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ABSTRACT

In this paper, we propose a novel approach for detecting

highlights in sports videos. The videos are temporally de-

composed into a series of events based on an unsupervised

event discovery and detection framework. The framework

solely depends on easy-to-extract low-level visual features

such as color histogram (CH) or histogram of oriented gra-

dients (HOG), which can potentially be generalized to dif-

ferent sports. The unigram and bigram statistics of the de-

tected events are then used to provide a compact representa-

tion of the video. The effectiveness of the proposed represen-

tation is demonstrated on cricket video classification: High-

light vs. Non-Highlight for individual video clips (7000 train-

ing and 7000 test instances). We achieve a low equal error

rate of 12.1% using event statistics based on CH and HOG

features.

Index Terms— highlight detection, sports video, event

discovery, event detection, video clip representation

1. INTRODUCTION AND RELATED WORK

Sports video analysis has been an attractive research area in

the multimedia community [1]. Sports videos appeal to a

large population of people all around the world, and have

become an important form of multimedia content that is

streamed over the Internet and television networks. Every

single day, tens of millions of people watch sports videos of

various kinds, including soccer, cricket, tennis, baseball, bas-

ketball, etc., just to name a few. Normally, sports videos are

rather long, consisting of portions which are interesting or

exciting and portions which are boring, bland, and likely “a

waste of the viewer’s valuable time.” If possible, most view-

ers prefer to watch only the interesting or exciting portions

of the videos, and would rather skip the boring parts. There-

fore, automatic detection of these highlights in sports videos

has become a fundamental problem of sports video analysis,

and is receiving increased attention from researchers in the

field [2, 3, 4, 5, 6, 7, 8].

The task of highlight detection in sports videos is aimed

at automatically assigning a label to a particular segment or
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clip of a sports video that indicates whether the video seg-

ment or clip is interesting (i.e. a highlight clip) or not (i.e. a

non-highlight clip). Most previous methods for highlight de-

tection in particular, and for sports video analysis in gen-

eral, are based on mid-level and high-level audio-visual fea-

tures, such as player trajectories, crowds, audience cheer-

ing, goal or score events, etc., and primarily focus on cer-

tain kinds of sports videos such soccer, baseball or basket-

ball videos [9, 10]. For example, representative works on

highlight detection extract high-level events such as the score

event in soccer games [2], the hit event in baseball games [3],

and the goal event in basketball games [4]. This is a challeng-

ing task, and many methods rely on detecting audio events in

the video where audience cheering provides the most convinc-

ing cue for highlight detection. The mid-level and high-level

audio-visual features are usually difficult to extract from the

videos robustly, and are likely to be specifically designed to

cope with videos of a particular sport. Once these features are

extracted from the videos, certain heuristic rules or statisti-

cal models are developed for the particular sport based on its

inherent structural constraints, as defined by the rules of the

game and field production. Such methods may work well for

the sport (or the specific high-level events) for which they are

designed, but can be difficult to generalize. Furthermore, mid-

level and high-level features carry certain semantic meanings

in the context of the sport, the extraction of which is still an

open research issue.

In this paper, we propose a novel approach for detecting

highlights using easy-to-extract low-level visual features such

as the color histogram (CH) [11] or histogram of oriented gra-

dients (HOG) [12]. In particular, we focus on cricket, which

is an outdoor bat-and-ball team sport similar to baseball. It is

played professionally in many countries, and has become the

world’s second most popular sport after soccer. Even though

our methodology does not use sport-specific features, we have

chosen cricket as a test case in part due to the availability of a

large labeled dataset of video clips from a cricket tournament.

There has been prior work on cricket highlights generation [8]

based on domain-specific modeling of semantic concepts and

events, but it is highly customized for cricket.

Our approach is based on an unsupervised event discov-

ery and detection framework, which leads to an effective

video clip representation composed of the unigram and bi-
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Fig. 1: The overview diagram of our proposed approach.

gram statistics of the detected events. Once the video clips

have been transcribed using the discovered events, the super-

vised phase trains a linear support vector machine (LSVM)

classifier [13] from clips labeled as highlight or non-highlight.

We achieve a low equal error rate of 15.7% using CH features,

12.6% using HOG features, and 12.1% by combining CH and

HOG features, on a cricket video data set consisting of 7000

training clips and 7000 test clips.

2. OVERVIEW

Our proposed approach is schematically illustrated in Fig-

ure 1. Before we proceed to the details of the approach, let

us introduce the concept of an event which is used throughout

the paper. An event in the scope of this paper is defined as

a short coherent temporal pattern in a video clip, which does

not necessarily have anything to do with high-level semantics

and which may be identified solely based on low-level visual

features. As shown in the overview diagram in Figure 1, our

approach consists of six stages: feature extraction, event dis-

covery, event model refinement, event detection, video clip

representation, and highlight clip detection. Feature extrac-

tion is used to pre-process all videos; event discovery and

model refinement stages construct the event vocabulary; event

detection and video clip representation transcribe the video;

and finally feed into the training of the highlights detection

classifier.

At the feature extraction stage, frame-based low-level

visual features such as the color histogram (CH) or his-

togram of oriented gradients (HOG) are extracted from the

video clips using relevant image processing and computer

vision algorithms. At the event discovery stage, we deter-

mine a set of events out of many video clips based on the

extracted low-level visual features through a process known

as diarization (a.k.a. segmentation and clustering) [14], and

learn a corresponding set of initial event models using hid-

den Markov models (HMMs) [15] and the embedded training

technique [16]. At the event model refinement stage, all video

clips are transcribed into event sequences based on the set of

initial event models via Viterbi decoding [17], and the gen-

erated event transcriptions are in turn used to learn a new set

of event models. In general, the likelihood of event models

increases after re-training. Therefore, the new set of event

models is said to be a set of refined models. This model re-

finement process can be performed for several iterations until

the likelihood of the event models no longer increases, lead-

ing to a set of final event models. At the event detection stage,

the set of final event models are used to decode an arbitrary

test video clip into a sequence of events; at which point, the

video clip is represented as a sequence of events from the dis-

covered models. At the video clip representation stage, we

form a clip vector for each input video clip, which is com-

posed of the unigram and bigram statistics of the events in the

event sequence detected from the video clip. Finally, at the

highlight clip detection stage, we use a linear support vector

machine (LSVM) classifier to classify a given video clip into

one of the two categories, highlight or non-highlight, in the

clip vector representational space.

We would like to emphasize that all the stages prior to

highlight clip detection (i.e. up to the construction of a clip

vector for a test video clip) form an unsupervised event dis-

covery and detection framework, which leverages low-level

visual features to transcribe a video clip into an event se-

quence, and further offers an effective video clip representa-



tion based on the unigram and bigram statistics of the detected

events. Even though we limit our experiments to cricket, this

framework is generic in nature and depends primarily on low-

level visual features; therefore in principle it can be applied

to videos of other sports. In the following, we describe the

individual elements of our approach in detail.

3. LEARNING AND DETECTION PIPELINE

3.1. Feature extraction

Frame-based low-level visual features may be extracted from

a video clip with ease using mature image processing and

computer vision techniques. Some commonly seen examples

of low-level visual features are color histogram (CH), his-

togram of oriented gradients (HOG), histogram of oriented

optical flow (HOOF) [18], and so forth. In this work, we

simply adopt CH features and HOG features, as they can be

computed from a video clip very quickly. Although more so-

phisticated features such as HOOF features do contain mo-

tion information, the incorporation of which may further lead

to increased performance, in our experiments, both CH and

HOG features have yielded surprisingly good highlights de-

tection rates as a result of using our proposed approach.

3.2. Event discovery

As mentioned earlier, within the scope of this paper, an event

is defined as a short coherent temporal pattern in a video clip

which can be identified from low-level visual features alone.

There is a clear motivation for this concept. An event, by

definition, represents a short sequence of consecutive video

frames with coherent and compact support in the space of

low-level visual features, but does not necessarily carry any

semantic meaning regarding the video content. However, the

high-order co-occurrence relationships between these events

may provide useful cues for discriminating between high-

lights and non-highlights in a video.

Given many video clips, we discover a set of events

through a process known as diarization (a.k.a. segmenta-

tion and clustering, for the reason that follows immediately).

The diarization process is essentially a two-step procedure:

first segmentation and then clustering. It is preferred that di-

arization is performed shot-wise. That is, for any video clip,

we first preprocess it into individual shots using a color his-

togram based shot boundary detection algorithm. Within each

shot, we segment the video frames into small chunks that

last 500 milliseconds. Note that we purposely over-segment

the video frames at this point so we can assume that a sin-

gle chunk corresponds to only a single event (namely there

is no event change point within the chunk). We then clus-

ter these small atomic chunks using a bottom-up hierarchical

agglomerative clustering algorithm with the Ward’s linkage

function [19], which specifies the distance between two clus-

ters and which is computed as the increase in the “error sum

of squares” (ESS) after fusing two clusters into a single clus-

ter. Note that at this stage one can alternatively use the K-

means clustering algorithm [20], which can produce similar

clustering outcomes, but at a much slower speed than the hier-

archical clustering algorithm adopted in this work. The result

of clustering is a set of discovered events, or event vocabu-

lary, E = {e1, e2, · · · , eK}, and as a by-product, the tran-

scriptions of the video clips in terms of the discovered events,

Ti = ei1, ei2, · · · , eiLi
, where eil ∈ E .

Since an event is a dynamically evolving pattern over a

short time span, it is ideally suited to be described using a

Hidden Markov Model (HMM) to capture the temporal dy-

namics. Thus, we learn a set of K HMMs, each for one of the

K events discovered, from the generated event transcriptions

of the video clips using the embedded HMM training tech-

nique. Contrary to the conventional training technique that

trains the event HMMs independently, the embedded training

technique first concatenates the event HMMs to form a clip

HMM according to the event transcription, and then trains

the inter-connected event HMMs simultaneously. A great

advantage of the embedded training technique over the con-

ventional training technique is that we only need event la-

bels in the event transcription. There is no time boundary

information of the individual events required. The embed-

ded training eventually leads to a set of initial event models,

MI = {mI
1
,mI

2
, · · · ,mI

K
}.

3.3. Event model refinement

The set of initial event models MI learned at the event dis-

covery stage is coarse, because the generated event transcrip-

tions of the video clips as a result of the diarization process is

rather noisy. This is primarily due to the lack of the consider-

ation of inter-frame statistical dependence. At this stage, we

introduce an event model refinement method, which can im-

prove the quality of the event models in an iterative manner.

The model refinement method proceeds as follows: the ini-

tial event models are used to decode the video clips into event

transcriptions, which are in turn used to re-train a set of new

event models using the HMM embedded training technique.

This procedure generally yields an increase in the likelihood

of the event models upon convergence of the training algo-

rithm. In this sense, we say that the set of new event models

has been refined from the set of initial event models. It is ad-

visable that we repeat this procedure for multiple iterations

until the likelihood of the event models no longer increases.

At this point, we have learned a set of final event models,

MF = {mF
1
,mF

2
, · · · ,mF

K
}, ready to be used to perform

event detection from novel video clips.

3.4. Event detection

In our approach, event detection is nothing special but tran-

scribing an input video clip into a sequence of events based

on the set of final event models MF obtained at the previous
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Fig. 2: Three examples of the discovered events. Each row corresponds to four key frames of the video segment of an event.

stage. This is achieved by the Viterbi decoding algorithm for

HMMs, which uses the dynamic programming technique to

find the maximum likelihood path in a time-event lattice that

represents the most likely sequence of events, given the event

models and a video clip. Note that during the event discovery

stage and event model refinement stage, we only use a limited

number of video clips, which we refer to as the training set

(but remember that both stages are completely unsupervised),

to discover the events and to learn the event models. Once

the set of final event models are obtained, we may use it to

decode an arbitrary input video clip into a sequence of events,

such as one in a test set.

3.5. Video clip representation

The above stages generate a sequence of events for any in-

put video clip. At this stage, we further form a single-vector

representation of a video clip which is composed of the un-

igram and bigram statistics of the detected events. Specif-

ically, the unigram statistics of the detected events is given

by the histogram of the individual discovered events (i.e. a

K-vector), which characterizes how likely the events happen

individually in the video sequence. The bigram statistics of

the detected events is given by the histogram of event pairs

(i.e. a K2-vector), which characterizes how likely the pairs

of events co-occur (one after another) in the video sequence.

Both histograms are normalized and concatenated to form a

clip vector of dimension K+K2, which turns out to be an ef-

fective representation for the purpose of highlight detection.

3.6. Highlight clip detection

The problem of detecting highlight video clips is formulated

as a binary classification problem in the clip vector represen-

tational space. Based on a training set with numerous posi-

tive examples (highlight clips) and negative examples (non-

highlight clips), each represented by a clip vector, a linear

support vector machine (LSVM) classifier is trained to clas-

sify input video clips (in the form of a clip vector) into one of

two categories: highlight clips or non-highlight clips.

4. EXPERIMENTS

Our experiments are carried out on a large dataset of cricket

videos, consisting of 7000 training clips and 7000 test clips.

Altogether, the 14000 clips correspond to 60 cricket matches

(games) from a 20 overs a side tournament (1 over = 6 balls,

averaging ≈ 240 balls per match). Each video clip corre-

sponds to a single ball in a cricket match and typically lasts

for 10 to 20 seconds. It is manually labeled by a human as

an N-run, where N ∈ {1, 2, 3, 4, 5, 6}, or a wicket. By rule,

those video clips corresponding to either a 4-run, a 6-run, or

a wicket are considered as highlight clips and all the other

video clips are considered as non-highlight clips. The dataset

is split into training and test by using 30 complete matches

for training clips and the remaining 30 for test clips.

Following the pipeline in Figure 1, we extract both CH

features and HOG features from every frame of all the 14000

video clips. We notice that the dimension of the raw CH or

HOG feature vectors are very high (of the order of thousands).

In order to alleviate the “curse of dimensionality” and sup-
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Fig. 3: ROC curve for highlights detection using CH, HOG,

and CH+HOG features. Dashed curves (marked BL) corre-

spond to baseline results.

press the noise in the features, we learn a linear projection

matrix via principal component analysis (PCA) based on the

7000 video clips in the training set. The learned linear projec-

tion is used to reduce the dimension of CH or HOG feature

vectors to 50 while preserving a sufficiently large percent-

age of the energy of the original feature vectors. In the pro-

jected feature vector space, for each of the two cases (CH and

HOG), the 7000 video clips in the training set are first used

to discover a set of K events and to learn a corresponding

set of K final event models, as described in Section 3. Note

that in our experiments, the number of events K is empiri-

cally chosen to be 30. Larger values of K do not significantly

increase the detection performance. Subsequently, all 14000

video clips in both the training and test sets are decoded into

14000 event transcriptions by the Viterbi algorithm based on

the set of 30 final event models. Using these 14000 event tran-

scriptions, we finally construct the corresponding 14000 clip

vectors, each of which has a dimension of 30 + 302 = 930.

The 7000 clip vectors derived from the training set are

used to learn an LSVM classifier, which is then used to

perform binary classification of highlight and non-highlight

video clips on the 7000 clip vectors derived from the test

set. Since in both the training and test sets, the number of

highlight clips vs. non-highlight clips are highly unbalanced

(roughly 1:4), we evaluate the detection performance by con-

tinuously modulating the decision threshold of the LSVM

classifier, thereby obtaining the receiver operating character-

istics (ROC) curve, and the area under this curve (AUC) and

its equal error rate (EER) as performance measures.

Figure 2 shows a few examples of the discovered events.

For each event (a row in the figure), we only display four key

frames of the video segment, as there is no easy way to visual-

ize the entire video segment. By viewing the video segments

of all the discovered events, we observe that the video frames

within an event do exhibit consistent visual patterns while the

video frames across different events show largely varied vi-

sual appearances.

Our first experiment is based on CH features, which can

be easily and quickly extracted from the video clips. The

color histogram is a representation of the distribution of col-

ors in an image, which can in principle be built for any kind of

color space. In this work, we adopt the commonly used three-

dimensional RGB color space to form 3D color histograms.

One well-known drawback of CH features is that being low-

level descriptors of images, CH features are solely dependent

of the global color property of the video, without taking into

consideration any shape and texture properties of objects in

the video. Nonetheless, the highlight clip detection perfor-

mance of our approach based on CH features is reasonable.

Solid green curve in Figure 3 shows the ROC for this ex-

periment. The AUC is computed as 0.911 (AUC=1.0 being

perfect detection) and EER is 15.7% (see Table 1). The good

performance, despite the fact that very little information re-

garding the structure of the video content is carried by the

low-level CH features, is attributable to our robust unsuper-

vised event discovery and detection framework, which leads

to an effective video clip representation.

Table 1: Equal error rates (EERs) for the two experiments.

Type of features Equal Error Rate

CH 15.7%

HOG 12.6%

CH+HOG 12.1%

Our second experiment is based on HOG features. Un-

like CH features, which extract color information, HOG fea-

tures extract shape and texture information. However, HOG

features are also low-level descriptors of images and do not

carry much information regarding the temporal structure of

the video content. The highlight detection result based on

HOG features outperforms the result based on CH features.

Solid blue curve in Figure 3 shows the ROC for this experi-

ment. The AUC is computed as 0.941, which is a 3% absolute

increase compared to CH features. Similarly EER reduces to

12.6%, a 3.1% improvement over CH.

We also conducted a third experiment by combining the

CH and HOG based features. We only combine them in the

last stages of our algorithm by concatenating the video clip

representations (unigram and bigram histograms) correspond-

ing to each feature type. We then use this joint representation

to train the LSVM classifier. The resulting ROC curve is plot-

ted as the solid red curve in Figure 3 with AUC=0.945 and

EER=12.1%, which is a marginal improvement over using

HOG alone. Altogether, these results indicate that HOG fea-

tures result in more discriminative clip representations than

CH, which is to be expected: HOG features are obtained



by evaluating normalized local histograms on a dense grid,

and are therefore less sensitive to illumination and geometric

transformations, e.g. HOG features can discriminate objects

with different shape and texture in a video, in the same way

they are used for human and object detection tasks in images.

Finally, we compare our technique with a baseline ap-

proach based on standard HMMs: Features extracted from

highlight and non-highlight videos in the training set are used

to train two HMMs with 30 states, where the transition ma-

trix is assumed to be fully connected. The observation dis-

tributions are modeled with a single Gaussian where the co-

variance matrix is assumed to be diagonal. Given two HMMs

for highlight and non-highlight, the posterior probability of a

test clip being highlight is obtained using the Bayes rule as-

suming uniform prior. CH and HOG features are used to ob-

tain two posterior probabilities which are combined using the

product rule with exponential weights. The optimum weight

combination is found by maximizing the AUC measure on the

training set. The dashed curves in Figure 3 show ROC plots

for baseline results (colors match with the solid curves for

each feature type). In each case, our event discovery based

technique outperforms the HMM-only baseline approach.

5. CONCLUSION

In this paper, we propose a novel approach for detecting high-

lights in sports videos using easy-to-extract low-level visual

features such as the color histogram (CH) or histogram of ori-

ented gradients (HOG). Our approach is based on a robust

unsupervised event discovery and detection framework which

immediately leads to an effective sports video clip represen-

tation composed of the unigram and bigram statistics of the

detected events. Using a linear support vector machine clas-

sifier, we achieve a low equal error rate of 12.1% using CH

and HOG features on a cricket video data set consisting of

7000 training clips and 7000 test clips. The attractiveness of

our approach lies in the fact that it is based on easy-to-extract,

domain-independent low-level visual features, and therefore

can potentially be generalized to deal with videos of other

sports, something we wish to explore as part of future work.

Another promising future work direction is to improve detec-

tion performance by incorporating low-level visual features

that characterize motion information in the video, such as the

histogram of oriented optical flow (HOOF).
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