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ABSTRACT
A well-known challenge in learning from click data is its inher-

ent bias and most notably position bias. Traditional click models

aim to extract the ⟨query, document⟩ relevance and the estimated

bias is usually discarded after relevance is extracted. In contrast,

the most recent work on unbiased learning-to-rank can effectively

leverage the bias and thus focuses on estimating bias rather than

relevance [20, 31]. Existing approaches use search result random-

ization over a small percentage of production traffic to estimate

the position bias. This is not desired because result randomiza-

tion can negatively impact users’ search experience. In this pa-

per, we compare different schemes for result randomization (i.e.,

RandTopN and RandPair) and show their negative effect in personal

search. Then we study how to infer such bias from regular click

data without relying on randomization. We propose a regression-

based Expectation-Maximization (EM) algorithm that is based on a

position bias click model and that can handle highly sparse clicks in

personal search. We evaluate our EM algorithm and the extracted

bias in the learning-to-rank setting. Our results show that it is

promising to extract position bias from regular clicks without result

randomization. The extracted bias can improve the learning-to-rank

algorithms significantly. In addition, we compare the pointwise and

pairwise learning-to-rank models. Our results show that pairwise

models are more effective in leveraging the estimated bias.
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1 INTRODUCTION
Personal search is an important research topic in information re-

trieval that has been evolving from desktop search [13] to on-device

search [21] and more recently to email search [5]. With the increas-

ing popularity of cloud-based email and storage services, there is

a large amount of personal data stored in the cloud. This large

amount of data calls for effective search capabilities to improve

its utility [2, 5, 6, 15]. The important difference of personal search

from web search is the private content in personal search. Users

can only see and search their own content. This presents an impor-

tant challenge when applying learning-to-rank techniques, because

collecting explicit relevance judgements becomes much harder and

raters can only label their own documents with their own queries.

Though possible, such an approach can be heavily biased by the se-

lected raters and costly to maintain due to the fast-evolving nature

of private content.

Click data in personal search provides implicit but abundant user

feedback. It thus becomes a natural source to improve personal

search quality. However, a well-known challenge in learning from

click data is its inherent bias: position bias [19], presentation bias

[32], and trust bias [26], etc. Among them, the position bias has

a strong influence on users’ clicks [20]. A prerequisite of fully

leveraging the power of click data is to debias it. As a result, there

has been a great deal of research on extracting reliable signals from

click data.

One such effort is known as click modeling. Click models were

initially proposed for web search with the goal of estimating ⟨query,

document⟩ relevance by taking the click bias into account [9]. The

position bias model [27] and the Cascade model [10] are the two

classic click models. In the position bias model, users’ clicks are

determined by two factors: document positions, and the ⟨query,

document⟩ relevance. The Cascade model assumes sequential user

behavior: a user scans the documents one by one from the top, and

the scan continues after a non-relevant document but stops after

a relevant document. More sophisticated models (e.g., UBM [14],

DBN [7], and CCM [17]) build upon these two classic models. In

the learning-to-rank setting, the existing click models belong to

the pointwise category because they estimate ⟨query, document⟩

relevance but not based on the correct order of documents as in

pairwise and listwise approaches.

Different from click models, Joachims et al. [19] studied a few

heuristics in the pairwise manner (e.g., SkipAbove) and found that

these heuristics lead to more reliable relevance assessments. How-

ever, the data obtained by these heuristics are systematically biased

and a ranking function learned from it tends to reverse the existing

order [20].

https://doi.org/10.1145/3159652.3159732
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Recently, Wang et al. [31] and Joachims et al. [20] introduced

the unbiased learning-to-rank framework by treating the bias as

a counterfactual effect. Inside the framework, the critical compo-

nent is to quantify the click bias, rather than estimate the ⟨query,

document⟩ relevance in click models. Due to this difference, ran-

domizing results on a small fraction of search traffic is sufficient.

In this paper, we study different ways of position bias esti-

mation for unbiased learning-to-rank. Result randomization in-

tuitively degrades the users’ search experience. We quantify the

negative impacts of different degrees of randomization (RandTopN
and RandPair) and compare their effectiveness for bias estima-

tion. This naturally motivates us to study how to estimate the

bias from regular clicks. The classical position bias model is a can-

didate method. A direct application of this model requires the same

⟨query, document⟩ pairs appearing at multiple positions multiple

times [7], but this is not realistic in personal search. We propose a

novel regression-based EM algorithm that does not need the query

and document identifiers but works in a feature space. Such an ap-

proach is applicable to any ranking systemwhere clicks and ranking

features are collected. It also greatly reduces the pre-processing

that is usually needed in standard click models. Furthermore, as

position bias can potentially change as a ranking system evolves,

our approach can be used to re-estimate position bias without any

intervention like result randomization.

The contribution of this paper is summarized as follows:

• We study the problem of position bias estimation without re-

sult randomization and propose a regression-based EM [11]

in personal search that can be applied to any ranking system

without the need of intervention.

• We compare different degrees of result randomization based

on effectiveness of bias estimation and negative impacts on

an email and a file storage personal search service.

• We conduct extensive experiments and our results show that

position bias estimated using EM can achieve surprisingly

good results without using randomization, and that pairwise

learning-to-rank algorithms can better leverage these bias

estimates than pointwise ones.

The rest of this paper is organized as follows. In Section 2, we re-

view previous related work. The unbiased learning-to-rank is set up

in Section 3 and is followed by different methods of propensity es-

timation based on the position bias model in Section 4. We present

our extensive experimental study and our evaluation methodol-

ogy in Section 5. Finally, we conclude and discuss future work in

Section 6.

2 RELATEDWORK
Click-through data has become an indispensable resource in both

web search and personal search. There is an abundance of prior

work on click modeling in web search that address click bias to

extract useful signals from click data. One of the seminal papers by

Joachims et al. [19] evaluates a few heuristics via a user study and

shows that clicks are valuable as long as certain biases, especially

the position bias, are accounted for. Many click models have been

proposed to model the user click behaviors based on probabilistic

graphical models [7–10, 14, 17, 27, 34]. These models can account

for the click bias and provide more reliable relevance estimation

between queries and documents.

Unbiased learning-to-rank takes a different approach to account

for click bias. Wang et al. [31] study the selection bias at the query

level when click-based training data is collected in learning-to-rank.

Joachims et al. [20] present a counterfactual inference framework

with a principled theoretical basis. Both approaches rely on In-

verse Propensity Weighting (IPW) developed in the causal infer-

ence field [28], and both rely on result randomization to estimate

the propensity. Our paper is in the same unbiased learning-to-rank

framework; however, we estimate the propensity without random-

ization.

Our work is related to recent work on personal search [2, 3, 6, 22,

33] that emphasized relevance-based over time-based ranking [6].

User behaviors in personal search show different traits compared

with web search [2]. For example, repeated visits to the same results

are less common in email search. Thus, applying learning-to-rank

techniques is important; however, the click data is highly sparse

in personal search. We use a regression-based EM algorithm that

extends the standard EM algorithm to handle the highly sparse data

effectively.

Inverse propensity weighting is a commonly-used technique to

address the sample bias. It has been adopted for unbiased evaluation

and learning (e.g., [1, 12, 23, 24, 29, 30]). Most work in this area

assumes that the propensity scores are present in the logs and

study how to reduce the model variance while staying unbiased.

The unbiased learning-to-rank framework is different in that the

propensity is not explicitly logged but buried in the user behavior

data implicitly. How to estimate this propensity in a less costly

manner is critical in unbiased learning-to-rank and the focus of

this paper.

3 UNBIASED LEARNING-TO-RANK
For simplicity, we assume that a clicked document is relevant. Note

that such an assumption can be relaxed to accommodate noisy

clicks in unbiased learning-to-rank as shown in [20]. However, the

reverse is not true due to the position bias: relevant documents

may not get clicked all the time because the users do not go down

the list to examine it. Thus, click data obtained from search logs is

biased due to the unobserved feedback. Learning from it without

accounting for the bias leads to less effective ranking functions.

In this section, we review and discuss different ways of unbiased

learning-to-rank from click data.

3.1 Inverse Propensity Weighting
In the learning-to-rank setting, there are two existing propensity-

based bias correction methods. In the following, we use a Bernoulli

variable O to denote whether the relevance of a document is ob-

served. The variable O can depend on various factors such as posi-

tions or even an entire rank list. Without loss of generality, for i-th
document, we use a vague notation P(Oi = 1) to denote the propen-

sity and oi ∈ {0, 1} to denote a specific value. We use ri ∈ {0, 1} to

denote whether a document is relevant and use π to denote the list

[1, · · · ,n] of ranks of n results.
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Query-level propensity.Akey observation in [31] is that queries

without clicks are not useful in the pairwise or listwise learning-

to-rank approaches and not included in the training data. Hence,

due to the position bias, queries whose relevant documents are

ranked lower can be under-represented in the training data. The

propensity that a query is selected in the training data depends on

the highest position of its relevant documents:

P(Oiq = 1) where iq = min{i ∈ π : ri = 1}.

The bias is corrected by using a query-level Inverse Propensity

Weighting (IPW)

wq =
1

P(Oiq = 1)
.

Such an approach fits perfectly well when there is a single click per

query but can be less accurate for queries with multiple relevant

documents.

Document-level propensity. Document-level propensity is

studied in [20]. It starts with a performance metric that measures

the rank of the relevant documents (denoted as Rank):

Rank =
∑
i ∈π

ri · i .

In biased data, IPW is used to correct the bias:

Rank =
∑

i ∈π :oi=1

ri · i

P(Oi = 1)
=

∑
i ∈π :oi=1,ri=1

i

P(Oi = 1)
.

The Rank metric is proven unbiased, i.e., E{Rank} = Rank [20].

The document-level IPW is

wi =
1

P(Oi = 1)
.

3.2 Unbiased Learning Algorithms
The Rank metric can be optimized by a pairwise learning-to-rank

method such as SVMRank. To show this, let si and sj be the scores
of a ranking function for document i and j. Rank can be expressed

as a pairwise loss using the indicator function I:∑
i ∈π :oi=1,ri=1

wi · i =
∑

i ∈π :oi=1,ri=1
wi · (

∑
j ∈π
Isj>si + 1)

=
∑

i ∈π :oi=1,ri=1

∑
j ∈π

wi · Isj>si + const

The loss above is upper-bounded by the common classification

loss functions (e.g., the hinge loss or the log loss [18]) and can be

optimized by pairwise learning-to-rank algorithms by constructing

the following preference pairs: For each observed and relevant
document i , we pair it with each of the other documents j in the

given query and create a preference pair i ▷ j . Note that the weight
for each pair is only determined bywi , the IPW of document i .

Given a single-click training data, both query-level propensity

and document-level propensity lead to the same pairwise learning

algorithm. For multi-click training data, the query-level propen-

sity can be adapted by replicating a multi-click query to multiple

single-click queries with each corresponding to a click. It is easy to

show that such a strategy of the query-level IPW leads to the same

pairwise learning algorithm as the document-level IPW.

In addition, both Rank and Rank can be optimized using the

λ-gradient in LambdaRank or LambdaMART [4]. Similar to Rank,

we can define the DCG-like metric Prec and its IPW version Prec as
follows:

Prec =
∑
i ∈π

ri
i
=

∑
i ∈π :ri=1

1

i

Prec =
∑

i ∈π :oi=1
wi

ri
i
=

∑
i ∈π :oi=1,ri=1

wi
1

i

Prec is also provenly unbiased, i.e., E{Prec} = Prec.We use Prec in
our paper as the optimization metric and other types of DCG-like

metrics can be used easily in the current setting.

In the unbiased learning-to-rank framework, the critical part is

to estimate the propensity P(Oi = 1). Note that a nice property

of the current metrics is that we only need the propensity of ob-
served and relevant documents, i.e., oi = 1 and ri = 1, and we do

not need the propensity of non-relevant documents. Such a nice

property holds for pairwise learning algorithms because they are

closely related to the metrics (e.g., Rank and Prec) in which non-

relevant documents have no contributions to the metric values.

However, it does not hold for pointwise learning algorithms be-

cause a non-relevant document usually contributes to the pointwise

loss functions. We will show some attempts in our experiments;

however, how to extend the IPW method to pointwise approaches

is an open area of research.

4 PROPENSITY ESTIMATION
In this section, we show how to estimate the propensity from the

click data based on a position bias model. The position bias model

is a simple yet effective generative click model. We first set up the

model and then present different methods for parameter estimation,

including a novel regression-based EM algorithm.

4.1 Position Bias Model
The position bias model assumes that the observed click Bernoulli

variable C depends on two other hidden Bernoulli variables E and

R where E represents the event whether a user examines a docu-

ment at a certain position k and R represents the event whether a

document d is relevant to a query q. Specifically,

P(C = 1|q,d,k) = P(E = 1|k) · P(R = 1|q,d),

where P(C = 1|q,d,k) is the probability of clicking document d that

is shown at position k given query q, P(E = 1|k) is the probability
that position k is examined, and P(R = 1|q,d) is the probability

that document d is relevant to query q. The model assumes that

the examination only depends on the position and the relevance

only depends on the query and document. We use the following

shorthands for derivation:

θk = P(E = 1|k)

γq,d = P(R = 1|q,d).

Though simple, this model has been shown to be as effective as more

sophisticated click models [9]. In particular, when there is a single

click per query, this model is equivalent to the User BrowsingModel

(UBM) [14] that achieves the state-of-the-art performance. On the

other hand, more sophisticated click models can be potentially used

as well for propensity estimation.
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Theorem 4.1. In the position bias model, the observed variable
O is equivalent to the examination variable E: O ⇔ E.

This has been proven in [20]. When E = 1, the relevance R is

fully observed by C and thus O = 1. When E = 0, C = 0 always

holds and the document may or may not be relevant. In another

word, we have no knowledge of R and thus O = 0.

With Theorem 4.1, estimating propensity P(O = 1) equals to

estimating the examination probability P(E = 1). Also, a clicked

document i means it is examined and relevant. In other words, it is

relevant (ri = 1) and observed (oi = 1) and thus we only need to

estimate and apply the propensity scores on the clicked documents.

4.2 Result Randomization
To estimate θk , we need a way to estimate γq,d or eliminate it from

the equation. Result randomization is a way to integrate it out. We

describe two methods here.

4.2.1 Randomize TopN. In the position bias model, the relevance

component γq,d is hidden. Result randomization can be leveraged

to estimate θk without explicitly modeling the relevance compo-

nent. For a randomized data set R where the top N documents are

randomly shuffled before showing them to users, let Rk be the

subset of the collected logs from position k . We have

E(C |k) =

∫
q,d ∈Rk

E(C |q,d,k)P(q,d)

=

∫
q,d ∈Rk

P(C = 1|q,d,k)P(q,d)

=

∫
q,d ∈Rk

θkγq,dP(q,d)

= θk ·

∫
q,d ∈Rk

γq,dP(q,d)

∝ θk

This is the case because

∫
q,d ∈Rk

γq,dP(q,d) = E{γQ,D } is constant

across all the positions in the randomized data R. Thus, the posi-

tion bias θk is proportional to the number of clicks in Rk . We use

RandTopN to denote this method.

4.2.2 Randomize Pair. Shuffling a few top results randomly can

lower the search quality a lot and thus create undesired user ex-

perience. A relatively smaller intervention is to randomize pairs.

In [20], results at rank 1 and rank k are randomly swapped half the

time. In this paper, we use a simpler variant that randomly swaps

adjacent pairs at position k − 1 and k . We vary k and collect search

logs for each k separately. Similarly to RandTopN , we can get a

relative ratio
θk
θk−1

for adjacent pairs based on the number of clicks

at position k − 1 and k when the results of these two positions are

randomly swapped. In the position bias model, we can obtain the

relative ratio between any two positions by multiplying the ratios

of adjacent positions.

θk
θ1
=

θ2
θ1

·
θ3
θ2

· · ·
θk
θk−1

.

We name this scheme RandPair . It is different from RandTopN in

that the expected relevance E{γQ,D } for a position pair is different

from another position pair. But under the assumption in the position

Email (N=3) File Storage (N=5)

RandTopN -13.94%* -31.04%*

RandPair(1, 2) -6.80%* -12.44%*

RandPair(2, 3) -0.56% +3.75%

RandPair(3, 4) +0.20% +1.09%

RandPair(4, 5) +0.38% +0.36%

Table 1: The negative effect due to result randomizationmea-
sured by the relative change of MRR against the production.
* means statistically different.

bias model, the relative ratios between different positions should be

the same as RandTopN , which also applies to the one used in [20]

similarly.

4.2.3 Empirical Comparison. The position bias model is a sim-

plification of real-world user click behavior and can be less precise.

We empirically compare RandTopN and RandPair here to see how

well they align. We use a portion of traffic for randomization on

two search services: one is email search and the other is file storage

search, and run multiple randomization experiments on each ser-

vice. Figure 1 plots the θk that we got from RandTopN and RandPair
experiments. For RandTopN , we set N = 3 for email search and

N = 5 for file storage search. From this figure, we can see that

RandPair aligns very well with RandTopN and this confirms that

the assumption of the position bias model is reasonable.

One of the drawbacks of result randomization is its negative

effect on the search experience. Reusing the randomization experi-

ments, we quantify the impact on Mean Reciprocal Rank (MRR) of

the clicked positions and compare result-randomized traffic with

production traffic. Table 1 summarizes the comparison using the

relative change of MRR. From this table, we can see that the search

experience is dramatically decreased due to randomization on both

services. RandTopN is worse than RandPair since it perturbs results
more aggressively. For RandPair , the impact generally becomes

smaller as the positions become lower. In the table, the impact

becomes neutral after position 2. The fluctuation at the lower po-

sitions is mainly due to the larger variance of user buckets where

fewer clicks are collected at those positions. Compared with [20],

our RandPair is less aggressive in perturbing results per search, but

may need to be run longer to get sufficient clicks for bias estimation

since pairs in our method are at less visible positions. An interesting

comparison is on how much traffic is necessary for bias estimation

in different methods, which we leave as future work.

4.3 Estimation from Regular Clicks
Can we estimate the position bias from regular production clicks

without randomization and how accurate would that be? To the best

of our knowledge, there is no existing study on such a comparison.

In this section, we give details of the standard EM algorithm and

present a regression-based EM for personal search.

Given a regular click log L = {(c,q,d,k)}, the log likelihood of

generating this data is

log P(L) =
∑

(c,q,d,k)∈L

c logθkγq,d + (1 − c) log(1 − θkγq,d ).
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Figure 1: Position bias estimated by result randomization and normalized by the top position.

The EM algorithm can find the parameters that maximize the log

likelihood of the whole data.

4.3.1 Standard EM. The standard EM algorithm iterates over

the Expectation and Maximization steps to update parameters {θk }
and {γq,d }. At iteration t + 1, the Expectation step estimates the

distribution of hidden variable E and R given parameters from

iteration t : {θ
(t )
k } and {γ

(t )
q,d } and the observed data in L.

P(E = 1,R = 1|C = 1,q,d,k) = 1

P(E = 1,R = 0|C = 0,q,d,k) =
θ
(t )
k (1 − γ

(t )
q,d )

1 − θ
(t )
k γ

(t )
q,d

P(E = 0,R = 1|C = 0,q,d,k) =
(1 − θ

(t )
k )γ

(t )
q,d

1 − θ
(t )
k γ

(t )
q,d

P(E = 0,R = 0|C = 0,q,d,k) =
(1 − θ

(t )
k )(1 − γ

(t )
q,d )

1 − θ
(t )
k γ

(t )
q,d

(1)

From this, we can compute the marginals P(E = 1|c,q,d,k) and
P(R = 1|c,q,d,k) for every data point in L and this can be seen as

complete data where the hidden variables are estimated.

The Maximization step updates the parameters using the quanti-

ties from the Expectation step:

θ
(t+1)
k =

∑
c,q,d,k ′ Ik ′=k · (c + (1 − c)P(E = 1|c,q,d,k))∑

c,q,d,k ′ Ik ′=k

γ
(t+1)
q,d =

∑
c,q′,d ′,k Iq′=q,d ′=d · (c + (1 − c)P(R = 1|c,q,d,k))∑

c,q′,d ′,k, Iq′=q,d ′=d

(2)

4.3.2 Regression-based EM. The Maximization step in the stan-

dard EM usually works with (q,d) identifiers for γq,d . Using the

exact identifiers is challenging in personal search for several rea-

sons: (1) due to privacy concerns, these identifiers may not be

accessible; (2) the click data is highly sparse and noisy since docu-

ments are private and clicks on a document may just come from a

single user; (3) user corpora change quickly and a document may

get very few clicks before it becomes irrelevant when a new doc-

ument (e.g. email) is created. To overcome these difficulties, we

propose a regression-based EM.

The regression-based EM only modifies the Maximization step

in the standard EM. Instead of working with (q,d) identifiers, we
assume there is a feature vector xq,d representing them and use a

function to compute the relevance γq,d = f (xq,d ). The Maximiza-

tion step is then to find a regression function f (x) to maximize the

likelihood given the estimation from the Expectation step. For any

ranking system, there are usually available ranking features used in

the system. The feature vector x in our EM can be the same as the

ranking features. Thus, the proposed EM algorithm can be easily

deployed to any of these systems where regular clicks and ranking

features are collected. Also, as noted in [7], for the EM to work

the standard EM requires that a document for a query appears in

multiple positions. This is less of a concern in regression-based EM

as long as similar feature vectors appear in different positions.

Specifically, for each (c,q,d,k) ∈ L, the expectation step gives

a probability P(R = 1|c,q,d,k). Intuitively, we can regress the fea-

ture vector xq,d to the probability P(R = 1|c,q,d,k). In this paper,

we convert such a regression problem to a classification problem

based on sampling: we sample a binary relevance label r ∈ {0, 1}

according to P(R = 1|c,q,d,k). This conversion allows us to use

the widely available classification tools to solve our problem. After

sampling, we have a training set {(x, r )} for f (x). The objective
function is the log likelihood:

∑
{(x,r )}

r log(f (x)) + (1 − r ) log(1 − f (x)),
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Algorithm 1: Regression-based EM

Input: L = {(c,q,d,k)}, {xq,d }, {θk }, {γq,d }.
Output: {θk } and f (x).
1: Let F (x) = 0

2: repeat
3: Estimate the hidden variable probability based on Eq 1.

4: Let S = {}

5: for all (c,q,d,k) ∈ L do
6: Sample r ∈ {0, 1} from P(R = 1|c,q,d,k)
7: S = S ∪ (xq,d , r )
8: end for
9: F (x) = GBDT (F (x), S)
10: Update {θk } based on Eq 2.

11: Update {γq,d = f (xq,d )} using Eq 3.

12: until Convergence.
13: return {θk }, f (x)

where we use the sigmoid in the objective function

f (x) =
1

1 + e−F (x)
(3)

F (x) is the log odd of function f (x) and can be learned by the stan-

dard logistic regression. However, the features in a ranking system

are usually optimized to perform correct ordinal ranking, and may

not have a linear correlation with the relevance. To account for

non-linearity, we use the Gradient Boosted Decision Tree (GBDT)

method [16] to learn the function F (x).
We summarize the regression-based EM in Algorithm 1. For

the GBDT, we use depth-3 trees and set the shrinkage to 0.2. A

new iteration uses the GBDT trees from the previous iteration and

refines them additively using the new data.

4.3.3 Embedded in Discriminative Methods. Another approach
to estimate position effect is to use a discriminative method (e.g.,

logistic regression) by embedding positions as features. That is,

we append the position of each document to the feature vector

x and train a function to predict the click odds. We use the one-

hot encoding of the positions and form a feature vector k. Thus,
for each (c,q,d,k) ∈ L, we have a training instance ([k, xq,d ], c).
A discriminative model GDBT can then be trained to optimize

the likelihood of the click data. In order to separate the position

effect from the ranking features, we set the split depth to be 1 in

GBDT to disallow feature interaction. This is similar to the linear

function used in logistic regression, but allows us to model non-

linear transformation for individual features. We use д(k, x) to
represent the learned function that predicts the click probability.

In the Embedded method, the positions are treated the same

as the regular ranking features, so the click odds can be equally

attributed to positions or to regular ranking features. When there

is a high correlation between them, the attribution can be arbitrary.

This also creates dependency between positions and regular click

features. When positions are not present, the Embedded method

cannot perform well. On the contrary, the EM algorithm is based

on probabilistic graphical models and has a clear separation of a

position-based bias component and a relevance component. Such

a structure makes each component predictive independently. We

will show this point in our experiments.

5 EVALUATIONS
In this section, we conduct a suite of experiments to compare dif-

ferent methods that estimate position-based propensity. We first

describe our experimental setup (data sets, andmetrics design), then

we report our experimental results in the unbiased learning-to-rank

setting.

5.1 Experimental Setup
We set up our evaluation using a standard supervised learning-to-

rank framework [25]. In this section, we describe our evaluation

data sets and the evaluation metrics used in our experiments.

5.1.1 Data Sets. The data sets we used in this paper are search

logs from both an email and a file storage service. For each service,

there is at most a single click for each query. This is because each

service uses an overlay to show the results as users type and the

overlay disappears when a click on the overlay happens. We discard

all the queries that do not lead to clicks when we process the search

logs.

For each service, we take a sample of its processed logs from a

two-week period in April 2017. The first week of the data is used for

training and the second is used for test. We have approximately 4M

queries in each week. Each query has around 5 results. We use the

existing ranking features from these services in our regression and

learning-to-rank algorithms.We do not do any other pre-processing

of the data.

5.1.2 Evaluation Metrics. For ranking effectiveness, the evalua-

tion metric used in this paper is a variant of Mean Reciprocal Rank

(MRR). Given a test data set with N queries, the standard MRR is

defined as follows:

MRR =
1

N

N∑
i=1

1

ranki
(4)

where ranki is the rank of the clicked document of the i-th query

in our data set.

Due to click bias, the standard MRR is not suitable for offline

evaluation. We thus define a weighted MRR using the propensity.

Letwi be the inverse propensity estimated from the RandPair de-
scribed in Section 4.2.2 for the clicked position of the i-th query,

then the weighted MRR is defined as

MRR =
1∑N

i=1wi

N∑
i=1

wi
1

ranki
, (5)

which is the MRR definition that we will use in the remainder of

this paper. It is the same as the Prec in Section 3 given that we only

have a single click per query in our data sets. Note that we use

the propensity estimated from the RandPair as the ground truth in

the following comparisons and this offline metric is shown to be

consistent with the online experiments in [31].

We also use the average log likelihood to measure how well a

model fits the click data. This can be used to compare the EM and
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EM Embedded

Email -0.124 -0.130

File Storage -0.121 -0.116
Table 2: The average LogLikelihood on the test data set. A
lower absolute value means a better fit.

EM Embedded

Email +0.50%* -4.44%*

File Storage +0.11% -3.10%*

Table 3: Comparison of relevant components using the rela-
tive difference ofMRRagainst the pointwiseGBDTbaseline.

the Embedded methods. Specifically,

LogLikelihood =
1

|L|

∑
L

c log(p) + (1 − c) log(1 − p),

wherep = θk f (x) for the EMmethod andp = д(k, x) for the Embed-

ded method. Besides fitting wellness, we also compare the relevance

components estimated by these two methods using the MRR metric.

In the EM method, we use the relevance component f (x) directly.
The Embedded method does not have a clearly separated relevance

component. However, since the GBDTmodel has split depth 1, there

are no interactions between features. Hence, we can remove the

position feature related subtrees and use the rest as the relevance

components. This is equivalent to comparing the relevance of all

the documents by placing them at the same canonical position (e.g.,

position 1).

5.2 Experimental Results
We report our experimental results on propensity estimation and

the ranking effectiveness of different learning methods.

5.2.1 Propensity Estimation. Both EM and Embedded aim to

maximize the likelihood. We show the LogLikelihood results in Ta-

ble 2. On the email data, EM outperforms Embedded, but Embedded

fits the file storage data better. The EM method imposes a factor

model to separate the effect of position while the Embedded method

is limited to a split depth equal to 1 to have a separation between

position and relevance features. The LogLikelihood suggests that

both EM and Embedded are comparable. However, we will show

that the EM method is far better in the following aspects:

• Estimated relevance. Table 3 shows the evaluation of rele-

vance components of both the EM and the Embedded meth-

ods. For the baseline, we train a pointwise GBDT model

over the ranking feature vector x directly without consid-

ering position bias. We report the relative difference over

the baseline using MRR. Surprisingly, the Embedded method

performs significantly worse than the baseline, while the EM

method outperforms the baseline on both data sets and the

improvement is statistically significant on the email data set.

This confirms that the Embedded method cannot effectively

attribute the click odds to the ranking features but the EM

method can.

Pointwise Pairwise

QueryLevel DocLevel EM EMCorrected

-0.07% -0.06% +0.50%* +1.30%*

Table 4: Comparison of unbiased pointwise learning algo-
rithms based on relative change of MRR against the point-
wise GBDT baseline without correction.

• Estimated position bias. Figure 2 shows the estimated po-

sition bias for both methods, together with the RandPair
ground truth. In addition, we plot the relative empirical click

rates at different positions normalized by the top position

(denoted as Empirical). We can see that Empirical has more

skew than RandPair , consistent with previous findings [7].

Both EM and Embedded differ from Empirical by taking rele-

vance into consideration. On both data sets, EM gives much

closer biases to RandPair than Embedded, showing that our

proposed EM algorithm is effective in both relevance and

position bias estimation.

5.2.2 Effects on Ranking Improvement. The position bias from

the EM method is not the same as the RandPair method. Thus,

the question is how effective the estimated propensity is to im-

prove ranking. In this section, we leverage the estimated propensity

from EM to learn a ranking function. For the baseline, we train

a pairwise model on Prec using lambdaMART without any bias

correction (denoted as NoCorrection). We use the bias estimated

from RandPair and train a lambdaMART model to optimize IPW

Prec. This is the expected optimal model (denoted by RandPairCor-

rected). Similarly, we train a third lambdaMART ranking function

to optimize the IPW Prec using EM estimated propensity scores

(denoted as EMCorrected).

In Figure 3, we compare the three methods by reporting the rel-

ative MRR over the NoCorrection one. From this figure, we can see

that RandPairCorrected can outperform NoCorrection significantly

(+2.14% on email and +0.15% file storage). What’s more important,

EMCorrected achieves significant improvement over NoCorrection

by +1.95% on the email data set. It performs neutrally (-0.07%) com-

paring with NoCorrection on the file storage data set, given that

the upper bound for an improvement on file storage is very small.

Overall, the EMCorrected method is shown effective in improving

ranking quality without relying on randomization.

5.2.3 Unbiased Pointwise Learning. The EMmethod can be seen

as a way to remove the bias and thus give a debiased relevance

function. In this section, using the email data set, we compare it

against a few other attempts for unbiased pointwise learning. As

we discussed before, the IPW approach cannot be directly applied

to the pointwise learning because the oi for non-clicked documents

are needed but are uncertain in click data (in contrast, oi = 1

for all clicked documents). To bypass this, we use the following

approximation:

• Though query-level propensity is supposed to apply to pair-

wise and listwise approaches, we borrow it for pointwise. In

this way, all the non-clicked documents for a query will have

the same IPW weights as its clicked document. We denote

this by QueryLevel.
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Figure 2: Estimated position bias on the email and file storage services normalized by the top position.
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Figure 3: Ranking effectiveness comparison of pairwise ap-
proaches with different position bias correction methods.

• To adapt document-level propensity, we assume oi = 1 for

both clicked and non-clicked documents for all the queries

with clicks in our data sets. In this way, a non-clicked docu-

ment has IPW weight
1

θk
where k is its position. We denote

this by DocLevel.

In Table 4, we report the relative MRR against the pointwise

model without any bias correction. As shown in the table, neither

QueryLevel nor DocLevel can outperform the baseline. In contrast,

the relevance function extracted from the EM algorithm is signifi-

cantly better than the baseline. This shows that both QueryLevel

and DocLevel have some unrealistic assumptions and are not suit-

able to debias the click for pointwise learning.

Furthermore, we compare the pairwise EMCorrected and the

pointwise EM methods against the same baseline using the MRR

metric in Table 4. Clearly, the pairwise model can leverage the
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Figure 4: Convergence of EM along the iterations.

estimated position bias better to improve the ranking accuracy in

the learning-to-rank setting, showing the theoretical soundness of

the unbiased pairwise learning-to-rank methods.

5.2.4 EM Convergence. In Figure 4, we plot the relative MRR

of the relevance component against the first iteration along with

the EM iterations on the email data. The results show that the EM

algorithm can steadily improve the relevance function and converge

quickly in about 10 iterations.

6 CONCLUSIONS
In this paper, we studied the problem of position bias estimation for

unbiased learning-to-rank algorithms. We showed that the propen-

sity estimation is equivalent to the position bias estimation in the

classical position bias model. Then we compared a few estimation

methods with andwithout result randomization. A novel regression-

based EM algorithm was proposed to estimate position bias from
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regular production clicks. Our methods are easily applicable to

any ranking system. Experimental results on email search and file

storage search click data showed that our proposed EM method

works well in estimating position bias and can improve ranking

effectiveness significantly.

Our work inspires a few interesting future research directions.

(1) The results we showed are mainly based on pairwise approaches.

It is still unclear how to design an unbiased pointwise algorithm.

This is worth studying given the importance of estimating point-

wise CTR in applications like online advertising. (2) The current

unbiased learning-to-rank is designed for binary relevance. Extend-

ing it to graded relevance with motivating applications is another

interesting direction. (3) The position bias model is a simple click

model; it would be interesting to study more sophisticated click

models in unbiased learning-to-rank tasks.
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