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1 Overview
This supplemental appendix proceeds in several parts. In the section immediately below,
we present a literature survey that reviews the past 10 years (2008-2018) of publications
in the American Political Science Review, the American Journal of Political Science, and
the Journal of Politics for the presence of monotone likelihood within published research.
Following this, our supplemental appendix then comprehensively presents and discusses a
series of Monte Carlo experiments that compare (i) a standard Cox model to (ii) a Firth Cox
model under varying levels of censoring, numbers of observations, and degrees of omitted
variable bias.
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2 Literature Survey
In this section, we seek to evaluate the extent to which monotone likelihood confronts political
scientists employing duration models in their empirical research. To do so, we conducted a
survey of all articles that employed a duration model between the years 2008-2018 and that
appeared in one of three leading political science journals: the American Political Science
Review, the American Journal of Political Science, and the Journal of Politics. Articles
were identified by searching Google Scholar for the following terms: “competing risks,” “cox
model,” “cox ph,” “cure model,” “duration model,” “event history,” “exponential model,”
“hazard model,” “proportional hazards,” “survival model,” and “weibull model.” These
searches were implemented separately for each of our three target journals. We then retained
only those articles that presented (or discussed the estimation of) a duration model either
in their main article or supplemental appendix for the literature survey presented below.

All duration model articles identified via the steps described above are listed in Tables
1-4 below. A total of 57 articles were identified, and these articles were then double-coded
by two separate coders (both are authors on the accompanying paper) for the presence of
monotone likelihood. Presence was recorded if any of the following conditions were identified:
(i) evidence that monotone likelihood affected parameter estimates of at least one indepen-
dent or control variable, and for at least one reported or discussed duration model, within
an article’s main paper or supplemental appendix; (ii) evidence that monotone likelihood
required authors to drop offending variables; (iii) evidence that monotone likelihood affected
model specification; and/or (iv) evidence that monotone likelihood undermined substantive
interpretation of results.

When possible, replication data was examined to verify the presence of monotone likeli-
hood. However, because many articles did not have replication data available, our judgments
concerning monotone likelihood often had to be made on the basis of the reported parameter
estimates within each article’s tables. In such instances, careful consideration was given to
(i) the size of the reported estimated effect; (ii) the units of measurement and range of the
independent or control variable under consideration;1 (iii) the units of measurement and
range of any interacted variables with the variable of interest;2 and (iv) additional correlates
of monotone likelihood, as reported by the original authors (e.g., analyses reporting particu-
larly low Ns, large numbers of dichotomous predictors, extreme imbalance in censored cases,
etc.). Where our conclusions based upon these criteria were uncertain, we erred towards
coding an article’s potential for containing monotone likelihood as “No.”3

Given the above approach, our final codings of the articles listed below provide a conserva-

1We treated unconditional fixed effects as control variables within our assessments of monotone likelihood
given their association with separation issues in similar contexts (Cook, Hays and Franzese, 2018).

2We erred towards coding an article as “No” (as in, “No evidence of monotone likelihood”) when a
potential monotone likelihood issue involved a multiplicative interaction, unless their was clear evidence to
suggest that (near)infinite estimates arose in the plausible range of the combined interaction effect.

3For example, we record Schleiter and Morgan-Jones (2009), Smith and Fridkin (2008), Berlinski, Dewan
and Dowding (2010), and Gibler and Tir (2010) as “No” (as in, “No evidence of monotone likelihood”) in
our monotone likelihood evaluations due to insufficient corroborating evidence, although one unit changes
in binary variables within each article exhibit estimated hazard ratios that range from 22-115, implying
increases in the hazard of termination ranging from 2,100-11,400%.
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tive best guess—based upon two expert coders—of the extent to which monotone likelihood
confronts political scientists employing duration analysis. However, we stress two points.
First, these cases sometimes rely only upon the parameter estimates reported in article ta-
bles, and hence are not definitive. Accordingly, we label these codings as “likely ML” cases,
and provide a brief descriptive summary of our rationales for coding each positively coded
monotone likelihood instance, alongside our final codings, in Tables 1-4. Second, our codings
reflect the problem of monotone likelihood not only in the narrow sense of its effect on re-
ported parameter estimates, but as a broader methodological challenge that has to date often
required researchers to employ some of the distasteful remedies we discuss in the accompa-
nying article. Put differently, our survey seeks to assess the extent to which researchers have
been forced to grapple with the challenge monotone likelihood poses to empirical research,
not whether their primary reported models or parameter estimates are “wrong.”

With these caveats in mind, we find that out of the 57 duration model articles appearing
in the American Political Science Review, the American Journal of Political Science, and
the Journal of Politics from 2008-2018, 8—or 14%—contained strong evidence of monotone
likelihood. This represents a substantial share of contemporary duration model research
across three of the political science discipline’s top journals. What is more, we found that the
problem of monotone likelihood has confronted researchers across the empirical subfields of
political science—from American politics to comparative politics to international relations—
and affects cross-national studies and subnational analyses alike. And importantly, this
estimate is likely a conservative one in light of the “file drawer problem:” where researchers
simply do not publish or report models that seem otherwise incorrect or hard to understand.

In short, our survey suggests that monotone likelihood regularly confronts researchers
employing duration models in their empirical research. This is an important methodological
challenge of significance for the political science discipline, broadly conceived.
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Table 1: American Political Science Review : 2008-2018

Article Likely ML Rationale

Berliner and Erlich (2015) No
Cunningham (2011) No
Debs and Goemans (2010) No
Fortunato and Loftis (2018) No
Hollyer, Rosendorff and Vreeland (2015) No
Huber and Martinez-Gallardo (2008) No
Kokkonen and Sundell (2014) No
Lyall (2010) No
Schleiter and Morgan-Jones (2009) No
Smith and Fridkin (2008) No
Svolik (2008) Yes The article estimates a series of (split population and

standard) log-logistic and Weibull duration models
of democratic survival. Exponentiating the log(time)
coefficient estimates for the article’s binary monarchy

(vs. not independent) control variable yields ex-
pected changes in survival time for countries that
were monarchies prior to democratic transitions of
between 8.611475e-07 ↔ 1.759916e-09. This implies
an almost 100% decrease in survival time, relative to
countries that were not independent prior to a demo-
cratic transition.

Table 2: American Journal of Political Science: 2008-2018

Article Likely ML Rationale

Arias, Hollyer and Rosendorff (2018) No
Beardsley (2008) No
Berry, Burden and Howell (2010) No
Bueno de Mesquita and Smith (2010) No
Carpenter et al. (2012) No
Darmofal (2009) No
Fukumoto (2009) No
Gibler and Tir (2010) No
Kelley and Simmons (2015) No
Knutsen and Nyg̊ard (2015) No
Laver and Benoit (2015) Yes The paper estimates a series of Cox models to study

post-electoral cabinet durations in European minor-
ity settings. Model 3 in Table 8 incorporates a large
number of binary indicator variables for each country
in the dataset, including some that are not associated
with any termination events. For example, there are
no cases where denmark = 1 and termination = 1.
Consequently, this indicator in monotonic when or-
dered according to failure time, which accounts for
its corresponding hazard ratio of 0.0000903.

Leventoğlu and Metternich (2018) No
Maltzman and Shipan (2008) No
Mattes and Savun (2010) No
Ostrander (2016) No
Park and Hendry (2015) No
Thrower (2017) No
Treier and Jackman (2008) No
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Table 3: Journal of Politics: 2008-2018, Part I

Article Likely ML Rationale

Acosta (2014) No
Ahlquist (2010) No
Baccini and Urpelainen (2013) No
Berlinski, Dewan and Dowding (2010) No
Boix and Svolik (2013) No
Boudreau and MacKenzie (2018) No
Camerlo and nán (2015) No
Capoccia, Sáez and de Rooij (2012) Yes The paper examines the resilience of regional politi-

cal actors’ territorial demands in India. The authors
confront monotone likelihood when interacting some
covariates (in particular, the state religion indica-
tor variables) with log(t), as there are too few cases
of termination on the “other minority” group (only 1
case). This results in monotone likelihood when at-
tempting to estimate the model, necessitating that
the authors drop the state religion*log(t) interac-
tion in their models reported in Table 2 and Figures
1-2.

Curry and Hurwitz (2016) No
Davis and Wilf (2017) No
Findley and Young (2015) No
Flores and Nooruddin (2012) Yes The article estimates log-normal survival models for

time until (i) economic recovery and (ii) crisis re-
currence in post-conflict environments. In the re-
ported Full Model version for economic recovery (Ta-
ble 2), the combined effect of the second year∗new
democracy interaction when both variables are equal
to one implies a 61,400% increase in expected sur-
vival time. The article’s publicly available replica-
tion data and .do file for this specification do not
replicate perfectly, with a slightly smaller N than
that reported in the main paper. But upon examin-
ing the dataset, we find that there are no cases where
termination = 1 and second year∗new democracy =
1. Consequently, this variable is monotonic when or-
dered according to failure time, resulting in parame-
ter estimates that converge towards positive infinity.

Gauri, Staton and Cullell (2015) Yes The article estimates a Cox model of compliance
with Costa Rican Supreme Court direct orders in
amparo and habeas corpus cases in Table 1. The fi-
nal model includes fixed effects for 202 distinct pub-
lic agency defendants. The use of fixed effects inad-
vertently introduces convergence issues, as a num-
ber of the institutional indicator variables that are
thereby included in the model are quasi-completely
separating. For example, there are no termina-
tion events associated with institution codes 16,

155, 193, and 200; consequently, these variable are
monotonic when ordered according to failure time
(in this case, never varying from 0 when termina-
tion = 1.) This results in parameter estimates that
converge toward negative infinity, with hazard ratios
of 3.52e-13, 3.38e-13, 3.52e-13, and 5.47e-13, respec-
tively.

Golder, Golder and Siegel (2012) No
Hassell (2015) No
Heersink (2018) No
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Table 4: Journal of Politics: 2008-2018, Part II

Article Likely ML Rationale

Johns and Pelc (2018) Yes The article estimates a series of Cox models of chal-
lenges to WTO violations. On page 885, the authors
note, “We also ensure that the results are robust to
modifications similar to those we made to our dura-
tion analysis: we add controls for the number of com-
plainants in the dispute and then exclude all multiple
complainants disputes altogether.” The former mod-
els are not reported in the supplemental appendix,
but are included in the article’s publicly available
replication files. When replicated, two of these three
models report hazard ratios of 5.464326e-08 and
4.149118e-09, and nonrecoverable standard errors for
number of complainants. The linear combination of
this variable and the legal measure fixed effects ap-
pears to be inadvertently introducing monotone like-
lihood. In addition, there are no termination events
associated with topics 3, 5, 9, or 11 (after miss-
ing observations are dropped via listwise deletion);
consequently, these controls are monotonic when or-
dered according to failure time (i.e. never varying
from 0 when termination = 1).

Kittilson (2008) No
Koch and Sullivan (2010) Yes The article estimates Cox models of the duration un-

til a major power withdraws from an intervention.
In Table 1-2, these models include interactions be-
tween right party executive and either executive
approval or incumbent party support. Beyond a
Table 1 hazard ratio for the right party executive

interaction component term of 3.8e-08, Figures 1-2
imply marginal effects or 95% CIs whose hazard rates
are effectively zero across supported ranges of these
interacted variables (e.g., 4.5e-06).

Maeda (2010) No
Malesky (2009) No
Narang (2014) Yes The article estimates Cox models of the duration

of peace after civil war. The hazard ratio for
decisive victory is very small across all models
in Table 2 (ex. 0.000593 in Model 1). This vari-
able is interacted with logged total humanitarian

aid (whose range, mean, and standard deviation
are 0 ↔ 9.06, 2.75 and 3.46, respectively). Hence,
zero values of logged total humanitarian aid are
plausible, and the effect of the individual decisive
victory coefficient can be interpreted directly for
cases where logged total humanitarian aid = 0.
Herein, decisive victory = 1 is associated with an
over 99.9% decrease in the hazard of peace failing
relative to cases where decisive victory = 0 when
humanitarian aid is absent.

Owsiak and Rider (2013) No
Potter (2017) No
Reenock, Staton and Radean (2013) No
Scherer, Bartels and Steigerwalt (2008) No
Wallace (2013) No
Wolford (2017) No
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3 Monte Carlo Simulations
This section fully presents the results from our Monte Carlo experiments. Recall that these
experiments assess the performances of (i) a standard Cox proportional hazards (PH) model
and (ii) a Cox PH model with Firth’s penalized maximum likelihood correction for five
varying levels of censoring, at six different sample sizes, and across three different specifi-
cation scenarios. Specifically, we simulate duration data to match the (nonparametric) Cox
model’s assumed data generating process (dgp) via the simulation methods and software
developed by Harden and Kropko (2018). For each simulated duration dependent variable
Y , we draw our explanatory variables x from x = (x1,x2,x3,x4,x5)′ where x1 = 1N (0,1)>1.75,
x2 = 1N (0,1)>1.75, x3 = ln(N (5, 1)), x4 = 1Uniform[−2.5,12]>11.5, and x5 = 1lnUniform[1,100]>1.65.
Accordingly, this set of explanatory variables satisfies the root cause of monotone likelihood:
the presence of unbalanced binary covariates. In addition, this set of explanatory variables
also ensures that our simulations closely approximate the types of variable specifications that
commonly arise in political science analyses of duration data, which typically include more
than three independent variables that are themselves a mixture of (multiple, imbalanced)
binary predictors and (logged) continuous predictors. Our Monte Carlo simulations then
independently vary the following three conditions:

1. The level of censoring (c)—i.e., the proportion of all duration cases that exhibit non-
terminations within our period of observation—which we set to range across c =
{0.05, 0.25, 0.5, 0.75, 0.95}.

2. The number of observations N , which we assign as N = {100, 250, 500, 1000, 2000,
5000}.

3. The degree of omitted variable bias, where we consistently generate our duration out-
come with x = (x1,x2,x3,x4,x5)′, but then separately estimate models based upon
one of the three following specifications:

• Y = β1x1 (i.e., four omitted variables)

• Y = β1x1 + β2x2 + β3x3 (i.e., two omitted variables)

• Y = β1x1 + β2x2 + β3x3 + β4x4 + β5x5 (i.e., no omitted variables)

In these manners, our Monte Carlo exercises do not directly modify the severity of mono-
tone likelihood, but rather allow the severity of this problem to arise organically as a com-
bined function of the levels of imbalance in our independent variables, our sample sizes,
the levels of censoring considered, and the different rates of omitted variables evaluated.4

Furthermore, given the N ’s considered here, we note that our Monte Carlo experiments
expand upon the work of Heinze and Schemper (2001), who earlier demonstrated the sever-
ity of the monotone likelihood problem within duration analyses of samples encompassing

4Because we provide our own (fixed) binary predictors to Harden and Kropko’s Cox simulation routines,
note that our chosen censoring levels are generated for our survival outcomes by these simulation routines’
adjustment of our actual parameter values for each condition. Where we evaluate (in)accuracy in our specific
parameter values below, we accordingly use each simulation run’s (unique) true parameter values as a baseline
for evaluating that simulation’s corresponding coefficient estimates.
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N = {50, 100, 200}. We believe that the larger N ’s that we evaluate below are of particular
interest to political scientists, given that duration analyses within political science frequently
analyze datasets with N > 200.

For each of the 5×6×3 = 90 different combinations of varying conditions outlined above,
we generate 1,000 simulated datasets.5 For each simulated dataset, we then estimate a stan-
dard Cox model and a Cox model with Firth’s penalized maximum likelihood estimation
approach, both in R, and store our relevant coefficient estimates’ root mean squared errors
(RMSEs) and nonconvergence rates.6 We base the latter quantity on instances where a par-
ticular model provided an error or warning message either globally or for a given covariate,7

or where a model’s coefficient estimate or its standard error was at least 500 times larger
(or smaller) than the true value for a given parameter under consideration. Our noncon-
vergence findings and conclusions are robust to alternate nonconvergence thresholds (e.g.,
50 times larger or smaller) and/or to the removal of this threshold criteria altogether. We
illustrate the latter point in Figures 10-12 further below, which re-produce our main non-
convergence figures whilst defining nonconvergence based upon instances where a particular
model provided an error or warning message either globally or for each chosen covariate.

For the quantities discussed below and in the main paper, we primarily evaluate our
nonconvergence criteria in relation to the coefficient estimates and standard errors for x1,
since this was the only explanatory variable that was included in all 90 different experimental
conditions under consideration. However, our conclusions with respect to nonconvergence
remain unchanged when we alternatively define nonconvergence based upon our parameter
estimates and standard errors for (x2,x3,x4,x5)′. We demonstrate the latter point further
below in our discussions of the nonconvergence findings for these additional independent
variables.

The RMSE measures that we report and discuss below allow us to directly assess the
overall accuracy of our coefficient estimates, wherein—by virtue of the RMSE being the
square root of the mean squared error (MSE)—it reflects both the bias and variance of each
estimate considered here. As a secondary measure of bias and variance, we also directly
examined the MSEs for all Monte Carlo comparisons and coefficient estimates presented
below. However, given the (near) infinite estimates obtained under monotone likelihood
conditions in the standard Cox model context, the Cox model’s MSEs were typically many
orders of magnitude greater (i.e., worse) than that of the Firth Cox model. This rendered
graphical comparisons of Cox MSEs and Firth Cox MSEs less than informative, relative
to our RMSE comparisons, leading us to instead favor RMSEs within our primary Monte
Carlo assessments. Nevertheless, we report comparable MSE plots (i.e., to our primary

5This is consistent with Heinze and Schemper (2001).

6We estimate the Cox model using the survival package in R (Therneau, 2015) and estimating the Firth
Cox model via the coxphf package (Heinze and Ploner, 2018). During estimation, we conservatively set each
model’s iteration limit to 500. Our findings and conclusions are comparable when we instead use the default
iteration limits for the Cox model and Firth Cox models that we estimate in R (of 20 and 50, respectively),
as well as when we alternatively increase each model’s iteration limit to 1,000 (or 10,000). For both models,
any instances of tied events are handled via Breslow’s approximation (Breslow, 1974).

7E.g., “simpleWarning in fitter(X, Y, strats, offset, init, control, weights = weights,) : Loglik converged
before variable 1 ; beta may be infinite.”
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RMSE plots) towards the end of this Supplemental Appendix section (Figures 7-9). These
Figures demonstrate that our RMSE-based conclusions with respect to accuracy—and the
preferability of the Firth Cox model over the standard Cox model—remain unchanged when
one considers MSEs in place of RMSEs.

3.1 Model Performance with respect to x1

We begin by discussing the nonconvergence rates, and RMSE results, obtained for x1. The
x1-based nonconvergence rates for our Cox and Firth Cox models appear in Figure 1. In
this Figure, each column of subfigures depicts a differing level of censoring, each row of sub-
figures depicts a different level of omitted variable bias, and the x-axis within each subfigure
illustrates our nonconvergence results across each N evaluated. The y-axes in Figure 1 then
depict the proportion of all simulations that exhibited nonconvergence for a given level of
omitted variable bias (row) and level of censoring (column). Turning to Figure 1, one can
first observe that when censoring is low-to-moderate (i.e., 5%↔50%), the Cox and Firth Cox
models each generally exhibit low nonconvergence—even in the presence of multiple imbal-
anced binary predictors (i.e,. the overarching conditions of our Monte Carlo simulations).
That being said, for low-to-moderate levels of censoring, the Cox model at times exhibits
noticeably higher (and hence worse) levels of nonconvergence in comparison to the Firth Cox
model. This is most observable in Figure 1 under conditions where N ≤ 500 and/or under
conditions of 50% or 5% censoring.

Under moderate-to-high (i.e., 75% ↔ 95%) levels of censoring in Figure 1, the perfor-
mance of the Cox and Firth Cox models begin to diverge more markedly. At levels of 75%
censoring and N = 100, estimating a Cox model instead of a Firth Cox model leads to model
nonconvergence (for x1 or globally) within approximately 35% of all simulations. These lev-
els of nonconvergence are dramatically higher than those obtained for the Firth Cox model
(of 1.5%-3.8%) under comparable conditions. Increasing N to 250 at this level of censoring
(i.e., 75%) continues to yield substantially higher rates of nonconvergence (4.9%-5.0%) for
the Cox model, relative to the Firth Cox model (1.1%-1.5%). Only when N = 500 do the
nonconvergence rates observed under the 75% censoring condition appear comparable among
the Cox and Firth Cox models within the visual plots. However, even in these cases, the
Firth Cox model exhibits preferable or equivalent nonconvergence rates to that of the Cox
model across all N ’s considered.

Turning to the 95% censoring cases in Figure 1, we find that monotone likelihood issues
become so substantial that the standard Cox model becomes essentially unusable with low-to-
moderate N ’s. For example, at c = 95% and N = 100, the Cox model fails to converge across
approximately 90% of all simulations, whereas the Firth Cox model exhibits nonconvergence
in only 6.5%-20.6% of these cases. Likewise, when c = 95% and N = 250, we observe
nonconvergence rates for the Cox model of 52.9%-53.3%, whereas the Firth Cox model
exhibits far more conservative nonconvergence rates (of 1.9%-2.0%). At c = 95% and N =
{500, 1000}, our findings are similar but at times slightly less pronounced, with 17.1%-
54.4% of all simulations failing to converge in the standard Cox case in comparison to
nonconvergence rates of 1.1%-2.0% in the Firth Cox case. Even at N = 2, 000, we continue to
find consistently higher levels of nonconvergence in the Cox case (1.9%-2.1%) in comparison
to the Firth Cox case (1.1-1.2%) when c = 95%. Based upon these results, we can conclude
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that one cannot reliably trust the Cox model (i.e., with equal confidence to the Firth Cox
model) under conditions of 95% censoring until one’s N is larger than 2,000.

What effect does the exclusion or inclusion of additional relevant predictors have on
the nonconvergence results discussed above? If we compare the subfigure plots across the
rows presented in Figure 1, we find that the Cox and Firth Cox models’ relative deficiencies
with respect to nonconvergence slightly worsen as one correctly includes additional covariates
related to Y in the model. For example, when censoring is equal to 95% and N = 100, adding
four additional relevant predictors (row 3) to a model that previously only included a single
relevant predictor (row 1) increases the nonconvergence rates for x1 under the Cox model
from 89.1% to 89.5%, whereas the nonconvergence rates for the Firth Cox model increase
from 6.5%→21.5%). To take another example, for the Monte Carlo simulations employing
95% censoring and N = 250, we likewise find that including all relevant predictors (row 3)
as opposed to a single relevant predictor (row 1) increases the Cox model’s nonconvergence
rates for x1 from 52.9%→53.3%. Under these same conditions, the nonconvergence rates for
the Firth Cox model similarly increase (1.9%→2.0%) while still remaining far below the Cox
model’s nonconvergence rates.

In sum, Figure 1 suggests that a researcher will often encounter nonconvergence when
using a Cox model with imbalanced predictors for samples of 100↔500 observations, no
matter the level of censoring. For levels of censoring at or greater than 75% of all obser-
vations, these threats of nonconvergence increase substantially, and can extend to samples
as large as 1000↔2000 observations. Moreover, if one’s true dgp includes more than one
imbalanced predictor, each of the Cox-based nonconvergence issues mentioned above will
paradoxically become more acute as one’s Cox model properly includes more of these true
predictors, further complicating estimation. The Firth Cox model is much less sensitive to
these monotone likelihood-induced nonconvergence-issues. Thus, while the Firth Cox model
does exhibit some nonconvergence issues of its own,8 it nevertheless remains a superior choice
over the Cox model, especially for samples lower than 1,000 and/or for duration outcomes
that exhibit censoring rates of 75% or higher.

8Which in these cases are primarily attributable to our treatment of any parameter estimate that is
greater than 500 times its true value to be a case of “nonconvergence.”
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Figure 1: Nonconvergence Levels for x1 Across All Monte Carlo Experiments
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We now turn to the RMSE statistics for β̂1 (Figure 2). As above, we present all ex-
perimental conditions in this Figure, wherein the columns indicate changes in the level of
censoring considered, the rows present changes in the number of explanatory variables in-
cluded within each estimated duration model, and the values along each x-axis denote the
different numbers of observations considered. The y-axes to these plots then present the β̂1

RMSE for each model, averaged across all relevant simulations. Starting with columns 1 and
2 of Figure 2, we generally observe no discernable differences in RMSEs between the Cox and
Firth Cox estimators under conditions of 5%-25% censoring, though the Firth Cox estimator
does consistently have slightly higher levels of accuracy—based upon lower RMSEs—relative
to the Cox model in each and every instance. The one exception to the above statement is the
case of N = 100, wherein the Firth Cox’s RMSEs more noticeably outperform those of the
Cox model across columns 1-2 of Figure 2. With regards to overall trends in RMSEs across
our N ’s, we can note that accuracy in β̂1—as implied by a lower RMSE value—improves
for both the Cox model and the Firth Cox model as one’s sample size increases from 100 to
5000 observations at these low levels of censoring (i.e., c = {5%, 25%}). We observe similar
overall trends under conditions of 50% censoring (column 3) in Figure 2, though here we also
find that the Firth Cox model much more markedly outperforms the Cox model—in terms
of lower RMSEs—when N = {100, 250}.

When censoring is moderate-to-high (i.e., c = {75%, 95%}) the consequences of monotone
likelihood in Figure 2 become far more pronounced. To this end, the fourth column in Figure
2 clearly demonstrates that the standard Cox model’s estimates of β1 exhibit substantially
poorer accuracy than those of the Firth Cox model when c = 75% and N = {100, 250}, and
exhibit moderately worse accuracy than those of the Firth Cox model when c = 75% and
N = 500. For c = 75%, these differences in RMSEs—and hence accuracy—then tend to
subside as N → 2000. Turning to the final column of Figure 2, we can observe that when
censoring is high (i.e., 95%), inaccuracy in β̂1 under the standard Cox model is far more
pronounced than was observed in the c = 75% case, and is now often 5-to-10 times that of
the Firth Cox model. The most acute divergences in this regard again arise when N is less
than 1,000, though we can note that even with an N of 1,000, the Cox model’s RMSEs are
still over 5 times larger than those of the Firth Cox model. It is not until we increase N
beyond 1,000 that these substantial divergences in RMSEs subside. However, even in the
cases of N = {2000, 5000}, the Firth Cox model’s RMSEs for β̂1 are consistently 5%-to-37%
smaller than those of the standard Cox model.

As one moves down the subfigure rows of Figure 2, we find that the RMSE trends
discussed above for x1 are amplified for the standard Cox model when one includes additional
appropriate independent variables within one’s duration model specification. That is, adding
two, or four, additional covariates—several of which have imbalance themselves—noticeably
increases the RMSEs obtained for β̂1 within the standard Cox model. This is consistent
with the nonconvergence results discussed above, and is less observable for the Firth Cox
model in this case. Returning to the standard Cox model results, we can also note that the
added inaccuracy in β̂1 that arises from increasing the number of included covariates is less
substantial than the changes in RMSEs that arise due to the differential values of c and N
evaluated in Figure 2.

Altogether, the nonconvergence and RMSE results for x1 suggest several key points.
Firstly, no matter the level of censoring or number of observations, the Firth Cox model
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always outperforms the Cox model with respect to RMSEs for β̂1. This implies that—with
respect to accuracy—the Firth Cox model is preferable to the non-Firth Cox model across
all sample sizes considered here, and no matter the actual degree of monotone likelihood
observed. This conclusion is in line with recent findings for Firth’s penalized maximum
likelihood estimator in the context of logit models (Rainey and McKaskey, forthcoming),
and with past simulation analyses of the Firth Cox model’s performance (e.g., Heinze and
Schemper, 2001). Secondly, the results discussed above also reveal that monotone likelihood
issues are most severe within low sample sizes and high censoring, wherein the joint contri-
bution of these two issues to nonconvergence and inaccuracy within the standard Cox model
arises most markedly in situations where one’s N ≤ 1000 and censoring is moderate-to-high
(e.g., 75-95%). Furthermore, when these estimation issues do arise, adding additional (im-
balanced) control variables can exacerbate monotone likelihood issues for a given variable of
interest.
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Figure 2: Root Mean Squared Errors for x1 Across All Monte Carlo Experiments
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3.2 Model Performance with respect to x2 and x3

We now discuss our Monte Carlo results for x2 and x3. Similar to the assessments of x1

presented above, we first focus these x2 and x3 discussions on these two variables’ identified
rates of nonconvergence (as a share of all relevant simulations), and then turn to an assess-
ment of the RMSEs obtained for these two covariates’ respective coefficient estimates. Recall
that x2 and x3 were operationalized as x2 = 1N (0,1)>1.75 and x3 = ln(N (5, 1)) within our
Monte Carlo simulations and were only included within 5× 6× 2 = 60 of our experimental
conditions.9 We plot these experimental conditions for both covariates of interest in Figure
3 (nonconvergence) and Figure 4 (RMSEs). As before, we present all relevant experimental
conditions in these figures. Our different censoring conditions appear across the columns of
our subfigures in Figure 4. The relevant specification choices appear along different subfigure
rows, now separately for x2 (rows 1-2) and x3 (rows 3-4). The x-axis of each subplot then
depicts the different numbers of observations that our Monte Carlo experiments evaluated.

As mentioned, the nonconvergence rates for x2 and x3 are depicted in Figure 3. With
regards to x2, we find similar patterns of nonconvergence to those noted for x1. When
censoring is low-to-moderate (i.e., 5%↔50%), the Cox and Firth Cox models frequently
exhibit comparable levels of nonconvergence. Exceptions to this pattern arise within the
N = {100, 250} conditions, wherein the standard Cox model exhibits markedly higher rates
of nonconvergence in most instances, and especially for c = {5%, 50%}. For moderate-to-
high (i.e., 75% ↔ 95%) levels of censoring, and in particular for cases where N < 1000,
monotone likelihood issues lead to substantial nonconvergence issues for the Cox model, but
not for the Firth Cox model. For instance, we find that the Cox model exhibits 8.8%-82.5%
nonconvergence when N = {100, 250} and c = {75%, 95%}; and 0.9%-32.7% nonconvergence
when N = 500 and c = {75%, 95%}. By comparison, the Firth Cox model exhibits far
lower levels of nonconvergence in each of these circumstances (1.5%-20.7% and 0.7%-1.9%,
respectively).

Under these same conditions of 75%-95% censoring, we find that after one’s N rises above
N = 1000, the problems of monotone likelihood largely subside. However, the Cox model
continues to exhibit up to double the rate of nonconvergence in comparison to the Firth Cox
model in these contexts. For example, at N = 2000 and c = 95%, we observe nonconvergence
rates of 2.8% for the Cox model, in comparison to nonconvergence rates of 1.4% for the Firth
Cox model. The Cox and Firth Cox model’s nonconvergence issues for x2 typically become
slightly more substantial when x4 and x5 are added to our model specifications, which is
consistent with the findings discussed above.

The Cox model also frequently performs worse than the Firth Cox model in nonconver-
gence for x3 in Figure 3. However, in this case, both models generally exhibit low levels of
nonconvergence across the board. As a result, we can conclude here that the differences in
nonconvergence between the Cox model and Firth Cox model for this particular variable are
fairly slight and often negligible, no matter the N , specification, or censoring rate consid-
ered.10 This is to be expected given that—unlike x1 and x2—x3 is a continuous predictor

9That is, these two independent variables were only included within the Monte Carlo conditions that
included three or five independent variables within our estimated Cox and Firth Cox model specifications.

10The one exception may be cases of N = 100. However, even in these cases, differences in nonconvergence
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rather than a(n imbalanced) binary predictor. This finding, in turn, underscores that mono-
tone likelihood based nonconvergence issues are most directly associated with (imbalanced)
binary covariates, and are unlikely to arise in contexts where one’s covariates are continuous.

do not grow larger than 1%.
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Figure 3: Nonconvergence Levels for x2 and x3 Across Relevant Monte Carlo Experiments
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Turning to the RMSE statistics for x2 and x3, which are reported in Figure 4, we can
first note that our Cox and Firth Cox coefficient estimates for β2 exhibit similar RMSEs
across our various experimental conditions when censoring is low-to-moderate. The one
exception to this generalization occurs at N = 100, where we typically find that the Firth
Cox model substantially outperforms the Cox model in accuracy when c = {25%, 50%}.
At moderate-to-high levels of censoring (i.e., 75% to 95%), the β2 RMSEs for the Cox
model further indicate that a standard Cox estimator returns coefficient estimates with
substantially higher inaccuracy than those of the Firth Cox model in circumstances where
one is analyzing a dataset with a low-to-moderate N . This is most noticeable in Figure
4 when N = {100, 250}, but also consistently arises in cases where N = {500, 1000, 2000}.
Moreover, even among those x2 Monte Carlo conditions where the Cox and Firth Cox models’
RMSEs do not visibly diverge in Figure 4, we find in examining the underlying plotted RMSE
values that all RMSEs are slightly lower for the Firth Cox model, in comparison to the Cox
model, across all conditions. Thus, with respect to accuracy, the Firth Cox model appears
to be a superior choice to that of the Cox model across small to moderate Ns, and no matter
the level(s) of underlying monotone likelihood in one’s data and models.

When we instead consider x3, we find that the Cox model does not exhibit substantially
higher inaccuracies in β̂3, in comparison to the β3 estimates obtained from the Firth Cox
model. This generalization holds under virtually all conditions evaluated. The one exception
is the N = 100, c = 95% condition, where the Cox model does on average yield noticeably
less accurate β3 estimates, in comparison to the Firth Cox model. With regards to the
overall similarity in β̂3 accuracy levels for the Cox and Firth Cox models across most con-
ditions, recall that x3 is continuous and hence does not exhibit imbalance of its own. For
such a variable, monotone likelihood problems—and the biases associated with monotone
likelihood—are unlikely to arise, thus ensuring that the standard Cox model obtains similar
accuracy to the Firth Cox model in all but the most extreme (low information) conditions.
That being said, we still do find that the Firth Cox model obtains slightly more accurate
estimates of β3 across all of the experimental conditions presented in Figure 4, based upon
our averaged RMSE values. This reinforces our earlier finding that the Firth Cox model will
often slightly improve the accuracy of one’s duration model estimates (i.e., over those of the
standard Cox model) within low-to-modest sample sizes, even in the absence of monotone
likelihood issues.

19



X2: 3 Covariates, Censoring=5%

Number of Observations

M
ea

n 
R

M
S

E

100 250 500 1000 2000 5000

0
0.

25
0.

50

●

●
●

● ●
●

X2: 3 Covariates, Censoring=25%

Number of Observations

M
ea

n 
R

M
S

E

100 250 500 1000 2000 5000

0
0.

50
1

●
●

● ● ● ●

X2: 3 Covariates, Censoring=50%

Number of Observations

M
ea

n 
R

M
S

E

100 250 500 1000 2000 5000

0
1

2
3

4

●
● ● ● ● ●

X2: 3 Covariates, Censoring=75%

Number of Observations

M
ea

n 
R

M
S

E

100 250 500 1000 2000 5000

0
1

2
3

4

● ● ● ● ● ●

X2: 3 Covariates, Censoring=95%

Number of Observations

M
ea

n 
R

M
S

E

100 250 500 1000 2000 5000

0
5

10
15

● ● ● ● ● ●

X2: 5 Covariates, Censoring=5%

Number of Observations

M
ea

n 
R

M
S

E

100 250 500 1000 2000 5000

0
0.

25
0.

50

●

●
●

● ●
●

X2: 5 Covariates, Censoring=25%

Number of Observations

M
ea

n 
R

M
S

E

100 250 500 1000 2000 5000

0
0.

50
1

●

●
● ● ● ●

X2: 5 Covariates, Censoring=50%

Number of Observations

M
ea

n 
R

M
S

E

100 250 500 1000 2000 5000

0
1

2
3

4

●
● ● ● ● ●

X2: 5 Covariates, Censoring=75%

Number of Observations

M
ea

n 
R

M
S

E

100 250 500 1000 2000 5000

0
1

2
3

4

● ● ● ● ● ●

X2: 5 Covariates, Censoring=95%

Number of Observations

M
ea

n 
R

M
S

E

100 250 500 1000 2000 5000

0
5

10
15

● ● ● ● ● ●

X3: 3 Covariates, Censoring=5%

Number of Observations

M
ea

n 
R

M
S

E

100 250 500 1000 2000 5000

0
0.

25
0.

50

●

●

●
●

● ●

X3: 3 Covariates, Censoring=25%

Number of Observations

M
ea

n 
R

M
S

E

100 250 500 1000 2000 5000

0
0.

25
0.

50

●

●

●
●

● ●

X3: 3 Covariates, Censoring=50%

Number of Observations

M
ea

n 
R

M
S

E

100 250 500 1000 2000 5000
0

0.
35

0.
70

●

●
● ● ● ●

X3: 3 Covariates, Censoring=75%

Number of Observations

M
ea

n 
R

M
S

E

100 250 500 1000 2000 5000

0
0.

50
1

●

●
●

● ● ●

X3: 3 Covariates, Censoring=95%

Number of Observations

M
ea

n 
R

M
S

E

100 250 500 1000 2000 5000

0
1

2
3

4

●

●
● ● ● ●

X3: 5 Covariates, Censoring=5%

Number of Observations

M
ea

n 
R

M
S

E

100 250 500 1000 2000 5000

0
0.

25
0.

50

●

●

●
●

● ●

X3: 5 Covariates, Censoring=25%

Number of Observations

M
ea

n 
R

M
S

E

100 250 500 1000 2000 5000

0
0.

25
0.

50

●

●

●
●

● ●

X3: 5 Covariates, Censoring=50%

Number of Observations

M
ea

n 
R

M
S

E

100 250 500 1000 2000 5000

0
0.

35
0.

70

●

●
● ● ● ●

X3: 5 Covariates, Censoring=75%

Number of Observations
M

ea
n 

R
M

S
E

100 250 500 1000 2000 5000

0
0.

50
1

●

●
●

● ● ●

X3: 5 Covariates, Censoring=95%

Number of Observations

M
ea

n 
R

M
S

E

100 250 500 1000 2000 5000

0
1

2
3

4

●

●
● ● ● ●

●Cox Firth Cox

Figure 4: Root Mean Squared Errors for x2 and x3 Across Relevant Monte Carlo Experiments

20



3.3 Model Performance with respect to x4 and x5

We now turn to the nonconvergence rates and RMSE values for our final two indepen-
dent variables of interest: x4 and x5. As stated at the outset of our Monte Carlo sec-
tion, these two binary covariates were drawn according to x4 = 1Uniform[−2.5,12]>11.5 and
x5 = 1lnUniform[1,100]>1.65 in our Monte Carlo simulations, therein ensuring that each con-
tained a degree of imbalance. While we consistently used these two covariates to generate
our duration outcomes across all Monte Carlo experiments, also recall that we only included
x4 and x5 as predictors within 5× 6 = 30 of our experimental conditions’ actual estimated
models (i.e., within the conditions that included five variables in the Cox and Firth Cox
model specifications). For these conditions, we plot the relevant nonconvergence rates for
x4 and x5 in Figure 5 and the RMSE values for x4 and x5 in Figure 6. As above, these
two figures depict all relevant experimental conditions. The different levels of censoring that
we consider are depicted across the subfigure columns of Figures 5-6 and the x-axis of each
subfigure therein depicts the different N ’s evaluated. For Figures 5-6, each subfigure row
then corresponds to a different covariate considered (i.e., x4 or x5), since model specification
does not vary in this context.11

Turning to the nonconvergence rates for x4 and x5 in Figure 5, we find that the standard
Cox model exhibits notably higher rates of nonconvergence than does the Firth Cox model
when (i)N = {100, 250} for virtually all censoring cases and (ii)N = {100, 250, 500, 1000, 2000}
for the 95% censoring case. At the extremes, we find in these instances that the standard
Cox model fails to converge in 4.3%-6.8% of all simulations in the 50% censoring case, in
45.6%-77.0% of all simulations in the 75% censoring case, and in 77.4%-95.1% of all simu-
lations in the 95% censoring case. By comparison, the Firth Cox model exhibits far lower
nonconvergence rates (of 1.1%-1.4%, 5.0%-5.0%, and 20.3%-21.4%, respectively) in these
same cases. Thus, when censoring is moderate (50%-75%) and one has multiple imbalanced
predictors, the Firth Cox model is a far superior choice to the Cox model when N is low,
and is practically a necessity when censoring is high (i.e., c = 95%). The RMSEs in Figure
6 reinforce these conclusions. Specifically, Figure 6 demonstrates that substantial biases and
inefficiencies in one’s Cox model coefficient estimates for x4 and x5 arise in the conditions
highlighted immediately above, but do not arise in the case of the Firth Cox model. That
is, we find that failure to employ penalized maximum likelihood estimation within a Cox
model’s estimation yields noticeably poorer accuracy in β̂4 and β̂5 when (i) censoring is
moderate-to-high (75%-95%) for most relevant N ’s and (ii) when N is low, no matter the
level of censoring.

11That is, we only evaluate x4 and x5 under conditions of full model specification in our Monte Carlo
experiments.
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Figure 5: Nonconvergence Levels for x4 and x5 Across Relevant Monte Carlo Experiments
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Figure 6: Root Mean Squared Errors for x4 and x5 Across Relevant Monte Carlo Experiments
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3.4 Additional Model Comparison Metrics
This section presents a number of additional summary quantities for the Monte Carlo com-
parisons discussed above. First, as mentioned at the outset of the Monte Carlo section of this
appendix, recall that we additionally examined the MSEs for all Monte Carlo comparisons
and coefficient estimates as a secondary measure of bias and variance (i.e., accuracy) to that
of the RMSE. As noted previously, the (near) infinite estimates obtained under monotone
likelihood conditions for the standard Cox model oftentimes led the Cox model’s MSEs to
be so many orders magnitude greater (i.e., worse) than those of the Firth Cox model that
comparing these quantities via plots was uninformative. This led us to favor RMSEs within
our primary Monte Carlo assessments above. Yet, because the MSE has been favored as a
direct summary quantity in similar Monte Carlo analyses in the past (e.g., Rainey and McK-
askey, forthcoming), we report comparable MSE plots (i.e., to our primary RMSE plots) in
Figures 7-9 below.

Turning to Figures 7-9, we can observe similar overall trends to those identified within
our earlier RMSE discussions. Across our four imbalanced predictors (i.e., x1, x2, x4 and x5)
we find that the Firth Cox model consistently exhibits superior accuracy in our β estimates,
as measured by lower MSE values. Moreover, when one’s N is low—no matter the level
of censoring—the Firth Cox model generally recovers estimates with substantially superior
accuracy, such that plotted MSEs for the Firth Cox model are often 5-15 times smaller
than those of the Cox model. When N is low and censoring is (also) high (e.g., 75%-
95%), we further find that the Firth Cox model’s levels of accuracy in β̂—as measured via
MSEs—are often well over 30 times (and often over 100 times) smaller than those of the
Cox model. In these cases, the Cox model does not appear comparable to the Firth Cox
model in accuracy until one’s N rises above 2,000. Lastly, we can note that the MSE results
presented in 7-9 also underscore several of the related findings discussed above, most notably
in demonstrating again that these divergences in accuracy become more acute as one adds
additional (imbalanced) covariates to one’s model specification.
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Figure 7: Mean Squared Errors for x1 Across All Monte Carlo Experiments
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Figure 8: Mean Squared Errors for x2 and x3 Across Relevant Monte Carlo Experiments
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Figure 9: Mean Squared Errors for x4 and x5 Across Relevant Monte Carlo Experiments

27



Second, recall that our Monte Carlo experiments reported nonconvergence rates based
upon instances where a particular model provided an error or warning message either (i)
globally or for a given covariate, or (ii) where a model’s coefficient estimate or its standard
error was at least 500 times larger (or smaller) than the true value for a given parameter
under consideration. To further demonstrate that our primary nonconvergence findings
and conclusions are robust to the latter threshold-choice, we re-create our non-convergence
plots after removing the “500 times larger/smaller” threshold entirely12 in Figures 10-12.
For these Figures, we maintain the same y-axes ranges to those reported for our primary
Nonconvergence results (i.e., in Figures 1, 3, and 5) to facilitate direct comparisons.

If we ignore instances of nonconvergence that arise due to our coefficient estimates or
standard errors being at least 500 times larger (or smaller) than a true parameter value, we
find highly comparable results to our main nonconvergence findings across Figures 10-12.
All nonconvergence rates—for both the Cox and Firth Cox models—exhibit slight decreases
relative to our main nonconvergence results. As a result of these decreases, our Firth Cox
models’ nonconvergence rates are effectively zero across virtually all conditions for most
covariates reported in Figures 10-12. On the other hand, the Cox models’ nonconvergence
rates in Figures 10-12 oftentimes remain quite high. For instance, we continue to find Cox
model nonconvergence rates of 20% (10%) or higher for covariates X1, X2, X4, and X5

when censoring is at 75% and N is equal to 100 (250). We likewise continue to find Cox
model nonconvergence rates of roughly 40% or higher for covariates X1, X2, X4, and X5

when censoring is at 95% and N is less than or equal to 500—and Cox nonconvergence rates
greater than 10% in these instances when N = 1000. These findings reinforce our earlier
conclusions. No matter the nonconvergence criteria used, the Cox model exhibits substantial
nonconvergence issues under conditions of high censoring, imbalanced predictors, and low
N ’s, and non-negligible nonconvergence issues even when one or more of these conditions are
relaxed. The Firth Cox model addresses these issues, and exhibits virtually zero instances
of nonconvergence13 under these same conditions.

12That is, when defining nonconvergence for a given covariate based upon a covariate-specific or global
error or warning message.

13When nonconvergence is defined based upon covariate-specific or global model errors.
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Figure 10: Nonconvergence Levels for x1, With Nonconvergence Defined Only by Model Warnings & Errors
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Figure 11: Nonconvergence Levels for x2 and x3, With Nonconvergence Defined Only by Model Warnings & Errors
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Figure 12: Nonconvergence Levels for x4 and x5, With Nonconvergence Defined Only by Model Warnings & Errors
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As a final quantity of interest, we also examine the relationship between (i) our binary
predictors’ imbalance ratios and (ii) the nonconvergence rates obtained for each of these
predictors. For our four binary predictors (x1,x2,x4,x5)′, we calculate imbalance ratios as
follows. First, for each Monte Carlo simulation, and for only those observations where a
binary predictor was equal to one, we tabulate the number of instances where Y = Censored
and where Y = Failed. We then take the ratio of these cases, and normalize this quantity
for each N considered. As such, a covariate with an imbalance ratio of 0:100 corresponds
to a covariate whose “1”-cases always saw Y fail, whereas a covariate with an imbalance
ratio of 100:0 indicates a covariate whose “1”-cases always saw Y exhibit censoring. A
binary predictor with an imbalance ratio of 50:50 would instead reflect a predictor that saw
an equal number of failures and censoring cases among its “1”-cases in the dataset. After
calculating this ratio for reach binary predictor, and for each simulated dataset within our
Monte Carlo simulations, we average this quantity for each covariate across all 1,000 Monte
Carlo simulations within a given Monte Carlo condition. We then compare this averaged
quantity to each binary covariate’s nonconvergence rates, which are again averaged across
all simulated datasets within a given Monte Carlo condition.

For each Monte Carlo condition considered, we plot these quantities across the full range
of imbalance cases that were obtained in our simulations—for all four binary predictors—in
Figure 13. We include dashed vertical lines at the 0:95 and 95:0 thresholds to distinguish
cases of low-to-moderate imbalance from cases of high imbalance. We then also re-plot these
quantities for only the high-imbalance cases (i.e., the cases with an imbalance ratio of 95:0
or greater) within Figure 14. The x-axes to these figures reflect the range of imbalance
considered, whereas the y-axes report the corresponding nonconvergence rates. The plotted
points then depict a given covariate’s levels of imbalance and model nonconvergence for a
single Monte Carlo condition, separately for our estimated Firth Cox and Cox models.

Turning to Figure 13, we can first observe that the various conditions evaluated across
our Monte Carlo simulations together ensure that we observe imbalance ratios that range
across a relatively large share of the possible spectrum of (im)balance. However, most
cases in our simulations cluster at the high end of imbalance (i.e., from 95:5 to 100:0) by
virtue of the fact that our binary predictors were generally drawn to be imbalanced toward
the 95:5 to 100:0 range by design. Looking across all levels of (im)balance in Figure 13,
we can note that while the Cox and Firth Cox models often obtain similar levels of (low)
nonconvergence at most levels of (im)balance, the Cox model at times exhibits noticeably
higher nonconvergence rates across each and every level of (im)balance observed. When
imbalance is moderate, the aforementioned divergences in nonconvergence only appear to
arise within a small number of Monte Carlo conditions (most often those conditions where five
covariates are included, or N is low), and often only encompass differences in nonconvergence
rates of 3%-5%. However, even when a covariate’s imbalance is relatively moderate and close
to 75:25, we observe at least one set of Monte Carlo conditions where the Cox model fails to
converge in almost 80% of all simulations—a nonconvergence rate that is nearly ten times
the comparable nonconvergence rate for the comparable Firth Cox model. These divergences
become even more frequent and pronounced towards the high end of imbalance in Figure 13,
which we depict in further detail in Figure 14.

Turning to Figure 14, we find that—at levels of high imbalance—the Cox model exhibits
nonconvergence rates that are frequently several times larger than those of the corresponding
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Figure 13: Relationship Between Imbalance Ratio and Nonconvergence for x1, x2, x4, & x5

Firth Cox model. Moreover, oftentimes the Cox model’s nonconvergence encompasses at
least 50% of all simulations within a given Monte Carlo condition—which is a threshold
that is never crossed in the Firth Cox model averages. In Figure 14, these divergences in
imbalance-based nonconvergence rates between the Cox and Firth Cox model appear to arise
most systematically at levels of imbalance of 98:2 or higher. Even so, we can also observe
multiple instances where the Cox model exhibits uniquely high nonconvergence rates for
imbalance ratios closer to 95:5. Hence, for researchers analyzing duration data with binary
predictors, no level of balance can guarantee that monotone likelihood issues will not arise,
whereas levels of high imbalance—i.e., 95:5 or higher (or conversely, 5:95 or lower)—often
guarantee that monotone likelihood issues will arise. In each instance, the Firth Cox model
appears to be a superior alternative to that of the Cox model for estimation and inference.
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Figure 14: Relationship Between Imbalance Ratio and Nonconvergence for x1, x2, x4, & x5

Among High-Imbalance Cases Only
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3.5 Summary
Our Monte Carlo experiments offer several insights. Assuming the estimation of a duration
model with at least one imbalanced binary predictor, we find that monotone likelihood issues
are most acute when (i) censoring encompasses approximately 75%-95% of all observations
or (ii) N ≤ 1000. When both of these conditions are present, monotone likelihood problems
become so substantial that a third or more of a standard Cox model’s estimates will be
infinite or near-infinite for at least one coefficient. Adding additional imbalanced predictors
in these settings exacerbates these problems, even for one’s originally included predictor.
In each of these settings, the Firth Cox model consistently outperforms the standard Cox
model in terms of both lower levels of nonconvergence and superior levels of accuracy (as
measured by RMSE). The Firth Cox model is thus a preferable estimator for duration model
applications that include imbalanced predictors, especially in circumstances where one’s N
is moderate-to-low and/or where censoring is moderate-to-high.

We also find that even absent significant monotone likelihood issues, the Firth Cox model
is generally (albeit often only slightly) superior to the standard Cox model in terms of
accuracy and nonconvergence. Similar to recent findings for the logit estimator (Rainey and
McKaskey, forthcoming), this indicates that the Firth Cox model may be preferable to the
Cox model in any circumstances of low N (i.e., N ≤ 1000)—that is, even in the absence of
imbalanced binary predictors or high censoring. However, it is worth emphasizing that each
of the findings and conclusions summarized here are dependent upon the specific choices of
sample size, censoring, specification, covariates, and parameter values used above, and thus
may not generalize to all real-world settings and contexts.
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