",
 "mrs:cluster:scaleUp",
 "mrs:cluster:delete",
 "mrs:cluster:policy"
],
 "Effect": "Deny"
 }
]
}

MRS ReadOnlyAccess
{
 "Version": "1.1",
 "Statement": [
 {
 "Action": [
 "mrs:*:get*",
 "mrs:*:list*",
 "mrs:tag:count",
 "ecs:*:get*",
 "ecs:*:list*",
 "bms:*:get*",
 "bms:*:list*",
 "evs:*:get*",
 "evs:*:list*",
 "vpc:*:get*",
 "vpc:*:list*",
 "bss:*:get*",
 "bss:*:list*",

MapReduce Service
Product Introduction 12 Permissions Management

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 269

 "kms:*:get*",
 "kms:*:list*",
 "rds:*:get*",
 "rds:*:list*"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "mrs:cluster:create",
 "mrs:cluster:resize",
 "mrs:cluster:scaleUp",
 "mrs:cluster:delete",
 "mrs:cluster:policy",
 "mrs:job:submit",
 "mrs:job:stop",
 "mrs:job:delete",
 "mrs:job:batchDelete",
 "mrs:file:create",
 "mrs:file:delete",
 "mrs:tag:batchOperate",
 "mrs:tag:create",
 "mrs:tag:delete",
 "mrs:manager:access",
 "mrs:patch:install",
 "mrs:patch:uninstall",
 "mrs:ops:grant",
 "mrs:ops:shareLog",
 "mrs:alarm:subscribe"
],
 "Effect": "Deny"
 }
]
}

MRS Administrator
{
 "Version": "1.0",
 "Statement": [
 {
 "Action": [
 "MRS:MRS:*"
],
 "Effect": "Allow"
 }
],
 "Depends": [
 {
 "catalog": "BASE",
 "display_name": "Server Administrator"
 },
 {
 "catalog": "BASE",
 "display_name": "Tenant Guest"
 }
]
}

MapReduce Service
Product Introduction 12 Permissions Management

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 270

Helpful Links
● IAM Service Overview
● Creating User Groups and Users and Granting MRS Permissions
● Permissions Policies and Supported Actions

MapReduce Service
Product Introduction 12 Permissions Management

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 271

https://support.huaweicloud.com/intl/en-us/productdesc-iam/iam_01_0026.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/mrs_01_0453.html
https://support.huaweicloud.com/intl/en-us/api-mrs/mrs_02_0083.html

13 Related Services

Figure 13-1 shows the relationship between MRS and other services.

Figure 13-1 Relationships with other services

Relationships with Other Services

Table 13-1 Relationships with other services

Service Relationships Reference

Virtual Private Cloud
(VPC)

MRS clusters are created in the subnets
of a VPC. VPCs provide a secure,
isolated, and logical network
environment for your MRS clusters.

Creating a VPC and Subnet

MapReduce Service
Product Introduction 13 Related Services

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 272

https://support.huaweicloud.com/intl/en-us/usermanual-vpc/en-us_topic_0013935842.html

Service Relationships Reference

Object Storage
Service (OBS)

OBS stores the following user data:
● MRS job input data, such as user

programs and data files
● MRS job output data, such as result

files and log files of jobs
In MRS clusters, HDFS, Hive,
MapReduce, YARN, Spark, Flume, and
Loader can import or export data from
OBS.
MRS uses the parallel file system of OBS
to provide services.

Configuring a Storage-
Compute Decoupled Cluster
(Agency)
Configuring a Storage-
Compute Decoupled Cluster
(AK/SK)

Elastic Cloud Server
(ECS)

MRS uses elastic cloud servers (ECSs) as
cluster nodes.

Preparing an Operating
Environment
Creating a Cluster

Relational Database
Service (RDS)

RDS stores MRS system running data,
including MRS cluster metadata and
user billing information.

Configuring Data
Connections

Identity and Access
Management (IAM)

IAM provides authentication for MRS. Creating a User and Granting
Permissions
Creating MRS Custom
Policies
Synchronizing IAM Users to
MRS

Simple Message
Notification (SMN)

MRS uses SMN to provide one-to-
multiple message subscription and
notification over a variety of protocols.

Configuring Job Notification
Rules

Cloud Trace Service
(CTS)

CTS provides you with operation records
of MRS resource operation requests and
request results for querying, auditing,
and backtracking.

Table 13-2

Table 13-2 MRS operations recorded by CTS

Operation Resource Type Trace Name

Creating a cluster cluster_mrs createCluster

Deleting a cluster cluster_mrs deleteCluster

Expanding a cluster cluster_mrs scaleOutCluster

Shrinking a cluster cluster_mrs scaleInCluster

MapReduce Service
Product Introduction 13 Related Services

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 273

https://support.huaweicloud.com/intl/en-us/usermanual-mrs/mrs_01_0768.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/mrs_01_0768.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/mrs_01_0768.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/mrs_01_0468.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/mrs_01_0468.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/mrs_01_0468.html
https://support.huaweicloud.com/intl/en-us/devg-mrs/mrs_06_0163.html
https://support.huaweicloud.com/intl/en-us/devg-mrs/mrs_06_0163.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/mrs_01_0030.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/mrs_01_0633.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/mrs_01_0633.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/mrs_01_0453.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/mrs_01_0453.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/mrs_01_0455.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/mrs_01_0455.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/mrs_01_0495.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/mrs_01_0495.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/mrs_01_0762.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/mrs_01_0762.html

After you enable CTS, the system starts recording operations on cloud resources.
You can view operation records of the last 7 days on the CTS management
console. For details, see Cloud Trace Service > Getting Started > Querying Real-
Time Traces.

MapReduce Service
Product Introduction 13 Related Services

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 274

14 Quota Description

Available resource quotas are configured for each user account in an environment
to prevent resource abuse.

The following lists the infrastructure used by MapReduce. Quotas are managed by
each basic service. If you need to increase quotas, contact technical support of the
corresponding service.

● ECS
● BMS
● VPC
● EVS
● Image Management Service (IMS)
● OBS
● EIP
● SMN
● IAM

For details about how to view and modify quotas, see Quotas.

MapReduce Service
Product Introduction 14 Quota Description

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 275

https://support.huaweicloud.com/intl/en-us/usermanual-iaas/en-us_topic_0040259342.html

15 Common Concepts

HBase Table

An HBase table is a three-dimensional map comprised of one or more columns or
rows of data.

Column

Column is a dimension of an HBase table. The column name is in the format of
<family>:<label>, where <family> and <label> can be any combination of
characters. An HBase table consists of a set of column families. Each column in
the HBase table belongs to a column family.

Column Family

A column family is a collection of columns stored in the HBase schema. To create
columns, you must create a column family first. A column family organizes data
with the same property in HBase. Each row of data in the same column family is
stored on the same server. Each column family can be one attribute, such as
compressed packages, timestamps, and data block cache.

MemStore

MemStore is a core of HBase storage. When the amount of data stored in WAL
reaches the upper limit, the data is loaded to MemStore for sorting and storage.

RegionServer

RegionServer is a service running on each DataNode in the HBase cluster. It is
responsible for serving and managing regions, uploading the load information of
regions, and managing distributed master nodes.

Timestamp

A timestamp is a 64-bit integer used to index different versions of the same data.
A timestamp can be automatically assigned by HBase when data is written or
assigned by users.

MapReduce Service
Product Introduction 15 Common Concepts

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 276

Store

Store is a core of HBase storage. A Store hosts one MemStore and multiple
StoreFiles. A Store corresponds to a column family of a table in a region.

Index

An index is a data structure that improves the efficiency of data retrieval in a
database table. One or more columns in a database table can be used for fast
random retrieval of data and efficient access to ordered records.

Coprocessor

A coprocessor is an interface provided by HBase for implementing calculation logic
on RegionServer. Coprocessors are classified into system coprocessors and table
coprocessors. The former can import all data tables on RegionServer, and the
latter can process a specified table.

Block Pool

A block pool is a collection of blocks that belong to a single namespace.
DataNodes store blocks from all block pools in a cluster. Each block pool is
managed independently, which allows a namespace to generate an ID for a new
block without relying on other namespaces. If one NameNode is invalid, the
DataNode can still provide services for other NameNodes in the cluster.

DataNode

A DataNode is a worker node in the HDFS cluster. Scheduled by the client or
NameNode, DataNodes store and retrieve data and periodically report file blocks
to NameNodes.

File Block

A file block is the minimum logical unit stored in the HDFS. Each HDFS file is
stored in one or more file blocks. All file blocks are stored in DataNodes.

Block Replica

A replica is a block copy stored in HDFS. A file block stores multiple replicas for
system availability and fault tolerance.

Namespace Volume

A namespace volume is an independent management unit that consists of a
namespace and its block pool. When a NameNode or namespace is deleted, the
related block pools on the DataNode are also deleted. During a cluster upgrade,
each namespace volume is upgraded as a whole.

MapReduce Service
Product Introduction 15 Common Concepts

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 277

NodeManager
NodeManager executes applications, monitors the usage of resources (including
CPUs, memory, disks, and network resources) of applications, and reports the
resource usage to the ResourceManager.

ResourceManager
ResourceManager schedules resources required by applications. It provides a
scheduling plug-in for allocating cluster resources to multiple queues and
applications. The scheduling plug-in schedules resources based on existing
capabilities or using the fair scheduling model.

Partition
Each topic can be divided into multiple partitions. Each partition corresponds to an
appendant log file whose sequence is fixed.

Follower
A follower processes read requests and works with a leader to process write
requests. It can also be used as a leader backup. When the leader is faulty, a
follower is elected to take over the leader's workload to prevent a single point of
failure.

Observer
Observers do not take part in voting for election and write requests. They only
process read requests and forward write requests to the leader, improving
processing efficiency.

CarbonData
A Carbon is an open architecture based on Spark SQL. It integrates the in-house
MOLAP engine and Spark, and quickly builds the Spark-based distributed multi-
dimensional analysis engine, shortening the analysis duration from minutes to
seconds and strengthening the multi-dimensional analysis capability of Spark.

DStream
DStream is an abstract concept provided by Spark Streaming. It is a continuous
data stream which is obtained from the data source or the transformed input
stream. In essence, a DStream is a series of continuous resilient distributed
datasets (RDDs).

Heap Memory
A heap indicates the data area where the Java Virtual Machine (JVM) is running
and from which memory for all class instances and arrays is committed. The JVM
startup parameters -Xms and -Xmx are used to set the initial heap memory and
the maximum heap memory, respectively.

● Maximum heap memory: Heap memory that can be committed to a program
at most by the system, which is specified by the -Xmx parameter.

MapReduce Service
Product Introduction 15 Common Concepts

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 278

● Committed heap memory: total heap memory committed by the system for
running a program. It ranges from the initial heap memory and the maximum
heap memory.

● Used heap memory: heap memory that has been used by a program. It is
smaller than the committed heap memory.

● Non-heap memory: memory excluded from the JVM heaps and the memory
area for running the JVM. Non-heap memory has the following three memory
pools:

– Code Cache: stores JIT compiled code. Its value is set through the JVM
startup parameter -XX:InitialCodeCacheSize -
XX:ReservedCodeCacheSize. The default value is 240 MB.

– Compressed Class Space: stores metadata of a pointer. Its value is set
through the JVM startup parameter -XX:CompressedClassSpaceSize. The
default value is 1024 MB.

– Metaspace: stores metadata. Its value is set through the JVM startup
parameter -XX:MetaspaceSize -XX:MaxMetaspaceSize.

● Maximum non heap memory: non-heap memory committed to a program at
most by the system. Its value is the sum of the maximum values of Code
Cache, Compressed Class Space, and Metaspace.

● Committed non-heap memory: total non-heap memory committed by the
system for running a program. It ranges from the initial non-heap memory
and the maximum non-heap memory.

● Used non-heap memory: non-heap memory that has been used by aprogram.
It is smaller than the committed non-heap memory.

Hadoop

Hadoop is a distributed system framework. It allows users to develop distributed
applications using high-speed computing and storage provided by clusters without
knowing the underlying details of the distributed system. It can also reliably and
efficiently process massive amounts of data in scalable, distributed mode. Hadoop
is reliable because it maintains multiple work data duplicates, enabling distributed
processing for failed nodes. Hadoop is highly efficient because it processes data in
parallel mode. Hadoop is scalable because it can process petabytes of data.
Hadoop consists of HDFS, MapReduce, HBase, and Hive.

Role

A role is an element of a service. A service contains one or multiple roles. Services
are installed on servers through roles so that they can run properly.

Cluster

A cluster is computer technology that enables multiple servers to work as one
server. Clusters improve the stability, reliability, and data processing or service
capability of the system. For example, clusters can prevent single point of failures
(SPOFs), share storage resources, reduce system load, and improve system
performance.

MapReduce Service
Product Introduction 15 Common Concepts

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 279

Instance
An instance is formed when a service role is installed on the host. A service has
one or more role instances.

Metadata
Metadata is data that provides information about other data and is also called
media data or relay data. It is used to define data properties, specify data storage
locations and historical data, retrieve resources, and record files.

MapReduce Service
Product Introduction 15 Common Concepts

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 280

16 Released Versions

16.1 Version Overview
MRS Cluster Versions

There are two MRS cluster versions: normal and LTS. The components and features
of clusters of different versions are slightly different. You can select a version
based on service requirements.

● Normal
– Functions

This normal version provides basic cluster operations, such as
configuration, management, and O&M. For details, see MapReduce
Service User Guide.

– Components
In addition to common components, clusters of the normal version also
support components such as Presto, Impala, Kudu, and Sqoop. You can
select components based on cluster versions. For details about
components of clusters of different versions, see List of MRS Component
Versions and MapReduce Service Component Operation Guide.

● LTS (long term support)
– Functions

In addition to basic cluster operations, clusters of the LTS version support
version upgrade. To use this function, contact technical support.

– Components
In addition to common components, clusters of the LTS version also
support HetuEngine. You can select components based on cluster
versions. For details about components of clusters of different versions,
see List of MRS Component Versions and MapReduce Service
Component Operation Guide.

Version Selection Suggestions
● Clusters of the LTS version support version upgrade. To make your clusters

upgradable, choose the LTS version.

MapReduce Service
Product Introduction 16 Released Versions

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 281

https://support.huaweicloud.com/intl/en-us/usermanual-mrs/mrs_01_0030.html
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/mrs_01_0030.html
https://support.huaweicloud.com/intl/en-us/cmpntguide-mrs/mrs_01_0759.html
https://support.huaweicloud.com/intl/en-us/cmpntguide-lts-mrs/mrs_01_1711.html
https://support.huaweicloud.com/intl/en-us/cmpntguide-lts-mrs/mrs_01_1711.html

● Clusters of the LTS version can be deployed in different AZs to implement
cross-AZ DR. To make your clusters more secure and have higher DR
capabilities, choose the LTS version.

● Clusters of the LTS version support HetuEngine. To use HetuEngine, choose
the LTS version.

NO TE

After purchase, the LTS version cannot be changed to the normal version. Choose an
appropriate version based on your business needs.

Billing Differences Between Versions

The normal and LTS versions have different functions and therefore they are billed
differently. For details, see Billing. You can also use the price calculator to quickly
calculate the reference price of an MRS cluster by selecting the cluster version and
node specifications that you need.

16.2 Release Notes

16.2.1 MRS 3.1.2-LTS.3 Version Description

Release Date

May 1, 2022

What's New

Launched the first commercial LTS version.

Component Versions

Table 16-1 MRS component versions

Component Version

CarbonData 2.2.0

ClickHouse 21.3.4.25

DBService 2.7.0

Flink 1.12.2

Flume 1.9.0

HBase 2.2.3

HDFS 3.1.1

HetuEngine 1.2.0

Hive 3.1.0

MapReduce Service
Product Introduction 16 Released Versions

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 282

https://www.huaweicloud.com/intl/en-us/pricing/index.html#/mrs

Component Version

Hudi
(integrated in
Spark2x)

0.9.0

Hue 4.7.0

Kafka 2.11-2.4.0

KrbServer 1.18

LdapServer 2.7.0

Loader 1.99.3

MapReduce 3.1.1

Oozie 5.1.0

Phoenix
(integrated in
HBase)

5.0.0

Ranger 2.0.0

Spark2x 3.1.1

Tez 0.9.2

Yarn 3.1.1

ZooKeeper 3.6.3

FusionInsight
Manager

8.1.2

16.2.2 MRS 3.1.5 Version Description

Release Date
March 28, 2023

What's New
Service
Module

Major Changes

CarbonData Upgraded to version 2.2.0.

ClickHouse Supported the backup and restoration of metadata and service
data on FusionInsight Manager.

MapReduce Service
Product Introduction 16 Released Versions

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 283

Service
Module

Major Changes

Flink ● Upgraded to version 1.12.2.
● Supported UDF upload and management on FlinkServer.

Guardian Added this component to support the function of allowing
clients outside a cluster to use storage-compute decoupled
resources by creating agencies.

Hadoop Required CAS authentication when a normal cluster accesses
the HDFS web UI.

Hudi Upgraded to version 0.9.0.

Impala Supported the management of Impala SQL jobs on MRS
Manager.

Spark2x Upgraded to version 3.1.1.

ZooKeeper Upgraded to version 3.6.3.

Management
Console

● Supported online patch pushing and update.
● Supported unsubscription from some nodes in yearly/

monthly clusters.
● Supported the submission of Flink SQL jobs through the job

submission API.
● Supported elastic scaling of a specified resource pool.
● Upgraded the node scaling function to support multiple

master nodes in a cluster.
● Supported the execution of bootstrap scripts as user root.
● Supported the selection of system disks with a minimum

capacity of 100 GB and data disks with minimum capacity
of 200 GB for hosts of a cluster.

Component Versions
Component Version

CarbonData 2.2.0

ClickHouse 21.3.4.25

DBService 2.7.0

Flink 1.12.2

Flume 1.9.0

Guardian 0.1.0

HBase 2.2.3

MapReduce Service
Product Introduction 16 Released Versions

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 284

Component Version

HDFS 3.1.1

Hive 3.1.0

Hudi (integrated in Spark2x) 0.9.0

Hue 4.7.0

Impala 3.4.0

Kafka 2.11-2.4.0

KrbServer 1.18

Kudu 1.12.1

LdapServer 2.7.0

Mapreduce 3.1.1

Oozie 5.1.0

Presto 333

Phoenix (integrated in HBase) 5.0.0

Ranger 2.0.0

Spark2x 3.1.1

Sqoop 1.4.7

Tez 0.9.2

Yarn 3.1.1

ZooKeeper 3.6.3

16.2.3 MRS 3.2.0-LTS.1 Version Description

Release Date
April 28, 2023

What's New
Service
Module

Major Changes

CDL Added this component for simple and efficient real-time data
integration.

MapReduce Service
Product Introduction 16 Released Versions

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 285

Service
Module

Major Changes

ClickHouse ● Upgraded to version 22.3.2.2.
● Support for multi-tenant and resources allocation by CPU

priority or memory quota on ClickHouse

Flink ● Upgraded to version 1.15.0.
● Support for audit logs on FlinkServer

Hadoop Upgraded to version 3.3.1.

HetuEngine ● Support for materialized views and automatic refresh on
HetuEngine

● Support for connection to IoTDB data sources on
HetuEngine

Hudi Upgraded to version 0.11.0.

IoTDB Added this component for integrated collection, storage,
management, and analysis of IoT time series data.

Cluster
management

Supported online patch pushing and update.

Component Versions

Table 16-2 MRS component versions

Component Version

CarbonData 2.2.0

CDL 1.0.0

ClickHouse 22.3.2.2

DBService 2.7.0

Flink 1.15.0

Flume 1.9.0

HBase 2.2.3

HDFS 3.3.1

HetuEngine 1.2.0

Hive 3.1.0

Hudi (integrated in
Spark2x)

0.11.0

Hue 4.7.0

MapReduce Service
Product Introduction 16 Released Versions

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 286

Component Version

IoTDB 0.14.0

Kafka 2.11-2.4.0

KrbServer 1.18

LdapServer 2.7.0

Loader 1.99.3

Mapreduce 3.3.1

Oozie 5.1.0

Phoenix (integrated in
HBase)

5.0.0

Ranger 2.0.0

Spark2x 3.1.1

Tez 0.9.2

Yarn 3.3.1

ZooKeeper 3.6.3

FusionInsight Manager 8.2.0.1

MapReduce Service
Product Introduction 16 Released Versions

Issue 01 (2023-11-07) Copyright © Huawei Technologies Co., Ltd. 287

	Contents
	1 Infographics
	2 What Is MRS?
	3 Advantages of MRS Compared with Self-Built Hadoop
	4 Application Scenarios
	5 How Do I Select an MRS Version?
	6 Components
	6.1 List of MRS Component Versions
	6.2 Alluxio
	6.3 CarbonData
	6.4 ClickHouse
	6.4.1 Infographics for ClickHouse
	6.4.2 ClickHouse

	6.5 CDL
	6.5.1 CDL Basic Principles
	6.5.2 Relationship Between CDL and Other Components

	6.6 DBService
	6.6.1 DBService Basic Principles
	6.6.2 Relationship Between DBService and Other Components

	6.7 Flink
	6.7.1 Flink Basic Principles
	6.7.2 Flink HA Solution
	6.7.3 Relationships Between Flink and Other Components
	6.7.4 Flink Enhanced Open Source Features
	6.7.4.1 Window
	6.7.4.2 Job Pipeline
	6.7.4.3 Stream SQL Join
	6.7.4.4 Flink CEP in SQL

	6.8 Flume
	6.8.1 Flume Basic Principles
	6.8.2 Relationships Between Flume and Other Components
	6.8.3 Flume Enhanced Open Source Features

	6.9 HBase
	6.9.1 HBase Basic Principles
	6.9.2 HBase HA Solution
	6.9.3 Relationship with Other Components
	6.9.4 HBase Enhanced Open Source Features

	6.10 HDFS
	6.10.1 HDFS Basic Principles
	6.10.2 HDFS HA Solution
	6.10.3 Relationship Between HDFS and Other Components
	6.10.4 HDFS Enhanced Open Source Features

	6.11 HetuEngine
	6.11.1 HetuEngine Product Overview
	6.11.2 Relationships Between HetuEngine and Other Components

	6.12 Hive
	6.12.1 Hive Basic Principles
	6.12.2 Hive CBO Principles
	6.12.3 Relationships Between Hive and Other Components
	6.12.4 Enhanced Open Source Feature

	6.13 Hudi
	6.14 Hue
	6.14.1 Hue Basic Principles
	6.14.2 Relationships Between Hue and Other Components
	6.14.3 Hue Enhanced Open Source Features

	6.15 Impala
	6.16 IoTDB
	6.16.1 IoTDB Basic Principles
	6.16.2 Relationships Between IoTDB and Other Components
	6.16.3 IoTDB Enhanced Open Source Features

	6.17 Kafka
	6.17.1 Kafka Basic Principles
	6.17.2 Relationships Between Kafka and Other Components
	6.17.3 Kafka Enhanced Open Source Features

	6.18 KafkaManager
	6.19 KrbServer and LdapServer
	6.19.1 KrbServer and LdapServer Principles
	6.19.2 KrbServer and LdapServer Enhanced Open Source Features

	6.20 Kudu
	6.21 Loader
	6.21.1 Loader Basic Principles
	6.21.2 Relationship Between Loader and Other Components
	6.21.3 Loader Enhanced Open Source Features

	6.22 Manager
	6.22.1 Manager Basic Principles
	6.22.2 Manager Key Features

	6.23 MapReduce
	6.23.1 MapReduce Basic Principles
	6.23.2 Relationship Between MapReduce and Other Components
	6.23.3 MapReduce Enhanced Open Source Features

	6.24 Oozie
	6.24.1 Oozie Basic Principles
	6.24.2 Oozie Enhanced Open Source Features

	6.25 OpenTSDB
	6.26 Presto
	6.27 Ranger
	6.27.1 Ranger Basic Principles
	6.27.2 Relationships Between Ranger and Other Components

	6.28 Spark
	6.28.1 Spark Basic Principles
	6.28.2 Spark HA Solution
	6.28.3 Relationship Among Spark, HDFS, and Yarn
	6.28.4 Spark Enhanced Open Source Feature: Optimized SQL Query of Cross-Source Data

	6.29 Spark2x
	6.29.1 Spark2x Basic Principles
	6.29.2 Spark2x HA Solution
	6.29.2.1 Spark2x Multi-active Instance
	6.29.2.2 Spark2x Multi-tenant

	6.29.3 Relationship Between Spark2x and Other Components
	6.29.4 Spark2x Open Source New Features
	6.29.5 Spark2x Enhanced Open Source Features
	6.29.5.1 CarbonData Overview
	6.29.5.2 Optimizing SQL Query of Data of Multiple Sources

	6.30 Storm
	6.30.1 Storm Basic Principles
	6.30.2 Relationships Between Storm and Other Components
	6.30.3 Storm Enhanced Open Source Features

	6.31 Tez
	6.32 YARN
	6.32.1 YARN Basic Principles
	6.32.2 YARN HA Solution
	6.32.3 Relationships Between YARN and Other Components
	6.32.4 Yarn Enhanced Open Source Features

	6.33 ZooKeeper
	6.33.1 ZooKeeper Basic Principles
	6.33.2 Relationships Between ZooKeeper and Other Components
	6.33.3 ZooKeeper Enhanced Open Source Features

	7 Functions
	7.1 Multi-tenant
	7.2 Security Hardening
	7.3 Easy Access to Web UIs of Components
	7.4 Reliability Enhancement
	7.5 Job Management
	7.6 Bootstrap Actions
	7.7 Enterprise Project Management
	7.8 Metadata
	7.9 Cluster Management
	7.9.1 Cluster Lifecycle Management
	7.9.2 Cluster Scaling
	7.9.3 Auto Scaling
	7.9.4 Task Node Creation
	7.9.5 Scaling Up Master Node Specifications
	7.9.6 Isolating a Host
	7.9.7 Managing Tags

	7.10 Cluster O&M
	7.11 Message Notification

	8 Security
	8.1 Shared Responsibilities
	8.2 Asset Identification and Management
	8.3 Identity Authentication and Access Control
	8.4 Data Protection Technologies
	8.5 Audit and Logging
	8.6 Service Resilience
	8.7 Security Risk Monitoring
	8.8 Update Management
	8.9 Security Hardening

	9 Constraints
	10 Technical Support
	11 Billing
	12 Permissions Management
	13 Related Services
	14 Quota Description
	15 Common Concepts
	16 Released Versions
	16.1 Version Overview
	16.2 Release Notes
	16.2.1 MRS 3.1.2-LTS.3 Version Description
	16.2.2 MRS 3.1.5 Version Description
	16.2.3 MRS 3.2.0-LTS.1 Version Description

