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1 Stochastic model parameters

We refer to for extensive reviews on the information-theoretic approach in stochastic elasticity,
and to the various papers cited in the main text for numerous examples and applications of
continuum models with stochastic parameters. Here, we adopt the following hypothesis required
by the stochastic models for nematic liquid crystal elastomers (LCEs) presented in [9]: For any
given finite deformation, at any point in the material, the shear modulus µ > 0, the shape
parameter a > 0, and their inverse, 1/µ and 1/a, respectively, are second order random variables,
i.e., they have finite mean value and finite variance. For the shear modulus µ (and similarly for
a), to construct a prior probability law, we note that this assumption is guaranteed by setting
the following mathematical expectations:{

E [µ] = µ > 0,

E [log µ] = ν, such that |ν| < +∞.
(1)

The first constraint in (1) specifies the mean value for the random shear modulus µ, while the
second constraint provides a condition from which it follows that 1/µ is a second order random
variable. Then, by the maximum entropy principle, the shear modulus µ with mean value µ and

standard deviation ‖µ‖ =
√

Var[µ] (defined as the square root of the variance, Var[µ]) follows a
Gamma probability distribution with shape and scale parameters ρ1 > 0 and ρ2 > 0 respectively,
such that

µ = ρ1ρ2, ‖µ‖ =
√
ρ1ρ2. (2)

The corresponding probability density function takes the form

g(µ; ρ1, ρ2) =
µρ1−1e−µ/ρ2

ρρ12 Γ(ρ1)
, for µ > 0 and ρ1, ρ2 > 0, (3)

where Γ : R∗+ → R is the complete Gamma function

Γ(z) =

∫ +∞

0
tz−1e−tdt. (4)

The word ‘hyperparameters’ is often used for ρ1 and ρ2 to distinguish them from µ and other
material constants.

When µ = µ1 + µ2, setting a fixed constant value b > −∞, such that µi > b, i = 1, 2 (e.g.,
b = 0 if µ1 > 0 and µ2 > 0, although b is not unique in general), we define the auxiliary random
variable

R1 =
µ1 − b
µ− 2b

, (5)

1



such that 0 < R1 < 1. Then, the random model parameters can be expressed equivalently as
follows,

µ1 = R1(µ− 2b) + b, µ2 = µ− µ1 = (1−R1)(µ− 2b) + b. (6)

It is reasonable to assume{
E [log R1] = ν1, such that |ν1| < +∞,
E [log(1−R1)] = ν2, such that |ν2| < +∞,

(7)

in which case, the random variable R1 follows a standard Beta distribution, with hyperparame-
ters ξ1 > 0 and ξ2 > 0 satisfying

R1 =
ξ1

ξ1 + ξ2
, Var[R1] =

ξ1ξ2

(ξ1 + ξ2)
2 (ξ1 + ξ2 + 1)

, (8)

where R1 is the mean value and Var[R1] is the variance of R1. The associated probability density
function is

β(r; ξ1, ξ2) =
rξ1−1(1− r)ξ2−1

B(ξ1, ξ2)
, for r ∈ (0, 1) and ξ1, ξ2 > 0, (9)

where B : R∗+ × R∗+ → R is the Beta function

B(x, y) =

∫ 1

0
tx−1(1− t)y−1dt. (10)

Then, for the random coefficients given by (6), the corresponding mean values are

µ
1

= R1(µ− 2b) + b, µ
2

= µ− µ
1

= (1−R1)(µ− 2b) + b, (11)

and the variances and covariance take the form, respectively,

Var [µ1] = (µ− 2b)2Var[R1] + (R1)
2Var[µ] + Var[µ]Var[R1], (12)

Var [µ2] = (µ− 2b)2Var[R1] + (1−R1)
2Var[µ] + Var[µ]Var[R1], (13)

Cov[µ1, µ2] =
1

2
(Var[µ]−Var[µ1]−Var[µ2]) . (14)

2 Stress tensors for ideal nematic elastomers

We briefly recall the relations between the stress tensors of an ideal nematic elastomer and those
of the underlying hyperelastic model. These relations were originally obtained in [10]. For an
ideal incompressible nematic elastomer, the neoclassical strain-energy density function takes the
general form

W (nc)(F,n) = W (A), (15)

where the right-hand side represents the strain-energy function of a homogeneous isotropic in-
compressible hyperelastic material, depending only on the elastic deformation gradient A. On
the left-hand side, n is a unit vector for the localized direction of uniaxial nematic alignment
in the present configuration; F = GA is the deformation gradient tensor with respect to the
reference isotropic state, with G = a−1/6I +

(
a1/3 − a−1/6

)
n ⊗ n the ‘spontaneous’ (or ‘natu-

ral’) deformation tensor and A the (local) elastic deformation tensor; a > 0 is a temperature-
dependent, spatially-independent shape parameter; ⊗ denotes the tensor product of two vectors;
and I = diag(1, 1, 1) is the identity tensor.

The strain-energy function given by (15) takes the equivalent form

W(nc)(λ1, λ2, λ3,n) = W (nc)(F,n), (16)
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where {λ2i }i=1,2,3 are the eigenvalues of the tensor FFT .
For the hyperelastic material described by the strain-energy function W (A), the Cauchy

stress tensor (representing the internal force per unit of deformed area acting within the deformed
solid) is equal to

T = (detA)−1
∂W

∂A
AT − pI, (17)

where p denotes the Lagrange multiplier for the incompressibility constraint detA = 1.
The associated first Piola-Kirchhoff stress tensor (representing the internal force per unit of

undeformed area acting within the deformed solid) is then

P = TCof(A), (18)

where Cof(A) = (detA)A−T is the cofactor of A.

2.1 Free director

When the nematic director is ‘free’ to rotate relative to the elastic matrix, F and n are inde-
pendent variables, and the Cauchy stress tensor for the nematic material with the strain-energy
function described by (15) is calculated as follows,

T(nc) = J−1
∂W (nc)

∂F
FT − p(nc)I

= J−1G−1
∂W

∂A
ATG− p(nc)I

= J−1G−1TG,

(19)

where T is the Cauchy stress tensor defined by (17), J = detF, and the scalar p(nc) represents
the Lagrange multiplier for the internal constraint J = 1.

The principal components
(
T
(nc)
1 , T

(nc)
2 , T

(nc)
3

)
of the Cauchy stress defined by (19) are the

solutions of the characteristic equation

det
(
T(nc) − ΛI

)
= 0. (20)

Since
det
(
T(nc) − ΛI

)
= det

[
G−1

(
J−1T− ΛI

)
G
]

= J−1 det (T− JΛI) , (21)

it follows that the principal Cauchy stresses for the underlying hyperelastic model satisfy

(T1, T2, T3) = J
(
T
(nc)
1 , T

(nc)
2 , T

(nc)
3

)
. (22)

Therefore, if the Baker-Ericksen inequalities hold for the hyperelastic model, then the greater
principal Cauchy stress occurs in the direction of the greater principal elastic stretch for the
nematic model. We recall that, for a hyperelastic material, the Baker-Ericksen inequalities state
that the greater principal stress occurs in the direction of the greater principal stretch [1, 4].

In the presence of a nematic field, the total Cauchy stress tensor T(nc) given by (19) is not
symmetric in general. In addition, the following condition is required,

∂W (nc)

∂n
= 0, (23)

or equivalently, by the principle of material objectivity,

1

2

(
T(nc) −T(nc)T

)
n = 0, (24)

where
(
T(nc) −T(nc)T

)
/2 represents the skew-symmetric part of the Cauchy stress tensor.

The first Piola-Kirchhoff stress tensor for the nematic material is equal to

P(nc) = T(nc)Cof(F) = G−1TA−T = G−1P, (25)

where P is the first Piola-Kirchhoff stress given by (18).
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2.2 Frozen director

If the nematic director is ‘frozen’, the Cauchy stress tensor for the nematic material takes the
form

T̂
(nc)

= J−1G−1TG− J−1q
(
I− Fn0 ⊗ Fn0

|Fn0|2

)
n⊗ Fn0

|Fn0|
, (26)

where T is the Cauchy stress defined by (17), J = detF, p(nc) is the Lagrange multiplier for the
volume constraint J = 1, and q is the Lagrange multiplier for the constraint

n =
Fn0

|Fn0|
. (27)

As the Cauchy stress tensor given by (26) is not symmetric in general, the following additional
condition must hold,

∂Ŵ (nc)

∂n
= 0, (28)

or equivalently,
1

2

(
T̂

(nc)
− T̂

(nc)T
)
n = 0. (29)

The corresponding first Piola-Kirchhoff stress tensor for the nematic material is equal to

P̂
(nc)

= T̂
(nc)

Cof(F). (30)

3 Cavitation of a nematic sphere

The static and dynamic cavitation of homogeneous and radially inhomogeneous isotropic incom-
pressible hyperelastic spheres with stochastic material parameters was analyzed in [8,11] where
up-to-date reviews of the relevant literature are presented. For an inflated elastic sphere, the
radially symmetric deformation takes the form

r = g(R), θ = Θ, φ = Φ, (31)

where (R,Θ,Φ) and (r, θ, φ) are the spherical polar coordinates in the reference and current
configuration, respectively, such that 0 ≤ R ≤ B, and g(R) ≥ 0 is to be determined. The
corresponding deformation gradient is equal to A = diag (α1, α2, α3), with

α1 =
dg

dR
= α−2, α2 = α3 =

g(R)

R
=

r

R
= α, (32)

where α1 and α2 = α3 are the radial and hoop principal stretches, respectively, and dg/dR
denotes the derivative of g with respect to R. By (32),

g2
dg

dR
= R2, (33)

hence,

g(R) =
(
R3 + c3

)1/3
, (34)

where c ≥ 0 is a constant to be calculated. If c > 0, then g(R) → c > 0 as R → 0+, and a
spherical cavity of radius c forms at the center of the sphere, from zero initial radius, otherwise
the sphere remains undeformed.

In particular, for a static sphere of neo-Hookean material, if the surface of the cavity is
traction-free, the radial component of the Cauchy stress is equal to (see [11] for a detailed
derivation using the same notation)

Trr(b) =
2

3

∫ ∞
x3+1

µ
1 + u

u7/3
du, (35)
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where x = c/B. After evaluating the integral in (35), the required uniform dead-load traction
at the outer surface, R = B, in the reference configuration, takes the form

P =
(
x3 + 1

)2/3
Trr(b) = 2µ

[(
x3 + 1

)1/3
+

1

4 (x3 + 1)2/3

]
, (36)

and increases as x increases. The critical dead load for the onset of cavitation is then

P0 = lim
x→0+

P =
5µ

2
. (37)

To analyze the stability of this cavitation, we study the behavior of the cavity opening, with
radius c as a function of P , in a neighborhood of P0. After differentiating the function given by
(36), with respect to the dimensionless cavity radius x = c/B, we have

dP

dx
= 2µx2

[
1

(x3 + 1)2/3
− 1

2 (x3 + 1)5/3

]
> 0, (38)

i.e., the cavitation is stable, regardless of the material parameter µ > 0.
For a nematic sphere of neoclassical material with the strain-energy function given by

(15) derived from the neo-Hookean hyperelastic model, when F = diag
(
λ−2, λ, λ

)
and G =

diag
(
a−1/3, a1/6, a1/6

)
, with λ > a1/6 > 1, the Cauchy stress is equal to that of the neo-Hookean

sphere. Hence, T
(nc)
rr = Trr, and the first Piola-Kirchhoff stress representing the critical dead

load for cavitation in the nematic sphere is equal to P
(nc)
0 = a1/3P0 = 5a1/3µ/2.

4 Inflation of a nematic spherical shell

Static and dynamic inflation instabilities of homogeneous and radially inhomogeneous isotropic
incompressible hyperelastic spheres with stochastic material parameters were analyzed in [5–7].
For a thin hyperelastic spherical shell, such that 0 < ε = (B − A)/A � 1, where A and B
represent the inner and outer radii of the reference shell, respectively, if the external pressure is
equal to zero, then the internal pressure can be approximated as follows,

T =
ε

α2

dW
dα

, (39)

where the deformation gradient for radially symmetric inflation is equal to A = diag
(
α−2, α, α

)
,

with α = r/R > 1, and W(α) = W (A). The critical value of α where a limit-point instability
occurs is obtained by solving for α > 1 the following equation,

dT

dα
= 0, (40)

where T is the radial component of the Cauchy stress given by (39).
For a nematic sphere of neoclassical material with the strain-energy function given by (15)

derived from the Mooney-Rivlin hyperelastic model, when F = diag
(
λ−2, λ, λ

)
and G =

diag
(
a−1/3, a1/6, a1/6

)
, with λ > a1/6 > 1, the Cauchy stress is equal to that of the hypere-

lastic sphere. If the shell is thin, assuming zero external pressure, the internal pressure can be
approximated as

T (nc) = T =
ε

α2

dW
dα

=
εa1/2

λ2
dW(nc)

dλ
. (41)

Then, the critical value of λ where a limit-point instability occurs is found by solving for λ > a1/3

the equation
dT (nc)

dλ
= 0, (42)

with T (nc) given by (41).
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