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Appendices

A A Brief Summary of Survival Models
Survival models are designed to provide an explanation for why a particular observation

survives for a particular duration of time. A duration, denoted ti for observation i, can

be a patient’s lifespan after a diagnosis, the time needed for a negotiation to result in an

agreement, or the amount of time that passes before an event like government failure or

war, among many other examples. While both parametric survival models and the Cox

model have similar purposes, they also exhibit key differences. We briefly review these

models in a technical discussion below. See Box-Steffensmeier and Jones1—which we

rely on extensively for this review—for more details.

A.1 Parametric Survival Models

Survival models improve upon ordinary least squares (OLS) for duration data by al-

lowing for skewed distributions of the durations and by explicitly accounting for the fact

that some observations are right censored, meaning that their durations end some time after

data collection ends. The likelihood function used by all parametric survival models takes

the form

L(θ |t,X) =
N

∏
i=1

fi(t)δi Si(t)1−δi, (1)

where i indexes observations, θ represents the parameters to be estimated, t represents the

observed durations with ti referring to the duration of observation i, X represents the matrix

of covariates, N is the sample size, and δi is an indicator for the right censored observations.

1Box-Steffensmeier and Jones 2004
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fi(t) is the PDF of failure times t and

Si(t) = 1−
∫ t

0
fi(t) dt (2)

is the survivor function, which represents the probability that observation i survives until

time t or later.

An important concept in survival modeling is the hazard function, or hazard rate, de-

fined as the ratio of the failure PDF to the survivor function,

hi(t) =
fi(t)
Si(t)

. (3)

The hazard rate represents the relative risk of failure at time ti conditional on survival until

time ti.2 Results from survival models are often expressed in terms of the hazard ratio, the

ratio of two (actual or hypothetical) observations’ hazard rates. The failure and survivor

functions are different for each observation. These idiosyncratic functions share the same

baseline failure PDF, f0(t), and the variation across cases is induced by the data.

If a parametric survival model can be reparameterized as

log(ti) = α +β1xi1 + . . .+βkxik +σεi, (4)

then the model has an accelerated failure time interpretation in which it is possible to derive

the expected duration and marginal change in duration with respect to a covariate. The

exponential, Weibull, and log-normal models can all be interpreted in this way. Specifically,

2Box-Steffensmeier and Jones 2004, 15
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in equation 4, σ = 1 for the exponential model, εi is distributed by the type-1 extreme-

value distribution for the Weibull model and by the standard normal distribution for the

log-normal model.3

Because parametric survival models provide an analytic function for the hazard rate,

the hazard is assumed to follow one of the paths allowed by this functional form. In many

cases this assumption is too restrictive. For instance, the exponential model assumes that

the hazard is constant, the Weibull model assumes that the hazard rate is monotonically

increasing or decreasing over time, and the log-normal model assumes that the hazard rate

is either monotonic or unimodal. Many researchers do not wish to assume that the hazard

rate follows exactly one of these forms. As a result, the Cox model has gained wide use in

the social sciences relative to the parametric survival models.

A.2 The Cox Proportional Hazards Model

The parameters of the Cox model are estimated by maximizing a partial likelihood

function. Cox4 shows that the this estimator converges, in the sample size, to the maxi-

mum likelihood estimator. Carrying notation from above forward, the partial likelihood is

defined as follows
N

∏
i=1

 exp(β ′X (ti)
i )

∑∀ j∈Rti
exp(β ′X (ti)

j )

δi

(5)

where β is a vector of regression coefficients to be estimated and δi is again an indicator

for right censored observations.

The key feature of the estimator is the term in the denominator: R(ti). This refers to

observation i’s ‘risk set.’ An observation’s risk set is comprised of the observations that

3See Box-Steffensmeier and Jones 2004, 23–32
4Cox 1975
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experience the event at the same time or after observation i. Thus, the partial likelihood

estimator is the product of the conditional probability of failure at a certain time, given all

the observations that have not yet failed at that time. This allows the method to estimate

parameters while relying only on the ranks of the durations—not the actual durations—and

thus avoid making an assumption about the baseline hazard.5

However, that advantage comes with some costs. If the baseline hazard assumption

is correct, a parametric model will be more efficient than the Cox model because the for-

mer uses more information from the data.6 Moreover, coefficient estimates can only be

interpreted with respect to the hazard rate; positive coefficients indicate the hazard is ris-

ing while negative estimates signify a decrease. For example, exponentiating a coefficient

estimate yields the average multiplicative change in the hazard rate—a hazard ratio—for

a one-unit increase in the independent variable. Similarly, Box-Steffensmeier and Jones7

recommend the following formula for computing the percentage change in the hazard rate

between two values (X1 and X2) of an independent variable

%∆h(t) =
[

exp(β [Xi = X1])− exp(β [Xi = X2])

exp(β [Xi = X2])

]
×100. (6)

As we state above, these hazard rate-based computations are mathematically sound; re-

searchers who employ them are not doing so in error. However, because the Cox model

5This also means the partial likelihood estimator is quite sensitive to model specification issues such as

omitted variables and measurement error. However, analysts need not abandon the Cox model due to these

problems because they can be resolved with a robust estimator of the partial likelihood. See (Desmarais and

Harden 2012).
6Box-Steffensmeier and Jones 2004
7Box-Steffensmeier and Jones 2004, 60
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does not use the actual durations, estimates of expected duration are not readily available.

In the main text we contend that the interpretation and communication of substantive re-

sults from the Cox model can be improved by adapting the Cox model to estimate expected

durations and marginal changes in these durations with respect to a covariate. We show

that COX ED fulfills this objective.

B Journal Article Meta Analysis
Our meta analysis examined use of the Cox proportional hazards model and methods

for interpreting results in five political science journals from 1996–2015: American Po-

litical Science Review, American Journal of Political Science, British Journal of Political

Science, Journal of Politics, and International Organization. We first searched for articles

using Google Scholar. Then we coded the articles based on (1) the language used to frame

hypotheses and (2) the methods used to interpret Cox model results. We describe the details

of these procedures below.

Our central objectives were to assess (1) the type of language researchers typically use

to frame their hypotheses when employing the Cox model and (2) the methods they typi-

cally use to interpret Cox model results. On the first objective we considered two possible

framing styles: a risk frame and a duration frame. A risk frame discusses hypotheses with

respect to the risk of event occurrence. For example: ‘as X increases, the risk of event Y

occurring also increases.’ In such a case the researcher is not primarily concerned with

duration, but rather focuses on how the covariates make the event more or less likely to

occur. In contrast, a duration frame discusses the hypothesis in terms of event time, as in

‘as X increases, the number of days until event Y occurs decreases.’ In this case the length

of time that an event takes is of central importance.
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B.1 Searching for Articles

We searched https://scholar.google.com/ for [‘cox proportional hazards’ OR ‘cox model’

OR ‘cox regression’] in each journal listed above, one journal at a time. We set the date

range to 1996–2015. We downloaded all of the articles returned by these searches, checked

each one to make sure it included analysis with the Cox model, then saved it for coding in

the next step. We included any paper that reported the estimation of a Cox model in the

main text. This produced 80 total articles.8 The articles came from four subfields: interna-

tional relations (42), comparative politics (21), American politics (13), and methodology

(4). Additionally, the articles spanned all five journals: 20 from American Journal of Polit-

ical Science, 20 from Journal of Politics, 17 from British Journal of Political Science, 12

from American Political Science Review, and 11 from International Organization.

B.2 Coding Hypothesis Text

First, we identified the number of hypotheses in each article and copied the text of those

hypotheses. If multiple analyses were presented, we only included hypotheses pertaining

to the Cox model(s) reported in the main text. If no hypotheses were presented with the

Cox model (i.e., in a descriptive analysis), we used the authors’ descriptions of the model

specification (i.e., variables used and purpose of the estimation).

Next, we placed all of the hypotheses’ text into a single string, omitted common English

stop words, then counted word frequencies of the remaining words. This produced a list

of 1,570 unique words, from which we identified words as either predominantly part of a

risk frame and words predominantly used in a duration frame.9 Our general rule was to

8We also searched for articles published since 1990, but found no relevant articles published before 1996.
9This was a subjective assessment, and we encourage interested readers to obtain the replication materials
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code any word that related to probability, likelihood, or chance in the risk frame category

and any word relating to time in the duration frame category. In all, we coded eight unique

words as risk frame words and 68 unique words as duration frame words. Table 1 reports

these words and their frequencies.

B.3 Hypothesis Framing Results

The fact that we coded many more words as duration frame words gives some prelimi-

nary evidence that authors tend to frame their hypotheses with respect to the time until event

occurrence more often than the risk of event occurrence. However, this may be skewed by

the possibility that authors simply have more choices when it comes to duration frame

words. Looking at word counts of all eight risk frame words and the top eight duration

frame words reveals a larger count of risk frame words: 140 instances of risk frame words

and 120 duration frame words. Nonetheless, the full count of all the duration frame words

we coded is 317—substantially larger than the total count of risk frame words.

We also coded each article as either predominantly using a risk frame, duration frame,

or equal use of both frames. We accomplished this in two ways: a count of unique words

and a count of total words. First, we counted how many unique words from each frame

appeared in the text of the hypotheses. This approach did not give additional weight to the

same word appearing more than once. We then coded an article’s frame as the type with

the most instances of unique words from its list. Second, for each article we counted the

total number of instances of words in its hypotheses from each frame (i.e., allowing for

repeats of the same word). In both cases if an equal number of risk and duration frame

words appeared, we coded the article as equal.

and assess whether they agree with our decisions.
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Table 1: Frequency and Frame of Hypothesis Framing Words

Word Frequency Coded Frame

likely 77 Risk
risk 26 Risk
hazard 16 Risk
probability 9 Risk
likelihood 8 Risk
propensity 2 Risk
unlikely 1 Risk
odds 1 Risk
time 29 Duration
duration 16 Duration
timing 16 Duration
longer 14 Duration
survival 12 Duration
end 11 Duration
tenure 11 Duration
termination 11 Duration
early 10 Duration
initiator 10 Duration
delay 9 Duration
delays 8 Duration
durable 8 Duration
earlier 8 Duration
first 8 Duration
future 8 Duration
deadline 7 Duration
length 7 Duration
quickly 6 Duration
durability 5 Duration
finite 5 Duration
hazards 5 Duration
inhibit 5 Duration
mortality 4 Duration
periods 4 Duration
process 4 Duration
processes 4 Duration
shorten 4 Duration
times 4 Duration
conclude 3 Duration
past 3 Duration
period 3 Duration
short 3 Duration
shortens 3 Duration
shorter 3 Duration
survive 3 Duration
date 2 Duration
deadlines 2 Duration
fail 2 Duration
failing 2 Duration
failure 2 Duration
terminate 2 Duration
live 2 Duration
long 2 Duration
term 2 Duration
immediately 2 Duration
last 2 Duration
delayed 1 Duration
delaying 1 Duration
durations 1 Duration
indefinitely 1 Duration
longer 1 Duration
longer lasting 1 Duration
preceding 1 Duration
pre deadline 1 Duration
prior 1 Duration
prolonging 1 Duration
remain 1 Duration
remained 1 Duration
remains 1 Duration
retards 1 Duration
shortrun 1 Duration
slow 1 Duration
slowly 1 Duration
survives 1 Duration
temporal 1 Duration
concludes 1 Duration
onset 1 Duration
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Using the unique word count, we coded 52 articles as using a duration frame, 15 with a

risk frame, and 13 with equal use of both frames. With the total word count these numbers

are 49, 22, and 9, respectively. About 43 per cent (34) of the articles use words from both

frames, 31 contain no risk frame words, and 15 contain no duration frame words. We also

conducted these counts after deleting all of the duration words that appear three or fewer

times to check whether these results are driven only by the fact that there may be more

choices of duration frame words. In that case 40 articles are still coded with the duration

frame using both the unique and total counts.

B.4 Coding the Interpretation Methods

Our second objective was to code which method(s) each article used to interpret the

results of the estimated Cox model. This was accomplished by reading the results sections

of the articles and identifying each unique method used. We created a total of four cate-

gories based on what we found in the text, which we list below. Note that all of the articles

discussed the sign and significance of the Cox model coefficient estimates. The categories

reflect any interpretation beyond sign and significance. The articles employed an average

of 1.35 of these interpretation methods. 56 articles used one method, 20 articles used two

methods, and 4 articles employed three different methods.

• Hazard ratios (30 articles). This category included any article that reported the ex-

ponentiation of one or more Cox model coefficients, as well as a discussion about the

resulting multiplicative effect of a one-unit change in the covariate of interest.

• Changes to the hazard rate (44 articles). This category included any article that

reported a marginal change in the hazard rate (usually expressed as a percentage)
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corresponding to a substantively interesting change in the value of a covariate.

• Empirical estimates of the hazard and/or survivor functions (24 articles). This cate-

gory included any article that graphically displayed an estimate of the baseline hazard

from the model and/or computed the survivor function. Typically this was done for

different covariate values to show the effect of changes to the covariate.

• Only sign and significance of the coefficient estimates (10 articles). This category

included any article that did not report any interpretation of the Cox model other

than the sign and significance of the relevant coefficient estimates.

The most important finding from this analysis is the fact that all of the articles that go

beyond sign and significance in their interpretation of the Cox model focus on the hazard

rate, whether through hazard ratios, changes to the hazard rate, or estimation and graphing

of the baseline hazard and/or survivor functions. To further emphasize this point, a few

articles in our data did report expected durations, but those estimates came from estimating

the model using the Weibull parameterization.10

B.5 Meta Analysis Conclusions

This analysis yields two important insights. First, we find that political scientists em-

ploying the Cox model over the last 20 years tend to discuss their theoretical expectations

in the language of time until event occurrence. Language related to the risk of event oc-

currence also appears, but it is less common than duration-based framing. Approximately

81 per cent of the articles in our sample contain more duration words or an equal amount

of duration and risk words, compared to only 61 per cent containing more or equal risk

10e.g., Senese and Quackenbush 2003, 714
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words. It is clear that researchers’ substantive interests usually center on the duration of

some political phenomenon, not just its likelihood of occurring.

This first finding contrasts sharply with the second finding, which is that researchers

nearly exclusively rely on interpretation of the hazard rate after estimating the Cox model.

We found no instances where researchers generated expected durations from their Cox

model estimates. Thus, researchers who employ the Cox model are typically forced to

switch the manner in which they discuss their research when moving from hypotheses to

results. This provides motivation for our research. COX ED allows researchers to maintain

consistency between the language they use to describe their theoretical framework and the

language they use to communicate their empirical findings.

C The Relationship Between Hazard and Failure Proba-

bility
Here we show proof that the hazard ratio for a proportional hazards model is equal to

the multiplicative change in the probability of failure at a particular instant t, conditional

on survival until time t (see the discussion in the main text associated with footnote ??).

Consider an example of a proportional hazards model in which the coefficients are

non-zero. Without loss of generality, consider how an observation t1 in which X1 = 1 and

X j = 0 for j > 1 compares to a baseline observation t0 in which all covariates are zero so

that the hazard, failure probability density function (PDF), and survivor function for the

observations are all equal to the baseline functions. Let β be the coefficient on X1. The
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ratio of the hazard functions for each observation is

h1(t)
h0(t)

=
exp(β )h0(t)

h0(t)
= exp(β ). (7)

Therefore, a one-unit increase in X1 is associated with a multiplicative increase of exp(β ) in

hazard. Now consider how the probability of failure between t = a and t = b, conditional

on t > a, compares for each observation. The conditional probability that the baseline

observation fails in this interval is given by

Pr(a≤ t0 ≤ b|t0 > a) =
Pr(a≤ t0 ≤ b)

Pr(t0 > a)
. (8)

The numerator can be calculated from the baseline failure cumulative distribution function

(CDF),

Pr(a≤ t0 ≤ b) =
∫ b

a
f0(t) dt = F0(b)−F0(a),

= [1−S0(b)]− [1−S0(a)]

= S0(a)−S0(b), (9)

and the denominator is the baseline survivor function S0(t) at t = a. The entire conditional

probability is given by

Pr(a≤ t0 ≤ b|t0 > a) =
S0(a)−S0(b)

S0(a)
. (10)

Likewise, the conditional probability that the non-baseline observation fails in this interval
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is

Pr(a≤ t1 ≤ b|t1 > a) =
S1(a)−S1(b)

S1(a)
. (11)

We can rewrite the numerator of (11) as11

F1(b)−F1(a) = [1−S1(b)]− [1−S1(a)]

= S1(a)−S1(b)

= S0(a)exp(β )−S0(b)exp(β ), (12)

and we can rewrite the denominator of (11) as

S1(a) = S0(a)exp(β ), (13)

so that the conditional probability is

Pr(a≤ t1 ≤ b|t1 > a) =
S0(a)exp(β )−S0(b)exp(β )

S0(a)exp(β )
. (14)

Note that the substitution S(t) = S0(t)exp(Xβ ) is predicated on the assumption of propor-

tional hazards. The ratio of the two probabilities is then

Pr(a≤ t1 ≤ b|t1 > a)
Pr(a≤ t0 ≤ b|t0 > a)

=

S0(a)exp(β )−S0(b)exp(β )

S0(a)exp(β )

S0(a)−S0(b)
S0(a)

11We exponentiate the coefficient β twice because we raise the baseline survivor function to the power of

the hazard ratio, which is exp(β ) (see Box-Steffensmeier and Jones 2004, 65, eq. 4.15).

14



=
S0(a)exp(β )−S0(b)exp(β )

S0(a)−S0(b)
· S0(a)

S0(a)exp(β )

= S0(a)1−exp(β ) · S0(a)exp(β )−S0(b)exp(β )

S0(a)−S0(b)
. (15)

In order to consider the multiplicative change in the conditional probability of instanta-

neous failure, let S0(a) = x, S0(b) = y, and exp(β ) = α , and consider the following limit:

lim
x→y

y1−α xα − yα

x− y

= y1−α lim
x→y

xα − yα

x− y
.

This limit is the definition of the derivative of the function g(x) = xα evaluated at x = y,

so the limit is equal to g′(y) = αyα−1. Substituting for y and α , the instantaneous ratio of

probabilities is equal to

lim
b→a

Pr(a≤ t1 ≤ b|t1 > a)
Pr(a≤ t0 ≤ b|t0 > a)

= S0(b)1−exp(β ) exp(β )S0(b)exp(β )−1 = exp(β ).

D Summary of the Monte Carlo Simulations
Here we summarize an assessment of the performance of the COX ED methods. We

use simulated data—in which we know the true relationships—to compare each COX ED

approach to three parametric models. Specifically, we evaluate these different methods’ ca-

pacity to return accurate expected durations for each observation in the data and marginal

changes in duration for a unit change in a covariate. We also evaluate COX ED’s perfor-

mance in producing the correct confidence intervals (see Section F).
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We simulate the data in two different ways. In one approach we simply draw the event

times from a parametric distribution (exponential, Weibull, and log-normal). As we show in

Section F, COX ED performs well under this type of data generating process (DGP). How-

ever, this approach is not our preferred simulation method. While the process is straight-

forward, drawing from a parametric distribution artificially inflates the performance of the

parametric model. Furthermore, doing so is unrealistic because applied researchers never

truly know if their data come from a particular parametric distribution. Accordingly, we

also use the ‘random spline’ DGP, which generates baseline hazards by fitting cubic splines

to randomly-drawn points.12 This produces a variety of shapes, some of which are mono-

tonic or unimodal, but many of which are multimodal. We use the randomly-drawn baseline

hazard functions, along with three covariates and true coefficients generated from standard

normal distributions, to create simulated durations.

There is not a single obvious method to generate simulated marginal effects, so we

employ two similar strategies and present results from both. The first strategy uses the

same method as the NPSF approach to COX ED to calculate true marginal effects, the

second strategy uses the same method as the GAM approach. See Section E for complete

details of this process.

After simulating data with the random spline method, we next estimate each version of

COX ED and the exponential, Weibull, and log-normal survival models on the simulated

data, and assess how accurately they return the expected durations and marginal changes

in duration.13 We compare competing models because it is difficult to assess absolute per-

12Harden and Kropko 2017
13We use the survival package in R for model estimation here and in our replication analyses (Therneau

2013).
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formance in a simulation setting.14 We conduct these comparisons with two performance

criteria: (1) the root mean square error (RMSE) of each method’s expected durations for

each observation and (2) the RMSE of each estimator’s expected change in duration for a

one-unit change in a covariate. In both cases smaller values indicate less error, and thus

better performance. We run these simulations in R for 1,000 iterations each with sample

sizes of 50, 200, 500, and 1,000.

We present the simulation results for expected durations and marginal changes in ex-

pected duration in Figure 1. The three parametric models are illustrated at the top of each

figure, and the COX ED approaches are below the parametric results. These results are

drawn from the DGP with 10 per cent right censoring.15

The most important result is that the GAM and NPSF versions of COX ED have lower

RMSEs than all three parametric models for both evaluative metrics, and at all sample sizes.

Given that the only methods currently used by applied researchers for obtaining expected

duration and marginal changes in expected duration use parametric models, this result pro-

vides a strong argument for the use of the COX ED procedures. The GAM approach to

COX ED returns slightly more accurate expected durations than the NPSF approach, and

as expected, each approach generally returns more accurate marginal effects than the other

when its method is employed to generate the true marginal effects. However, these differ-

ences between the GAM and NPSF approaches are quite small compared to the differences

between COX ED and the parametric models. We cannot claim that these results provide

definitive evidence for the use of one COX ED approach over the other. That question will

14Carsey and Harden 2014
15See Section F for results with 5 per cent and 20 per cent right censoring (our conclusions remain the

same).
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likely depend on other factors, such as features of the DGP, the fit of the Cox model, and

the relative sparsity of the data.

E Simulation Methods
The simulations in this paper present us with three challenges. First, we would like

to generate baseline hazard functions that represent a variety of realistic hazard functions

that may or may not be monotonic or unimodal. Second, we must draw simulated dura-

tions from these hazard functions. Third, we need to simulate marginal changes in these

durations as a result of a change in a covariate. We discuss each of these issues in turn

below.

E.1 Simulating Baseline Hazard Functions

Many researchers prefer to use the Cox model in order to avoid making an assumption

that the baseline hazard follows a particular functional form. In particular, researchers often

do not want to assume that the hazard is constant as in the exponential model, monotonic

as in the Weibull model, or unimodal as in the log-normal model. Instead of using the

assumed distributions of those parametric models, in our main simulations we generate

baseline hazards by fitting a cubic spline to randomly selected points according to the

following steps (see Section F for simulations with parametric DGPs). Figure 2 illustrates

key components of the process.
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Figure 2: An Example of the Random Spline DGP
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(b) Cubic Spline Fit
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Note: Panel (a) shows an example of 10 randomly-drawn time points (steps #1–3). Panel (b) gives the cubic
spline fit to those points (step #4). Panel (c) shows the transformation from the cubic spline to a valid PDF
(step #5).
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1. We create a time index that counts integers from 1 to 100. This index serves as the

x-axis for the randomly generated baseline hazard function.

2. We draw 10 points on this graph, as illustrated in panel (a) of Figure 2. The x-

coordinates for two of the points are 1 and 100, and we randomly draw x-coordinates

for the other 8 points without replacement. For example, for the illustration in Figure

2, points are chosen to occur at 1, 6, 12, 20, 40, 51, 55, 71, 85, and 100.

3. We randomly draw the y-coordinates for these points from the standard normal dis-

tribution.

4. We fit a cubic smoothing spline to the 10 points. Panel (b) of Figure 2 shows an

example.

5. Finally, we apply two transformations to this function to produce a valid PDF. First,

we pass the y-values to the standard normal PDF and take the densities. This transfor-

mation ensures that the function is non-negative. Second, we divide the y-values by

their sum to ensure that the function integrates to 1. This final step in the generation

of a baseline hazard function is illustrated in panel (c) of Figure 2.

E.2 Drawing Simulated Durations

Having generated a baseline hazard function, our next challenge is to generate individ-

ual durations from this function in a way that depends on covariates. To that end, we follow

the functional form of the Cox model by using the following steps:

1. We generate a cumulative baseline hazard function by taking the cumulative sum of

the baseline hazard.
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2. We then create a baseline survivor function from the formula

H0(t) =− log(S0[t])

by exponentiating the negative cumulative baseline hazard.16

3. We randomly generate three covariates (column vectors of length N denoted X1, X2,

and X3), three coefficients (scalars denoted β1, β2, and β3), from the standard normal

distribution.17 We then create a linear predictor Xβ by multiplying

Xβ =

[
X1 X2 X3

]
β1

β2

β3

 .

4. We use the baseline survivor function and the linear predictor to construct the individual-

specific survivor functions:18

Si(t) = S0(t)exp(Xiβ ).

In other words, we take the baseline survivor function to the power of each element

of exp(Xβ ). If, for example, the sample size is 50, then exp(Xβ ) has 50 elements

and the baseline survivor function is taken to the power of each of these elements to

produce 50 individual-specific survivor functions.

16Box-Steffensmeier and Jones 2004, 14
17We exclude a constant because the Cox model is formulated without a constant.
18Box-Steffensmeier and Jones 2004, 65
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5. We subtract each individual-specific survivor function from 1 and we take the first

differences to obtain the individual-specific failure PDFs.

6. In order to draw a duration for each observation from each individual-specific failure

PDF we multiply each PDF by 1,000 and round every value up. We then expand a list

of integers from 1 to 100 by these rounded values. For example, if after multiplying

by 1,000 and rounding up the first two values of the PDF become 5 and 20, then the

list of integers from 1 to 100 is expanded to produce 5 copies of 1, 20 copies of 2,

and so on. Finally, we draw one randomly selected element from this expanded list.

The drawn element becomes the duration for the observation.

7. Finally, we randomly set a specified proportion of the observations (5, 10, or 20

per cent) to be right censored. The simulation results reported in the main text use

10 per cent censoring, and the simulation results using 5 per cent and 20 per cent

censoring are reported in Section F. The censored observations are chosen at random,

uncorrelated with the baseline hazard and with the linear predictor.

E.3 Calculating Simulated Marginal Effects

The procedure described above produces simulated durations drawn from a randomly-

generated baseline hazard. The next task is to simulate ‘true’ values of a marginal effect

for a change in a covariate on these durations. Unfortunately, there is not one obvious

method for simulating marginal effects. We therefore use two strategies for calculating the

marginal effects: one that is similar to the way the GAM approach to COX ED calculates

marginal effects, and one similar to the way the NPSF approach calculates marginal effects.

In practice, the two strategies yield very similar results.
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E.3.1 The GAM Method

We begin by taking the exponentiated linear predictor (exp[Xβ ]) using the true coeffi-

cient values that we obtained in section E.2. We then rank these values from the smallest to

the largest, breaking ties randomly. Next we estimate a GAM that regresses the simulated

durations on these ranks.19 We then create two new datasets, one in which the first covari-

ate is set to 0 for every observation, X1 = 0, and one in which the first covariate is set to 1

for every observation, X1 = 1, and we compute the ‘true’ exponentiated linear predictor for

each of these new datasets. We take the median of each of vector of new exponentiated lin-

ear predictors, append these medians to the vector of exponentiated linear predictors from

the simulated data, and compute ranks for this augmented vector. We then use the GAM to

predict durations out of sample for this vector. The difference in predicted duration for the

observations from the data with X1 = 1 and X1 = 0 is the simulated marginal effect.

E.3.2 The NPSF Method

As with the GAM method of calculating a simulated marginal effect, we set the first

covariate in Xβ equal to 1 for every observation, then by setting it equal to 0 for every

observation and compute two new vectors of exponentiated linear predictors. For each

observation in each of the two vectors, we calculate a survivor function using

Si(t0) = S0(t)exp(Xi,0β ) and Si(t1) = S0(t)exp(Xi,1β ), (16)

19We allow the number of knots in the GAM to be determined automatically via generalized cross-

validation, which is invoked in the gam() function in the mgcv library in R by setting the k parameter

equal to −1. The number of knots in the GAM is a tunable parameter in the COX ED package.
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where S0(t) is the baseline survivor function, Xi,0 is the covariate data for individual i in

which the first covariate is fixed to 0, and Xi,1 is the covariate data for individual i in which

the first covariate is fixed to 1. The result is two hypothetical survivor functions for each

observation: Si(t0) if the first covariate is 0 and Si(t1) if the first covariate is 1. For each

observation and each hypothetical survivor function, we compute expected durations using

E(t) =
∫ T

0
Si(t)dt, (17)

which we approximate using a right Riemann sum. We thus have two hypothetical expected

durations for each observation. We take the differences of these expected durations and

report the median across observations as the simulated marginal effect.

E.4 The Simulated Dataset

The simulated durations and the generated covariates together form a simulated dataset.

We fit a Cox model (and COX ED) to the simulated data along with an exponential, Weibull,

and log-normal survival model. For each model, we compute the expected duration of each

observation and compare these estimates to the true durations using an RMSE statistic. To

evaluate the estimated marginal effects for the parametric survival models, we use the fitted

models to predict expected durations out of sample by setting the first covariate to 1 for

every observation and again setting that covariate to 0 for every observation. We subtract

the values with X1 = 0 from those with X1 = 1 and save the median of the differences. We

then compare those medians to the true marginal effects discussed in Section E.3 using

another RMSE statistic.
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F Additional Simulations
In this section we report the results of several auxiliary simulations. In these simulations

we alter the amount of right censoring in these simulated datasets to demonstrate that the

results we report in the main text are not conditioned on the amount of censoring. Next,

we report coverage probability statistics to assess the methods’ capacity to produce the

correct confidence intervals. Finally, we compare COX ED to parametric survival models

by generating survival data from the parametric DGPs.

F.1 Varying Right Censoring

Figures 3 and 4 show the results for both approaches to COX ED and all three para-

metric models in the case of 5 per cent and 20 per cent censoring, respectively. Like

the previous results, each figure contains three barplots. The left-hand plot illustrates the

RMSE for each method in returning accurate expected durations. The center plot illustrates

the RMSE for each method in returning the simulated marginal effects derived using the

NPSF strategy, and the right-hand plot illustrates the RMSE for each method in returning

the simulated marginal effects derived using the GAM strategy.20

For all three levels of right censoring, we find that the GAM and NPSF versions of

COX ED have lower RMSEs than the parametric models for expected durations, and that

all three versions of COX ED have lower RMSEs than the parametric models for marginal

changes in expected duration. We again see that GAM is the strongest approach for ex-

pected durations, that NPSF is the strongest for marginal effects calculated with the NPSF

strategy, and that GAM is the strongest for marginal effects calculated using a GAM. These

20See Section E.3 for a discussion of these two strategies for computing the simulated marginal effect.

26



Fi
gu

re
3:

Si
m

ul
at

io
n

R
es

ul
ts

w
ith

5
Pe

rC
en

tR
ig

ht
C

en
so

ri
ng

(a
)E

xp
ec

te
d

D
ur

at
io

ns

R
M

S
E

22
24

26
28

30
32

34
36

25
.6

4

25
.4

9

25
.4

1

24
.9

725
.5

4

25
.3

9

25
.2

24
.0

6

29
.4

9

29
.1

9

29
.2

2

28
.7

129
.3

3

29
.0

4

29
.1

229
.8

8

28
.9

8

28
.6

4

28
.7

529
.3

4

N
P

S
F

G
A

M

Lo
gn

or
m

al

W
ei

bu
ll

E
xp

on
en

tia
l

N
P

S
F

N
=

50
N

=
20

0
N

=
50

0
N

=
10

00

(b
)M

ar
gi

na
lE

ff
ec

ts
(N

PS
F

M
et

ho
d)

R
M

S
E

5
10

15
20

1.
552.

21

3.
36

6.
89

2.
963.

77

5.
15

10
.9

1

11
.0

6

10
.8

10
.8

7

16
.8

5

13
.2

1

13
.3

9

12
.4

3

17
.9

7

13
.3

5

13
.4

12
.6

9

18
.4

1

N
P

S
F

G
A

M

Lo
gn

or
m

al

W
ei

bu
ll

E
xp

on
en

tia
l

N
P

S
F

N
=

50
N

=
20

0
N

=
50

0
N

=
10

00

(c
)M

ar
gi

na
lE

ff
ec

ts
(G

A
M

M
et

ho
d)

R
M

S
E

5
10

15
20

2.
83.

72

5.
28

10
.6

2

1.
61

2.
55

4.
26

10
.9

3

11
.5

3

11
.4

6

11
.8

1

18
.8

5

13
.4

5

13
.7

8

13
.1

5

20
.0

2

13
.6

13
.8

1

13
.4

1

20
.3

9

N
P

S
F

G
A

M

Lo
gn

or
m

al

W
ei

bu
ll

E
xp

on
en

tia
l

N
P

S
F

N
=

50
N

=
20

0
N

=
50

0
N

=
10

00

N
ot

e:
T

he
gr

ap
hs

re
po

rt
R

M
SE

re
su

lts
fo

r
th

e
ex

pe
ct

ed
du

ra
tio

ns
(p

an
el

a)
,

m
ar

gi
na

l
ef

fe
ct

s
us

in
g

th
e

N
PS

F
m

et
ho

d
to

cr
ea

te
th

e
tr

ue
m

ar
gi

na
l

ef
fe

ct
(p

an
el

b)
,

an
d

m
ar

gi
na

l
ef

fe
ct

s
us

in
g

th
e

G
A

M
m

et
ho

d
to

cr
ea

te
th

e
tr

ue
m

ar
gi

na
l

ef
fe

ct
(p

an
el

c)
.

A
t

ea
ch

si
m

ul
at

io
n

ite
ra

tio
n,

5
pe

r
ce

nt
of

th
e

ob
se

rv
at

io
ns

ar
e

ra
nd

om
ly

se
le

ct
ed

to
be

ri
gh

t-
ce

ns
or

ed
.

E
ac

h
si

m
ul

at
io

n
co

nt
ai

ns
1,

00
0

ite
ra

tio
ns

.
W

ith
in

ea
ch

si
m

ul
at

io
n

ite
ra

tio
n,

w
e

ob
ta

in
N

ex
pe

ct
ed

du
ra

tio
ns

,b
ut

on
ly

on
e

m
ar

gi
na

l
ch

an
ge

in
du

ra
tio

n.
E

ac
h

ite
ra

tio
n

al
lo

w
s

us
to

ca
lc

ul
at

e
an

R
M

SE
fr

om
th

e
N

ex
pe

ct
ed

du
ra

tio
ns

,
an

d
w

e
re

po
rt

th
e

m
ea

n
of

th
es

e
R

M
SE

st
at

is
tic

s
ac

ro
ss

si
m

ul
at

io
n

ite
ra

tio
ns

.
Fo

r
th

e
m

ar
gi

na
l

ef
fe

ct
s,

w
e

ca
n

on
ly

ca
lc

ul
at

e
an

R
M

SE
on

ce
al

lo
f

th
e

si
m

ul
at

io
n

ite
ra

tio
ns

ar
e

co
m

pl
et

e.
In

al
lc

as
es

sm
al

le
r

R
M

SE
va

lu
es

in
di

ca
te

le
ss

er
ro

r,
an

d
th

us
be

tte
rp

er
fo

rm
an

ce
.

27



Fi
gu

re
4:

Si
m

ul
at

io
n

R
es

ul
ts

w
ith

20
Pe

rC
en

tR
ig

ht
C

en
so

ri
ng

(a
)E

xp
ec

te
d

D
ur

at
io

ns

R
M

S
E

25
30

35
40

25
.6

7

25
.7

1

25
.6

2

25
.0

7

25
.4

4

25
.4

5

25
.2

7

24
.2

8

29
.5

5

29
.4

4

29
.7

6

30
.1

2

32
.6

5

32
.5

32
.7

433
.8

5

33
.3

7

33
.2

5

33
.7

6

35
.6

4

N
P

S
F

G
A

M

Lo
gn

or
m

al

W
ei

bu
ll

E
xp

on
en

tia
l

N
P

S
F

N
=

50
N

=
20

0
N

=
50

0
N

=
10

00

(b
)M

ar
gi

na
lE

ff
ec

ts
(N

PS
F

M
et

ho
d)

R
M

S
E

5
10

15
20

25
30

35

2.
122.

733.
98

8.
04

3.
144.

18

6.
27

12
.2

11
.2

113
.2

6

14
.3

9

22
.7

6

14
.6

816
.3

1

15
.8

7

25
.7

9

16
.0

717
.8

3

17
.9

1

29
.0

3

N
P

S
F

G
A

M

Lo
gn

or
m

al

W
ei

bu
ll

E
xp

on
en

tia
l

N
P

S
F

N
=

50
N

=
20

0
N

=
50

0
N

=
10

00

(c
)M

ar
gi

na
lE

ff
ec

ts
(G

A
M

M
et

ho
d)

R
M

S
E

5
10

15
20

25
30

35

3.
144.

03

5.
97

12
.4

3

1.
662.

83

4.
92

12
.2

9

11
.5

513
.5

915
.1

2

24
.6

3

14
.7

116
.4

3

16
.4

1

27
.6

16
.0

817
.8

9

18
.3

5

30
.5

7

N
P

S
F

G
A

M

Lo
gn

or
m

al

W
ei

bu
ll

E
xp

on
en

tia
l

N
P

S
F

N
=

50
N

=
20

0
N

=
50

0
N

=
10

00

N
ot

e:
T

he
gr

ap
hs

re
po

rt
R

M
SE

re
su

lts
fo

r
th

e
ex

pe
ct

ed
du

ra
tio

ns
(p

an
el

a)
,

m
ar

gi
na

l
ef

fe
ct

s
us

in
g

th
e

N
PS

F
m

et
ho

d
to

cr
ea

te
th

e
tr

ue
m

ar
gi

na
l

ef
fe

ct
(p

an
el

b)
,

an
d

m
ar

gi
na

l
ef

fe
ct

s
us

in
g

th
e

G
A

M
m

et
ho

d
to

cr
ea

te
th

e
tr

ue
m

ar
gi

na
l

ef
fe

ct
(p

an
el

c)
.

A
t

ea
ch

si
m

ul
at

io
n

ite
ra

tio
n,

20
pe

r
ce

nt
of

th
e

ob
se

rv
at

io
ns

ar
e

ra
nd

om
ly

se
le

ct
ed

to
be

ri
gh

t-
ce

ns
or

ed
.

E
ac

h
si

m
ul

at
io

n
co

nt
ai

ns
1,

00
0

ite
ra

tio
ns

.
W

ith
in

ea
ch

si
m

ul
at

io
n

ite
ra

tio
n,

w
e

ob
ta

in
N

ex
pe

ct
ed

du
ra

tio
ns

,b
ut

on
ly

on
e

m
ar

gi
na

lc
ha

ng
e

in
du

ra
tio

n.
E

ac
h

ite
ra

tio
n

al
lo

w
s

us
to

ca
lc

ul
at

e
an

R
M

SE
fr

om
th

e
N

ex
pe

ct
ed

du
ra

tio
ns

,a
nd

w
e

re
po

rt
th

e
m

ea
n

of
th

es
e

R
M

SE
st

at
is

tic
s

ac
ro

ss
si

m
ul

at
io

n
ite

ra
tio

ns
.

Fo
r

th
e

m
ar

gi
na

l
ef

fe
ct

s,
w

e
ca

n
on

ly
ca

lc
ul

at
e

an
R

M
SE

on
ce

al
lo

f
th

e
si

m
ul

at
io

n
ite

ra
tio

ns
ar

e
co

m
pl

et
e.

In
al

lc
as

es
sm

al
le

r
R

M
SE

va
lu

es
in

di
ca

te
le

ss
er

ro
r,

an
d

th
us

be
tte

rp
er

fo
rm

an
ce

.

28



conclusions correspond to the findings reported in the main text.

F.2 Coverage Probability Simuations

In addition to evaluating the COX ED point estimates, we also use simulation to assess

whether the methods produce the correct confidence intervals. We accomplish this with

coverage probabilities.21 At each iteration of the simulation, and with each of the COX ED

methods, we compute a confidence interval around the estimated marginal effect. After the

simulation is complete, we then compute, for each estimator, the proportion of iterations

in which the true marginal effect is contained in the confidence interval. We compute 95

per cent confidence intervals in all cases, so this proportion should be (close to) 0.95 if the

method is accurately capturing the true variation in the marginal effect. Values above 0.95

reflect confidence intervals that are, on average, too large and values below 0.95 indicate

overconfidence.

We conduct these simulations with the random spline method described above at the

three levels of censoring used previously (5, 10, and 20 per cent). We compute coverage

probabilities for the GAM, and NPSF methods using both methods for computing the true

marginal effect. We set the number of bootstrap iterations to 200 and the number of simu-

lation iterations to 1,000. These simulations require a considerable amount of computation

time because each iteration involves three estimators that each generate 200 bootstrap sam-

ples. Accordingly, we limit our sample sizes to N = 50 and N = 200. Table 2 presents the

results.

Overall, the GAM and NPSF methods perform fairly well in these simulations, with

GAM performing the best. Using the GAM strategy for the true marginal effect, the GAM

21See Carsey and Harden 2014, 92–3
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Table 2: Coverage Probability Simulation Results

Method N Censoring Coverage Probabilities

GAM DGP NPSF DGP

GAM

50
5% 0.918 0.916
10% 0.923 0.934
20% 0.910 0.918

200
5% 0.925 0.898
10% 0.924 0.909
20% 0.916 0.907

NPSF

50
5% 0.836 0.948
10% 0.848 0.958
20% 0.839 0.934

200
5% 0.782 0.933
10% 0.804 0.939
20% 0.799 0.935

Note: Cell entries report simulation coverage probabilities for each
estimator’s 95 per cent confidence interval after simulating the true
marginal effect with the GAM and NPSF DGPs. A value of 0.95
indicates that the method is accurately capturing the true variation
in the marginal effect. Values above 0.95 reflect confidence inter-
vals that are, on average, too large and values below 0.95 indicate
overconfidence.

method coverage probabilities range between 0.910 and 0.925, while those of the NPSF

method range between 0.782 and 0.848. With the NPSF strategy, the NPSF method cover-

age probabilities are very close to the standard of 0.95, ranging from 0.933 to 0.958. The

GAM coverage probabilities are also close, ranging from 0.898 to 0.934.

F.3 Simulations from Parametric Hazard Functions

In the simulations described above, we generate simulated durations from baseline haz-

ard functions that do not follow any particular functional parametric form. We argue that

these baseline hazard functions are more realistic than common parametric functions. How-
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ever, these functions may also favor COX ED over the competing survival models because

the exponential, Weibull, and log-normal models are usually misspecified. To compare

the estimators under ideal conditions for the parametric models, we simulate the durations

from the assumed distribution of each of the parametric models, then compare each model

to COX ED (GAM approach).

We conduct three simulations from parametric hazard functions. First, we generate

the baseline hazard from an exponential distribution in which the rate parameter is set to

1
exp(Xβ ) , and we compare the relative performance of the exponential survival model and

COX ED. Second, we generate the baseline hazard from a Weibull distribution in which

the scale parameter is set to exp(Xβ ) and the shape parameter to 5, and we consider the

performance of COX ED relative to the Weibull survival model. Finally, we generate the

baseline hazard from the log of the normal distribution with a mean equal to exp(Xβ ) and a

standard deviation equal to 1, and we compare COX ED and the log-normal survival model.

In all of the parametric simulations we set the proportion of right censoring to 10 per cent

of the observations.

In Table 3 we present the results for the three parametric models as ratios over the

RMSE for COX ED. Within each simulation iteration we obtain N expected durations from

each method, but only one marginal change in duration. Thus, in each iteration we calculate

an RMSE for each method from the N expected durations. We report the mean of the ratios

of these RMSE statistics across simulation iterations. For the marginal effects, we can

only calculate an RMSE for each method once all of the simulation iterations are complete.

Thus, we simply report the ratios of those statistics. In all cases ratios that are greater than

1 favor COX ED because the RMSE (or average RMSE) for COX ED is greater than the
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RMSE for the parametric model.

Table 3: Comparison of Expected Duration RMSE and Marginal Change in Expected Du-
ration RMSE with the Parametric DGPs

Model Sample Size Expected Durations Marginal ∆

Average Ratio % Ratios > 1 Ratio

Exponential

50 1.113 77% 0.856
200 1.031 67% 0.745
500 1.004 64% 0.740

1,000 0.995 56% 0.820

Weibull

50 1.088 69% 0.514
200 0.953 55% 0.588
500 0.886 42% 0.420

1,000 0.864 38% 0.395

Log-normal

50 1.131 96% 0.936
200 1.080 100% 0.322
500 1.065 100% 0.450

1,000 1.054 100% 0.241
Note: Cell entries report the ratio of the parametric models’ RMSE to the COX ED (GAM
approach) RMSE for each model/sample size combination with the parametric DGPs. Val-
ues less than 1 indicate better performance by the parametric models. Values greater than
1 indicate better performance by COX ED. The first two columns of results summarize the
ratios of the expected duration RMSEs: the average ratio and the proportion greater than 1.
The third column of results gives the ratios of the marginal effect RMSE. The proportion
of observations that are right censored is fixed at 10 per cent.

The expected duration RMSEs show that COX ED (GAM approach) and the exponen-

tial model are roughly similar in performance when the DGP is exponential. The expected

durations slightly favor COX ED , while the marginal effect RMSE ratios indicate that the

exponential model is somewhat better. The Weibull model results show a stronger pattern.

When the true DGP comes from the Weibull distribution, the Weibull model outperforms

COX ED with respect to recovering marginal changes in duration, and with respect to re-

covering expected durations when the sample size is 200 or larger. The log-normal results
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are somewhat different. In that case COX ED produces the smaller expected duration RM-

SEs across the four sample sizes. However, the marginal effect RMSE ratios show that the

log-normal model outperforms COX ED.

Overall, these results show that when the baseline hazard comes from a known dis-

tribution (an unlikely situation in applied research), the corresponding parametric survival

model’s performance relative to COX ED improves. The parametric models consistently re-

cover the marginal effect with lower RMSE. However, in several instances COX ED (GAM

approach) still performs nearly equal or better than the parametric models by our RMSE

criteria in computing expected durations for each observation. This ‘over-performance’ of

COX ED is evident at the smaller sample sizes. It may be that the the flexibility of the GAM

is overfitting the sample when there is less data relative to the parametric assumption, but

the parametric fit improves as the sample size increases.

G Additional Replications
Here we present replications of two more published studies from political science: Box-

Steffensmeier22 and Mattes and Savun.23

G.1 GAM Approach with TVC: Box-Steffensmeier 1996

Box-Steffensmeier examines whether U.S. House incumbents’ ability to raise campaign

funds can effectively deter quality challengers from entering the race. The theoretical ex-

pectation is that as incumbents raise more money, challengers further delay their decision

to run for the incumbent’s seat. She employs data on 397 House races in the 1989–90

election cycle to test this hypothesis.

22Box-Steffensmeier 1996
23Mattes and Savun 2010
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The dependent variable in this analysis is the number of weeks after January 1, 1989

when a challenger entered the race. Races in which no challenger entered are coded as

the number of weeks after January 1 when the state’s primary filing deadline occurred, and

are treated as censored. The key independent variable is the incumbent’s War chest, or the

amount of money in millions of dollars that the incumbent has in reserve at a given time.

Importantly, this measure updates over the course of five Federal Election Commission

(FEC) reporting periods, so it is a time-varying covariate (TVC). The theory predicts a

negative coefficient on this variable, which would indicate that as the incumbent raises

more money, the hazard of challenger entry declines (and the time until entry increases).

The results of the Cox model provide support. The coefficient on War chest is neg-

ative and statistically significant. Box-Steffensmeier explains that ‘each $100,000 in an

incumbent’s war chest decreases the hazard of a high quality challenger entering by 16 per

cent.’24 Thus, the data indicate that building a war chest is an effective way to avoid being

challenged in an election.

We employed the GAM approach—which can accommodate TVCs25—to give an inter-

pretation of these results in terms of the number of weeks a challenger’s entry is expected

to be delayed with a change in the incumbent’s fundraising efforts. We contend that this is

more meaningful than the hazard-rate quantities that Box-Steffensmeier reports. Figure 5

gives the expected duration, in weeks, until challenger entry for two values of War chest:

$710,000 (the median) and $850,000 (the 80th percentile). It also reports the difference

between those two estimates.
24Box-Steffensmeier 1996, 365
25A function in our R package can perform the COX ED procedure using the counting-process data

structure that TVCs require.
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Figure 5: The Effect of Incumbent War Chest on the Expected Time Until Quality Chal-
lenger Entry into U.S. House Races (Box-Steffensmeier 1996)
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Note: The graph plots the expected number of weeks until quality challenger entry for the two
values of an incumbent’s War chest—$710,000 (median) and $850,000 (80th percentile)—and
the difference between the two estimates. Lines indicate 95 per cent confidence intervals.

Figure 5 supports Box-Steffensmeier’s assertion that the size of an incumbent’s cam-

paign funds corresponds with a delay in challenger entry. All else equal, an incumbent

with $710,000 in reserve expects to face a challenger 51 weeks from January 1 while one

with $850,000 in campaign money will not be challenged until 59 weeks. However, it is
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important to note that there is quite a bit of uncertainty around these estimates and so the

difference of 8 weeks is not statistically significant.

The relatively large confidence intervals shown in Figure 5 appear due to the fact that

only a small number of challengers appear in the data, and so many observations are right

censored. As a result, the GAM is fit with only 40 observations (see Figure 7). This high-

lights a potential drawback of the GAM approach. The GAM relies on the non-censored

data, and so it will be estimated with more uncertainty if a large proportion of the obser-

vations are censored. However, because the method accounts for uncertainty from the Cox

model and the GAM, this makes it susceptible to the more conservative Type II errors: fail-

ing to find a significant effect when in truth there is one. In this case, while not statistically

significant, the substantive magnitude of an 8-week difference is still noteworthy. A delay

of two months over the course of a campaign gives an incumbent a considerable amount of

time to generate electoral support without competition.

G.2 GAM Approach with a Small Sample: Mattes and Savun 2010

Our final replication study is Mattes and Savun’s analysis of the duration of civil war

peace agreements. The central point the authors make is that provisions that require parties

to reveal otherwise private military information can greatly increase the endurance of an

agreement. Using data covering 51 civil wars from 1945–2005, they quantify the effect of

peace agreements with provisions designed to reduce uncertainty between sides on the life

of the agreement. These provisions include third-party monitoring, encouraging belliger-

ents to provide troop and weapon information, and third-party verification of information.26

The dependent variable is the number of months a peace agreement lasted. Mattes and

26See Mattes and Savun 2010, 516–17
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Savun model this variable as a function of several covariates: a count of the Uncertainty-

reducing provisions in the peace agreement and control variables. They hypothesize that

‘[t]he greater the number of uncertainty-reducing provisions in a civil war agreement, the

less likely is the recurrence of civil war between domestic belligerents.’27 This hypothesis,

which is framed in terms of risk, predicts a negative coefficient on Uncertainty-reducing

provisions, indicating that as the number of provisions increases, the hazard of peace failure

declines (longer peace times).

The Cox model results support the authors’ hypothesis, producing a negative and sta-

tistically significant estimate on Uncertainty-reducing provisions. Mattes and Savun report

that its effect is ‘not only statistically significant but also substantively important.’28 An

increase from zero provisions to one provision corresponds with a 46 per cent drop in the

hazard rate of peace failure and an increase from zero to three provisions decreases the

hazard rate by 84 per cent. From this, they conclude that provisions that reveal information

about warring parties are a useful policy prescription for the international community.

Although the authors frame their hypothesis in the language of risk, we contend that

understanding the results in terms of time is still useful.The authors label a drop of 46

per cent in the hazard rate as ‘substantively important.’ This leads to a key question: what

percentage drop would be considered not substantively important? Would 10 or 20 per cent

be too small to indicate that Uncertainty-reducing provisions exerts a meaningful effect?

Assessing the magnitude of effects is always arbitrary to some degree, but this issue is

compounded when the scale of the effect is not meaningful. It is difficult to state whether

a drop of 46 per cent really is ‘large’ or ‘small.’ Using the GAM approach, we assess the

27Mattes and Savun 2010, 517
28Mattes and Savun 2010, 521
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impact of Uncertainty-reducing provisions on a much more intuitive quantity: the amount

of time peace is expected to last.

Figure 6 supports Mattes and Savun’s assertion that Uncertainty-reducing provisions

exerts a substantively important effect on the duration of civil war peace agreements,

though there is a great deal of uncertainty in the estimates. Averaging over the rest of

the model, an agreement with no provisions is expected to last about 89 months. Including

one provision increases that estimate to about 109, or a gain of 20 months. Moving to two

and three provisions brings the estimate to 126 and 158 months, respectively. However,

while all of these estimates are statistically significantly different from zero, they are not

statistically distinguishable from one another. This is not too surprising given the small

sample of 51 cases. More importantly, the data suggest that these estimates are substan-

tively meaningful. The expected difference between a case with no provisions and one

with three provisions is 69 months, or the equivalent of moving from the 25th percentile of

the observed durations to the 55th. Put differently, it represents almost six additional years

of peace. Despite the large confidence intervals, these results indicate that provisions that

reduce uncertainty play an important role in the life of peace agreements.

While we reach the same general conclusion as do Mattes and Savun, our analysis using

COX ED provides more substantive detail on the effects of Uncertainty-reducing provisions

on civil war peace duration. This is particularly important given that the authors’ research

carries important policy implications. They state that ‘[e]ncouraging the adoption of such

uncertainty-reducing provisions in civil war settlements may be a useful policy in the in-

ternational community’s effort to establish peace in civil-war-torn societies.’29 We suspect

29Mattes and Savun 2010, 512
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Figure 6: The Effect of Uncertainty-Reducing Provisions on the Expected Duration of Civil
War Peace Agreements (Mattes and Savun 2010)
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Note: The graph plots the expected peace agreement length, in months, for each observed
value of Uncertainty-reducing provisions. Lines indicate 95 per cent confidence intervals.

that should political scientists be given the forum to formally make such recommendations,

presenting evidence in terms of the expected length of peace agreements rather than rela-

tive changes in the hazard rate would be more intuitive to and make a stronger impression

on policymakers.
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H Replication Model GAM Fits
Figure 7 presents the COX ED GAM fits for the Box-Steffensmeier30 and Mattes and

Savun31 replication models. In both graphs the points represent non-censored observations,

which are used to fit the GAMs.

Figure 7: Replication Model GAM Fits
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(b) Mattes and Savun (2010)
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Note: The graphs present the COX ED GAM fits for the Box-Steffensmeier (1996) and Mattes and Savun
(2010) models. Shading indicates 95 per cent confidence intervals.

30Box-Steffensmeier 1996
31Mattes and Savun 2010

40



References
Box-Steffensmeier, Janet M. 1996. “A Dynamic Analysis of the Role of War Chests in

Campaign Strategy.” American Journal of Political Science 40(2): 352–371.

Box-Steffensmeier, Janet M., and Bradford S. Jones. 2004. Event History Modeling: A

Guide for Social Scientists. New York: Cambridge University Press.

Carsey, Thomas M., and Jeffrey J. Harden. 2014. Monte Carlo Simulation and Resampling

Methods for Social Science. Thousand Oaks, CA: Sage.

Cox, David R. 1975. “Partial Likelihood.” Biometrika 62(2): 269–276.

Desmarais, Bruce A., and Jeffrey J. Harden. 2012. “Comparing Partial Likelihood and

Robust Estimation Methods for the Cox Regression Model.” Political Analysis 20(1):

113–135.

Harden, Jeffrey J., and Jonathan Kropko. 2017. “Simulating Duration Data for the Cox

Model.” Working paper.

Mattes, Michaela, and Burcu Savun. 2010. “Information, Agreement Design, and the Dura-

bility of Civil War Settlements.” American Journal of Political Science 54(2): 511–524.

Senese, Paul D., and Stephen L. Quackenbush. 2003. “Sowing the Seeds of Conflict:The

Effect of Dispute Settlements on Durations of Peace.” Journal of Politics 65(3): 696–

717.

Therneau, Terry. 2013. “survival: A Package for Survival Analysis in S.” R package

version 2.37-4. http://CRAN.R-project.org/package=survival.

41

http://CRAN.R-project.org/package=survival

	A Brief Summary of Survival Models
	Parametric Survival Models
	The Cox Proportional Hazards Model

	Journal Article Meta Analysis
	Searching for Articles
	Coding Hypothesis Text
	Hypothesis Framing Results
	Coding the Interpretation Methods
	Meta Analysis Conclusions

	The Relationship Between Hazard and Failure Probability
	Summary of the Monte Carlo Simulations
	Simulation Methods
	Simulating Baseline Hazard Functions
	Drawing Simulated Durations
	Calculating Simulated Marginal Effects
	The GAM Method
	The NPSF Method

	The Simulated Dataset

	Additional Simulations
	Varying Right Censoring
	Coverage Probability Simuations
	Simulations from Parametric Hazard Functions

	Additional Replications
	GAM Approach with TVC: Box-Steffensmeier:1996
	GAM Approach with a Small Sample: Mattes:2010 

	Replication Model GAM Fits

