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SUPPLEMENTARY METHODS 
 
Molecular profiling of PDOX models 
Our current cohort comprises 46 glioma PDOX models. 39 PDOX models were characterized at the 
genetic and epigenetic levels. Targeted sequencing, copy number aberrations and DNA methylation 
profiling of PDOX models were performed as previously described [1] unless specified otherwise 
below.  
 
Targeted DNA sequencing 
500ng of extracted gDNA were diluted in 130μl low TE buffer (Qiagen) and sheared via sonication 
on a Bioruptor® UCD-200 (Diagenode) to an average fragment size of 150-300 bp DNA fragment 
size was determined using the DNA 1000 Kit on the Bioanalyzer 2100 (Agilent Technologies). A 
custom-made Agilent SureSelectXT Target Enrichment Library (Cat No. G9612B) was used for 
Illumina Paired-End Multiplexed Sequencing on a MiSeq® instrument (Illumina). The panel design 
called panel 1 for the Target Enrichment Library was fully adapted from [2]. After design changes 
that were made using SureDesign - Agilent eArray (Agilent Technologies) we refer to it as panel 2 
containing additional regions. Samples have been sequenced with version 1 of the panel or with 
version 2 of the panel (additional 53 genes). Library preparation was performed according to 
manufacturers’ instructions. The Illumina MiSeq® Reagent Kit v3 (Cat No. MS-102-3003) was 
selected by applying the Illumina reagent selection algorithm.  
Bioinformatics analysis of sequencing reads was performed using a Snakemake-based workflow [3], 
in accordance with GATK best practices. Briefly paired-end reads from each tumor were quality 
trimmed with fastp (v. 0.23.2) [4] and aligned to an  In silico Combined human-mouse Reference 
Genome (ICRG) for mouse read cleaning using BWA mem (v. 0.7.17) [5] with default parameters. 
ICRG contained both the mouse (GRCm39) and human (Grch38/hg38) reference genomes. Reads 
mapping to human chromosomes were extracted from the resulting bam file using SAMtools (v. 1.17) 
and realigned only to the human reference genome with BWA mem. Duplicates were annotated with 
MarkDuplicates in GATK4 (v. 4.2.6.1). Base quality score recalibration was carried out in GATK4 
using BaseRecalibrator and ApplyBQSR. Mosdepth was used to evaluate bam statistics [6]. 
MuTect2 (GATK4) was used in a tumor-only mode to identify somatic single nucleotide variants 
(SNVs) and short insertions and/or deletions (indels). To distinguish between germline and somatic 
variants, a hg38 GATK Panel of Normals was used. LearnReadOrientationModel (GATK4) was used 
to evaluate read orientation artefacts, while GetPileupSummaries (GATK4) and 
CalculateContamination (GATK4) were adopted to determine the proportion of contaminated reads 
across samples. The following criteria were used to identify variants: a minimum base quality score 
of 25, a minimum allele frequency of 5%, and a minimum 10X coverage. Variants caused by cross-
sample contamination and read orientation artefacts were eliminated. The Ensembl Variant Effect 
Predictor (VEP) [7] was used to annotate somatic variants. Only variants identified by VEP as having 
a high or moderate impact were kept. Variants occurring in non-glioma specific genes were filtered 
out. Glioma specific genes: IDH1, ATRX, TP53, CDKN2A, CDKN2B, EGFR, CDK4, CDK6, MDM2, 
MDM4, MET, MYCN, PDGFRA, NF1, PIK3CA, PIK3R1, PTCH1, PTEN, RB1, RET, STAG2. Multiple 
genomic alterations were visualized with ComplexHeatmap [8] within R version 4.2.0. 

DNA methylation 
Methylation arrays with Infinium® MethylationEPIC were analysed as previously described [1] to 
establish the MGMT methylation and glioma classification by referencing data to the Molecular 
Neuropathology dataset [9]. 
 
10XGenomics single-cell RNA-sequencing and analysis 
Human tumor cells were processed via Drop-seq (P3, P8, P13, T101, T16) or 10XGenomics (T192, 
T233, T347, T470). Drop-seq and data preprocessing were performed as previously described [1, 
10]. For the 10XGenomics, purified single tumor cells were diluted to 106 cells/ml with RNAse free 
DPBS + 0.05 % FBS. Diluted cells were filtered using a 50µm filter. The viability of cells was verified 
using Beckman coulter automatic cell counter and C-Chip – Disposable Haemocytometer 
(NanoEntek) viability analyzer. Cell concentration was adjusted to target the encapsulation of 3000 
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cells according to 10XGenomics cell preparation guidelines. Chromium Next GEM Chip with single-
cell suspension was loaded to the Chromium Controller (10XGenomics) for generation of 
encapsulated cells and GEMs. scRNA-seq libraries were prepared using the Chromium Next GEM 
Single Cell 3’ GEM, Library & Gel Bead Kit v3.1 and a Chromium i7 Multiplex kit according to the 
manufacturer’s protocol. Libraries were purified using SPRIselect magnetic beads and analyzed 
using Agilent 2100 Bioanalyzer. Sequencing was performed using NextSeq 500/550 High Output Kit 
v2.5 (75 Cycles). scRNA-seq analysis was performed in R (v4.1.1) with the Seurat package (v4.0.5) 
[11]. Barcode processing and UMI filtering were performed using the Cell Ranger 4.0.0. Average 
saturation of the sequencing was 30-40% as calculated by Cell Ranger. GBM molecular subtypes 
(Classical, Proneural and Mesenchymal) and cellular states (MES, AC, NPC and OPC-like) were 
determined using signatures listed in Wang et al., 2017 [12] and Neftel et al., 2019 [13] respectively. 
Single-cell signature scores were calculated using scrabble(v1.0.0) used in Neftel et al., 2019 [13].  
 
Gene expression analysis by qPCR 
Myelin was removed prior FACS-sorting with the Myelin removal beads II (Miltenyi) and CD11b+ cells 
were FACS-sorted directly to Trizol® LS (Life Technologies) according to the manufacturer’s 
protocol (n=2-3; from at least 3 animals each). RNA extraction and RT-PCR were conducted as 
previously described [14]. The sequences of the primers designed with the Primer-BLAST tool are 
as follows: Spp1 F: CTGGCTGAATTCTGAGGGACT, R: TTCTGTGGCGCAAGGAGATT; P2ry12 F: 
GTGCAAGGGGTGGCATCTA, R: TGGAACTTGCAGACTGGCAT; Tmem119 F: 
TGCAATGTCGCTGTCACTCT, R: AGTTTGTGTTTCCACGGGGT Grp34 F: 
GGAAAGCTTCAACTCAGTTCCTG, R: TCCATGAGAGGAGCAAAGCC, Rpl27 F: 
ACATTGACGATGGCACCTC, R: GCTTGGCGATCTTCTTCTTG 
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SUPPLEMENTARY FIGURES 

 
 
Fig S1. Characteristics of GBM PDOX models and the GL261 mouse model. (A) Hematoxylin 
and Eosin (H&E) and human-specific Vimentin/Nestin staining of representative PDOXs and GL261 
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at the endpoint of tumor growth. Human-specific Vimentin/Nestin staining highlights varying levels 
of invasion in PDOX models. Images represent coronal sections of the entire mouse brains. Mice 
were sacrificed at the endpoint of tumor growth. Scale bars represent 1mm. (B) Mouse-specific 
CD31 and Iba1 stainings show aberrant blood vessels and myeloid cells respectively. Brains of 
representative PDOXs and GL261 at the endpoint of tumor growth were used for the stainings. 
Images represent magnified areas in the tumor core. Hematoxylin staining was applied to assess 
tumor cell density. Scale bars represent 100μm (white) and 50μm (black).  

 
Fig S2.  Composition of mouse-derived TME in PDOXs and GL261. (A) Violin plots showing 
expression of marker genes specific to distinct cell types identified in the scRNA-seq dataset Three 
top markers of each population are displayed (Wilcoxon Rank Sum Test). For entire gene list see 
Additional file 1: Table S3. (B) Analysis of the lymphocyte cell cluster in nude mouse normal brain 
(Nu-NB), PDOXs (9 models), C57BL6/N mouse normal brain (BL6-NB), and GL261 tumor (3 
collection time points: early, middle, and late). Heatmap shows the z-score of the average expression 
of marker genes for T, B and NK cells in lymphocytes detected in each sample group. (C) Human 
tumor cells of PDOX models assigned to four GBM transcriptomic states [13]: mesenchymal-like 
(MES-like), astrocytic-like (AC-like), oligodendrocyte progenitor cell-like (OPC-like) and neural 
progenitor cell-like (NPC-like). Cells with shared states were grouped as “Hybrid”. (D) UMAPs 
showing expression of cell cycle marker genes Top2a, Mki67 in TME. The color gradient represents 
expression levels. (E) Top: UMAP of the ‘cycling cells’ cluster and the proportion of cell types 
identified in the cluster. Cell types are color-coded. Bottom: proportions of identified cell types within 
the ‘cycling cells’ cluster.  (F) Proportions of cycling cells in each cell type. 100% represents the sum 
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of cell numbers identified in each original cell type cluster and numbers of the same cell types 
identified in the ‘cycling cells’ cluster.  
 

 
 
Fig S3. Tumor-specific activation of TME cell types. (A) Upset plot showing differentially 
expressed genes (DEGs) between TME of PDOX and GL261 versus corresponding normal brains 
(Nu-NB and BL6-NB) in identified cell types (FDR ≤0.01, |log2FC| ≥1, Wilcoxon rank sum test with 
Benjamini-Hochberg correction). Bar chart depicts the number of differentially expressed genes 
shared between the different groups. (B) Decreased expression of homeostatic Mg markers (P2ry12, 
Tmem119, Gpr34) and increased levels of a TAM marker (Spp1) were validated by qPCR in CD11b+ 
myeloid cells isolated as bulk from TME of representative PDOX models (P3, P8, P13) and nude 
normal brain (Nu-NB); graphs show bulk mean relative expression levels ± SEM (n=2-5, **p<0.01 
*p<0.05, two-tailed Student’s t-test). Rpl27 was used as a housekeeping gene. (C) 
Immunofluorescence staining showing Pdgfrα+ and Olig2+ cells in the tumor core of PDOX P8. 
Arrows point Pdgfrα+ and Olig2+ mouse cells, negative for human nuclei staining. (D) 
Immunofluorescence staining showing mouse GFAP+ astrocytic cells in the tumor core of PDOX 
T192. 
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Fig S4. Myeloid cell heterogeneity and ontogeny in mouse-derived GBM TME. (A) Split UMAP 
projection of myeloid cells from different datasets. Myeloid cell types are color-coded (Mg = green, 
Mo = blue, BAMs = red). (B) UMAPs showing expression of marker genes: pan-immune Ptprc 
(CD45), Mg Gpr34, monocytes Ccr2, BAMs Lyve. The color gradient represents expression levels. 
(C) Proportions of myeloid cell types in PDOXs and GL261 for three independent datasets [10, 15, 
16]. Percentage of Mo depends on the tumor stage and dissection strategy. (D) Gating strategy for 
flow cytometry. Example is shown for PDOX P13 tumor: (1) Cells were distinguished from debris 
based on the Forward Scatter (FSC) and Side Scatter (SSC). (2) Cell aggregates were gated out 
based on their properties displayed on the SSC area (SSC-A) versus height (SSC-H) dot plot. (3) 
Dead cells were recognized by their strong positivity for the dead cell marker (L/D) (4) Human tumor 
cells were recognized as CD90 positive with human-specific antibody.  TME was of mouse origin. 
(5) Immune cells were recognized as CD45 positive within mouse-derived TME. (6) Lymphocytes 
were recognized as CD11b negative population. Negative gating includes also CD11blow NK cells. 
CD11b positive cells correspond to myeloid cells. (7) CD11b+Ly6ClowLy6G+ cells represent 
neutrophils. (8) Ly6C and CD206 allows distinguishing Ly6C+CD206- Mo, Ly6C-CD206- Mg and 
Ly6C-CD206+ BAMs.  (E) Ratio of human tumor cells over mouse-derived TME across distinct brain 
areas in PDOXs P8, P3 and P13 (≥3 mice/condition, mean ± SEM). The ratio of tumor cells to TME 
was higher in the tumor core compared to invasive zone and distal brain regions. (F) Flow cytometry 
quantification of CD45+CD11b+Ly6G+Ly6ClowCD206- neutrophils and CD45+CD11b- lymphocytes in 
Nu-NB and PDOX TME across different brain regions in PDOXs P3, P8 and P13 (n≥3 mice/condition, 
mean ± SEM, one-way ANOVA, **p<0.01).   
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Fig S5. Analysis of heterogeneous myeloid phenotypic states. (A) Expression levels of 
exemplary genes representing myeloid pan-markers, M1/M2 markers, enzymatic activation genes, 
astrocytic and endothelial Mg-TAM markers, transcriptional activation markers and key markers 
identifying distinct subsets of dendritic cells (DCs): pre-DCs, cDC1, cDC2, migratory DCs (mDCs) 
and pDCs  per identified myeloid cell cluster: CL0-1 Ho-Mg, CL2-6 Mg-TAMs, CL7 Mo, CL8 BAMs. 
Astrocytes and endothelial cells were presented to compare marker genes identified in CL4 
astrocytic-like and CL5 endothelial-like Mg-TAMs. (B) Scoring for putative doublets in the myeloid 
cells. (C) Representative immunofluorescence images showing mouse Iba1+ myeloid cells positive 
for GFAP (astrocytic marker, PDOX T192), White arrow point GFAP+Iba1+ co-localization. Scale bar 
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represents 50μm. (D)  Flow cytometry assessment of GFAP positivity in Mg, Mo and BAMs. Flow 
cytometry example is shown for PDOX T756 and T251. Table displays % of GFAP+ cells in each 
PDOX assessed; n=1 mouse/model. (E) Representative immunofluorescence images showing 
mouse Iba1+ myeloid cells positive for CD31 (endothelial marker, PDOX T470). White arrows point 
CD31+Iba1+ co-localization. Scale bar represents 50μm. (F) Flow cytometry assessment of CD31 
positivity in CD45+CD11b+ myeloid cells discriminated by Ly6C (Ly6C- Mg and BAMs; Ly6C+ Mo). 
Flow cytometry example is shown for PDOX P3. Table displays % of CD31+ cells in each PDOX 
assessed; mean ± SEM, n=1-4 mice/condition. (G) Representative immunofluorescence images 
showing mouse Iba1+ myeloid cells positive for Ki67 (cell cycle marker, PDOX P8). White arrows 
point Ki67+Iba1+ co-localization. Scale bar represents 50μm. (H) TSCAN-based trajectory inference 
analysis of Mg clusters (CL0-6) showing a trajectory from Ho-Mg to Mg-TAMs. The Pseudotime 
ordering of cells is presented by a color code on the original UMAP projection. (I) Minimum spanning 
tree (MST) of the Mg clusters after introducing an outgroup to split unrelated trajectories.  
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Fig S6. GBM-specific education of myeloid cells in PDOXs and GL261 TME. (A) Reference-
based analysis of myeloid cell states described by Ochocka et al., in PDOXs and GL261: (i) MG1-
MG8 states correspond to Mg, (ii) Monocyte, Intermediate Monocytes/Macrophage (inMoM) and 
Macrophage states correspond to Mo, no further phenotypic states were identified for BAMs. (B) 
Proportions of phenotypic states identified by reference-based analysis in Mo in PDOXs (4 models 
with Mo cells detected combined) and GL261 (3 time points combined). (C) Representative flow 
cytometry graphs and quantification of CCR2+ cells in CD45+CD11b+Ly6G-Ly6C+CD206- Mo and 
CD45+CD11b+Ly6G-Ly6C-CD206+ BAMs in PDOXs P8, P3, P13. For PDOXs P3 and P13 invasive 
zone and distant normal brain areas were also collected (n≥3 mice/condition, mean ± SEM, one-way 
ANOVA, ****p<0.0001, ***p<0.001, *p<0.05). (D) Comparison of transcriptomic profiles of myeloid 
cells in PDOXs and GL261 models. Heatmap represents expression of marker genes of each 
myeloid transcriptomic state identified (CL0-8). No major differences were observed between 
myeloid cells of PDOXs and GL261. (E) Expression levels of representative genes in Mg, Mo and 
BAMs for nude mouse normal brain (Nu-NB), PDOXs (9 models), C57BL6/N mouse normal brain 
(BL6-NB), GL261 tumor (3 collection time points: early, middle, and late).  
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Fig S7. Analysis of functional markers in TAMs. (A) Expression levels of representative genes 
associated with functional signatures for migration, sensome (GBM specific), phagocytosis, antigen 
presentation, checkpoint inhibition and “do-not-eat-me signal” per identified myeloid cell cluster: 
CL0-1 Ho-Mg, CL2-6 Mg-TAMs, CL7 Mo, CL8 BAMs. (B) Spearman correlation analysis between 
functional signatures in myeloid cells. (C) Representative flow cytometry graphs showing high levels 
of CD11c and CD86 with CD45high Mg. Mg was gated as CD45+CD11b+Ly6G-Ly6C-CD206-  (D) 
Representative flow cytometry graphs and quantification of CD11c+ and CD86+ cells in 
CD45+CD11b+Ly6G-Ly6C+CD206- Mo and CD45+CD11b+Ly6G-Ly6C-CD206+ BAMs in nude mouse 
normal brain (Nu-NB) and PDOXs P8, P3, P13. For PDOXs P3 and P13 invasive zone and distant 
normal brain areas were also collected. Unstained control is shown for each population (CTR) (n≥3 
mice/condition, mean ± SEM, one-way ANOVA, **0*p<0.0001, **p<0.01, *p<0.05).  
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Fig S8. Analysis of Mg and Mo cells in GBM patient tumors. (A) UMAP projection of myeloid 
cells in GBM patient tumors (n=36 patients combined). Cells are color coded for Mg and Mo ontogeny 
based on established gene signatures. Inserts show expression levels of marker genes for Mg, Mo 
and BAMs. The color gradient represents expression levels. (B) Proportions of Mg and Mo in 
individual GBM patient tumors (36 patient tumors: 27 newly diagnosed and 9 recurrent tumors). 
Recurrent GBMs show higher proportions of Mo (p<0.01, two-tailed Student’s t-test). (C) UMAP 
projection of human GBM myeloid cells displaying expression levels of cluster (CL0-8) and functional 
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signatures identified in PDOX TME. The color gradient represents expression levels. (D) Expression 
of representative Mg, Mo, astrocyte and endothelial cell markers showing convergence of Mg and 
Mo towards heterogeneous TAMs in GBM tumors. Bulk RNA-seq analysis was performed in purified 
CD49d+ (MG) and CD49- (MDM) myeloid cells [17] representing Mg and Mo in normal human brain 
(n=7) and GBM patient tumors (n=15). While Mg decreases homeostatic genes, Mo acquire Mg 
profiles within GBM tumors. Reversed convergence is observed for Mo markers. (E) Mapping of 
mouse myeloid cells to the scRNA-seq profiles of human GBMs (110 patient tumors, GBmap [18]). 
Mg states (CL0-CL6) predominantly mapped to previously identified human Mg states, although Mg-
TAMs (CL3, CL4, CL6) showed increased proportion of TAMs associated with blood-derived 
macrophages (BDMs), highlighting strong convergence of the Mg and Mo towards comparable TAM 
signatures. The astrocytic-like CL4 state is clearly associated with human myeloid compartment, 
whereas the endothelial-like CL5 state only partially overlapped with pericytes and endothelial cells. 
Mo (CL7) and BAMs (CL8) showed a stronger association with Mo signatures. 
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Fig S9.  Assessment of myeloid signatures in bulk RNA-seq profiles of GBM patient tumors. 
(A) Bulk RNA-seq profiles of laser-micro dissected regions of GBM patient tumors. Box plots show 
signatures of Mg/Mo, phenotypic states and functional signatures per tumor niche (LD edge: leading 
edge; Inf tumor: infiltrative tumor; HyBV: hyperplastic blood vessels in cellular tumor; MvP: 
microvascular proliferation). Data extracted from the Ivy Glioblastoma Atlas Project obtained from 
279 samples from 44 tumors. The box limits indicate the 25th and 75th percentiles, centerlines show 
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the medians; whiskers show a minimum of two measures: extreme values or 1.5 IQR from the closest 
quartile; points depict outliers. (B-C) Representative surface plots of spatial localization of myeloid 
cell signatures in GBM patient tumors. (D) Kaplan–Meier survival analysis in GBM patients (CGGA-
GBM IDHwt divided into transcriptomic subtypes: Classical, Mesenchymal and Proneural) with high- 
(red) and low (blue) -enriched signatures (25 percentile top/bottom).  

 

Fig S10. GBM ecosystem upon TMZ treatment. (A) Schematic illustration of the TMZ treatment 
regimen in PDOX P3 in vivo. Day 0 = tumor implantation, day 30 = MRI validation of tumor growth, 
day 33= treatment start, day 37= intermediary MRI, day 42 = endpoint. Created with Biorender.com. 
(B) Assessment of GBM cellular states [13] at single cell level in TMZ-treated and CTR GBM cells 
(n=1 PDOX brain per condition). (C) Summary of top four gene ontology terms characterizing DEGs 
in TMZ-treated versus CTR GBM cells (FDR ≤0.01, |logFC| ≥ 0.5 the Wilcoxon rank sum test with 
Benjamini-Hochberg correction). (D) Summary of top six gene ontology terms characterizing DEGs 
in TMZ-treated versus CTR myeloid and endothelial cells forming TME in PDOX P3 (FDR ≤0.01, 
|logFC| ≥ 0.5). (E) CellChat-based overall signaling patterns per identified cell type, visualized as 
heatmaps, in CTR and TMZ-treated PDOXs. (F) Predicted ligand-receptor interactions based on 
communication probability are shown for signals outgoing from myeloid and tumor cells.  
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