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1 SUPPLEMENTARY FIGURES
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Fig. S1. Mapped RNA velocity in the pancreas dataset after removing a cell type. (a) Dynamical
model based RNA velocity is visualized on the UMAP for the pancreas data after removing the beta
cells. (b) As (a), but the pre-endocrine cells are removed instead. (c) As (a), but the Ngn3 high EP cells
are removed instead. Note that the arrows disappear for cells in the black rectangles of (b) and (c).
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Fig. S2. Missing mapped cell-level vectors at the start of the trajectory by the transition probability
method. (a) True RNA velocity vector field on UMAP using the transition probability (trans.pro)
method. (b) As (a), but the high-dimensional (high.dim) velocities are mapped by the UMAP-transform
method. (c) Zoom-ins of the red and blue rectangle labeled regions in (a) and (b). (d) True RNA velocity
vector field on PCA using the transition probability method. (e) As (d), but the high-dim velocities are
mapped by the projection method. (f) Zoom-ins of the red and blue rectangle labeled regions in (d) and
(e). (g) Comparison of the low-dimensional (low.dim) speed produced by two methods in (d) and (e).
(h) Comparison between the low-dimensional speed produced by projection and the high-dimensional
speed. (i) Comparison between the low-dimensional speed produced by transition probability and the
high-dimensional speed. (Abbreviations: trans.pro: transition probability; high.dim: high-dimensional;
low.dim: low-dimensional.)
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Fig. S3. UMAP representation of the simulated data with different noise levels. Each point represents
a cell, colored by the true latent time. We use a different noise level in each panel, increasing from 1 to
10. Similar to the PCA representation, the UMAP representation becomes like a big blob more and more
with the noise level increases.
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Fig. S4. Visualized RNA velocity vector field using simulated data at noise level 5. See the next page
for captions.
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Fig. S4. (Continued) (a-p) Visualized vector fields in all combinations of the following: types of
high-dimensional velocities (estimated high-dimensional velocities from the steady-state model or
estimated high-dimensional velocities from the dynamical model, or true high-dimensional velocities),
mapping methods (transition probability or direct PCA projection), types of k-NN used for
preprocessing (learned k-NN or true k-NN), and types of k-NN used for calculation of transition
probability (learned k-NN or true k-NN). In (a-p), the type of velocities is given first in the panel title
and followed by the mapping methods (trans.pro for transition probability and proj. for direct PCA
projection). The type of k-NN is given in the parenthesis of each panel title. If there is one type of k-NN,
then that type of k-NN is used for smoothing and transition probability calculation. If two types of
k-NN are given, the first k-NN is used for smoothing, and the second is for transition probability
calculation. In all panels, each point represents a cell. The big orange arrow approximates the true
direction of the trajectory. Note that (n) and (p) is the same because the true velocity is unrelated to
smoothing. (q) The cosine similarities between the mapped cell-level vectors and the “true” mapped
cell-level vectors in (n) or (p). (Abbreviations: trans.pro: transition probability; proj.: projection; trans.:
transition probability; v.: velocity.)
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Fig. S5. Cosine similarities between the mapped cell-level vectors and the “true” mapped cell-level
vectors at various noise levels. An extension of Fig. 5 with additional noise levels. (Abbreviations:
trans.: transition probability; proj.: projection.)
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Fig. S6. Visualized RNA velocity vector fields using simulated data at noise level 3. Similar to Fig. S4,
but the noise level is lowered to 3. See the next page for captions.
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Fig. S6. (Continued) (a-p) Visualized vector fields in all combinations of the following: types of
high-dimensional velocities (estimated high-dimensional velocities from the steady-state model or
estimated high-dimensional velocities from the dynamical model, or true high-dimensional velocities),
mapping methods (transition probability or direct PCA projection), types of k-NN used for
preprocessing (learned k-NN or true k-NN), and types of k-NN used for calculation of transition
probability (learned k-NN or true k-NN). In (a-p), the type of velocities is given first in the panel title
and followed by the mapping methods (trans.pro for transition probability and proj. for direct PCA
projection). The type of k-NN is given in the parenthesis of each panel title. If there is one type of k-NN,
then that type of k-NN is used for smoothing and transition probability calculation. If two types of
k-NN are given, the first k-NN is used for smoothing and the second for transition probability
calculation. In all panels, each point represents a cell. The big orange arrow approximates the true
direction of the trajectory. Note that (n) and (p) is the same because the true velocity is unrelated to
smoothing. (q) The cosine similarities between the mapped cell-level vectors and the “true” mapped
cell-level vectors in (n) or (p). (Abbreviations: trans.pro: transition probability; proj.: projection; trans.:
transition probability; v.: velocity.)
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Fig. S7. Gene-level RNA velocity estimation analyses using simulated data at noise level 3. This
figure complements Fig. 6. In all panels, a data point represents a cell and is colored by the known true
latent time t. All solid black lines represent the known true values. (a-d) Scatter plots show the spliced
counts, Ms, unspliced counts, and Mu over the true latent time t for a random gene in simulation. (e)
Phase portrait shows the Ms over Mu for the same gene. The parameters are estimated by the
dynamical model. (f) Estimated velocity (points) and true velocity (black line) over true latent time t. (g)
Scatter plot compares the estimated velocity values to the true velocity values. PCC and NRMSE are
given. (h) Scatter plot compares the estimated latent time to the true latent time. (i-p) As (a-h), but now
we use the true k-NN to get Ms and Mu matrices. The estimated velocity values are much closer to the
true velocity values with PCC 0.823 and NRMSE 0.584. Note that (a) and (i) are identical, and (c) and (k)
are identical, too, since the k-NN does not affect raw counts. (Abbreviations: PCC: Pearson’s correlation
coefficient; NRMSE: Normalized Root Mean Square Error.)
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Fig. S8. Gene-level RNA velocity estimation analyses using simulated data at noise level 5 This figure
is similar to Fig. S7, but the noise level is 5. In all panels, a data point represents a cell and is colored by
the known true latent time t. All solid black lines represent the known true values. (a-d) Scatter plots
show the spliced counts, Ms, unspliced counts, and Mu over the true latent time t for a random gene in
simulation. (e) Phase portrait shows the Ms over Mu for the same gene. The parameters are estimated by
the dynamical model. (f) Estimated velocity (points) and true velocity (black line) over true latent time t.
(g) Scatter plot compares the estimated velocity values to the true velocity values. PCC and Normalized
Root Mean Square Error (NRMSE) are given. (h) Scatter plot compares the estimated latent time to the
true latent time. (i-p) As (a-h), but now we use the true k-NN to get Ms and Mu matrices. The estimated
velocity values are much closer to the true velocity values with PCC 0.825 and NRMSE 0.578.
(Abbreviations: PCC: Pearson’s correlation coefficient; NRMSE: Normalized Root Mean Square Error.)
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Fig. S9. Comprehensive gene-by-gene evaluations of high-dimensional velocity estimations using
simulations. (a) Boxplots show PCC between the estimated velocities and the true velocities of each
gene. (b) Boxplots show NRMSE between the estimated velocities and the true velocities of each gene.
All boxes show the left y-axis values and indicate the 25th and 75th percentiles. Whiskers extend to the
largest values no further than 1.5 × interquartile range (IQR) from these percentiles. The grey and green
horizontal lines correspond to the percentage of recovered genes by the dynamical model using the true
and learned k-NN graph, respectively. (Abbreviation: IQR: interquartile range; PCC: Pearson’s
correlation coefficient; NRMSE: Normalized Root Mean Square Error.)
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Fig. S10. Comparisons of high dimensional speed at noise level 3. (a) Scatter plot compares the speed
of true (high-dimensional) velocity to that of the estimated (high-dimensional) velocity by the
steady-state model using the learned k-NN graph. (b) As (a), but we use the true k-NN to infer
(high-dimensional) velocity. (c-d) As (a-b), but the velocities are estimated using the dynamical model.
(Abbreviation: PCC: Pearson’s correlation coefficient.)
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Fig. S11. Comprehensive cell-by-cell evaluations of high-dimensional velocity estimations using
simulations. (a) Boxplots show the absolute difference between the estimated speed and the true speed
of each cell. (b) We show the PCC between the cell-level estimated high-dimensional speed and the
high-dimensional true speed. (c) Boxplots show cosine similarity between the estimated velocities and
the true velocities of each cell. Whiskers extend to the largest values no further than 1.5 × interquartile
range (IQR) from these percentiles. (Abbreviations: PCC: Pearson’s correlation coefficient; IQR:
interquartile range; est. v.: estimated velocity; true v.: true velocity; high.dim: high-dimensional; cos.sim:
cosine similarity.)
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Fig. S12. The phase portrait of top 10 genes in the 10 real datasets. Each point represents a cell, colored
by cell type or FUCCI pseudotime. Form (a-j), the order of the datasets is listed as in Table 1: Forebrain,
Chromaffin, FUCCI, Bonemarrow, Dentategyrus Lamanno, Pancreas, Gastrulation erythroid,
Dentategyrus Hochgerner, Gastrulation E7.5, and PBMC68k. The top 10 genes ranked by the likelihood
from the dynamical model are shown from left to right for each dataset. Purple lines represent the fitted
dynamics by the dynamical model, and the black dashed line represents the degradation rate (slope)
from the steady-state model. Note that most genes do not show complete up- and down- regulation
dynamics.
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Fig. S13. Analyses of the ten best genes (highest likelihoods) in the FUCCI data. See the next page for
captions.
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Fig. S13. (Continued) Each row contains a gene, ranked decreasingly by the likelihood. Each point
represents a cell in the FUCCI data. From left to right of each row: phase portrait of the gene with points
colored by cell cycle position; smoothed expression (Ms) over cell cycle position; phase portrait with
points colored by direction comparisons between direction inferred by Ms and dynamical model based
velocity estimates; phase portrait with points colored by direction comparisons between direction
inferred by Ms and steady-state model based velocity estimates; dynamical model based velocity
estimates over cell cycle position; steady-state model based velocity estimates over cell cycle position;
comparison of velocity estimates using the steady-state model and the dynamical model.
(Abbreviations: PCC: Pearson’s correlation coefficient; NRMSE: Normalized Root Mean Square Error.)
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Fig. S14. RNA velocity estimation using the steady-state model on the FUCCI data and comparisons
of gene-level velocities between steady-state and dynamical model. (a) Similar to Fig. 7a, but we now
use RNA velocity estimates using the steady-state model. RNA velocity vector fields are visualized
using the transition probability method on the UMAP embeddings of the FUCCI data. Each point
represents a cell and is colored by its FUCCI pseudotime. (b) Scatter plot shows the estimated RNA
velocity of MELK over FUCCI pseudotime. The signs of velocity estimations are compared to those
inferred in Fig. 7c, with inconsistent directions colored black. (c) Comparison of RNA velocity for gene
MELK estimated by steady-state model and dynamical model. About 24.3% of cells, which are colored
black, exhibit opposite velocities between the two models. (d) Scatter plot shows the PCC and
percentage of inconsistent directions between velocities estimated by the steady-state model and
dynamical model for all velocity genes in the FUCCI data. The two blue lines give the respective
median values, with a PCC median of only about 0.4. (Abbreviations: PCC: Pearson’s correlation
coefficient; Incons.: inconsistent; Perct.: percentage.)
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Fig. S15. Percentage of cells showing the inconsistent direction of change between fitted model using
cell cycle position and gene-specific RNA velocity. Out of 579 cell cycle genes which are also velocity
genes, we examine the 224 genes that have a R2 of periodic loess over cell cycle position greater than 0.5.
(a) Scatter plot shows the percentage of cells having the inconsistent direction of change between the
fitted model using cell cycle position and dynamical model based gene-specific RNA velocity estimates.
(b) As (a), but now we use the steady-state model to get RNA velocity estimates. (c-d) Comparison of
the percentage of cells having the inconsistent direction of change between the steady-state and
dynamical model velocity estimates.
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Fig. S16. The RNA velocity application on FUCCI dataset (colored by FUCCI pseudotime). (a-e)
Similar to Fig. 7, but now we use FUCCI pseudotime as the “true” trajectory. (a) RNA velocity vector
fields are visualized using the transition probability method on the UMAP embeddings of the FUCCI
data. Each point represents a cell and is colored by FUCCI pseudotime. (b) Phase portrait of gene MELK,
of which the likelihood is the highest among all velocity genes inferred by the dynamical model. The
purple lines represent the dynamics inferred by the dynamical model. (c) Scatter plot shows smoothed
expression of MELK over FUCCI pseudotime. The dashed line is the fitted line by periodic loess
(Methods). The expected direction of change is inferred on the fitted loess line and visualized by colors.
(d) Scatter plot shows the estimated RNA velocity of MELK over FUCCI pseudotime. The signs of
velocity estimates are compared to those inferred in (c), with inconsistent directions colored black. (e)
The level of agreement between the velocity latent time for MELK and the FUCCI pseudotime is lower
than between the velocity latent time and the cell cycle position. (f) As (a), but we use the steady-state
model velocity estimates. (g) As (d), but we use the steady-state model velocity estimates.
(Abbreviations: Dyn.: dynamical; incons.: inconsistent.)
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Fig. S17. Analyses of the 10 best genes (highest likelihoods) in the FUCCI data (using FUCCI
pseudotime). See the next page for captions.
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Fig. S17. (Continued) This figure is similar to Fig. S13, but now we use FUCCI pseudotime as the “true”
trajectory. Each row contains a gene, ranked decreasingly by the likelihood. Each point represents a cell
in the FUCCI data. From left to right of each row: phase portrait of the gene with points colored by
FUCCI pseudotime; smoothed expression (Ms) over FUCCI pseudotime; phase portrait with points
colored by direction comparisons between direction inferred by Ms and dynamical model based
velocity estimates; phase portrait with points colored by direction comparisons between direction
inferred by Ms and steady-state model based velocity estimates; the dynamical model based velocity
estimates over FUCCI pseudotime; the steady-state model based velocity estimates over FUCCI
pseudotime. (Abbreviations: Dyn.: dynamical; incons.: inconsistent.)
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2 SUPPLEMENTARY NOTES

2.1 The differences between implementations of RNA velocity analysis

Aside from the fact that scVelo offers multiple models for high-dimensional RNA velocity estimations,
while velocyto (Python and R packages) only implements a steady-state model, the default workflows of
these three packages significantly differ. In this article, we will discuss some key differences we believe
are important.

During the high-dimensional gene-level RNA velocity estimation step, all implementations smooth
(also referred to as imputation) the spliced and unspliced counts using a k-NN graph; however, the
specifics vary. The scVelo package constructs a k-NN graph using the Euclidean distance between
cells in a low-dimensional PCA space (derived from the spliced matrix) and follows with a weighted
smoothing step, with weights computed as in McInnes et al. (2018). Both parameter estimation and
velocity computation utilize these smoothed values. The Python implementation of velocyto also builds
a k-NN graph using Euclidean distance in a low-dimensional PCA space (using a different k-NN im-
plementation from scVelo), but then performs unweighted smoothing. Both parameter estimation and
velocity computation rely on these smoothed values. In contrast, the R implementation of velocyto
employs an unweighted k-NN graph using the correlation distance on the high-dimensional spliced
counts matrix. Neighboring cells are aggregated into pseudo cells, and a quantile regression line is fitted
on these pseudo cells to obtain the estimated degradation rate. After calculating the degradation rate,
velocities are computed for each gene by plugging in the unspliced and spliced counts (before forming
pseudo-cells) in Equation 2; this represents a substantial deviation from the Python implementation.

Another significant difference lies in selecting the number K for the k-NN graph. The default pa-
rameters used in the scVelo package are k = 30 neighbors. For velocyto, there is no default k, but the
analyses presented in La Manno et al. (2018) occasionally use large values (e.g., k = 550 for a forebrain
dataset with fewer than 2,000 cells). As k is the most crucial parameter for all k-NN graphs, which is
central to the high-dimensional RNA velocity estimation step, the choice of k may significantly impact
the visualized low-dimensional vector field. For example, we compare the RNA velocity vector field
of the Forebrain data using k = 30 and k = 550 for both steady-state and dynamical models (using the
scVelo implementation for both models to avoid differences caused by other steps). Comparing Fig. S18a
to Fig. S18b, we observe that a larger k in the steady-state model appears to yield a smoother vector field.
However, a striking difference is observed for the dynamical model, where the low-dimensional vectors
of neuroblast cells (purple and red cells) display the opposite direction when using k = 30 (Fig. S18c)
compared to using k = 550 (Fig. S18d). As there is no guidance on selecting the k for a new dataset, we
have consistently used k = 30, the default in the scVelo package.

There are notable differences between the implementations in the low-dimensional vector field visual-
ization step. A prominent example is the construction of another k-NN graph using the low-dimensional
embedding in velocyto, which results in a Pearson correlation matrix (compared to the cosine similarity
matrix in scVelo). In contrast, scVelo uses the same k-NN graph for both processing (smoothing) and
low-dimensional velocity vector field visualization. For velocyto, the resulting transition probability ma-
trix is embedding-dependent, and having an embedding-dependent property for a transition probability
matrix seems counterintuitive.

The three implementations differ significantly in critical steps, and the impact of these choices on
the resulting output, including both high-dimensional velocities and low-dimensional vector fields, has
not been thoroughly examined. We will not delve further into this issue. Instead, we will exclusively
use the scVelo package for both the steady-state and dynamical models to circumvent implementation
differences.
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Fig. S18. Mapped RNA velocity of the Forebrain data using different numbers of K for the k-NN
graph. (a) Mapped steady-state model based RNA velocity using the transition probability method of
the Forebrain dataset when k = 30 for the k-NN graph. (b) As (b), but now we use k = 550, which was
used by La Manno et al. (2018). (c-d) As (a-b), but now we use the dynamical model to estimate RNA
velocity instead.
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2.2 Visualization of 2d vector fields

To avoid overplotting, we usually summarize vectors in a 2D space, which can hide local detail. One ap-
proach is to grid the 2d embedding and compute the average vectors at each grid location. An alternative
is the streamline plot which has multiple distinct implementations (The Matplotlib development team,
2022; Campitelli, 2022). Fig. S19a shows a streamline plot of a forebrain dataset previously discussed
in the literature on RNA velocity (La Manno et al., 2018; Gorin et al., 2022). The gridding display of
the same vector field produces a very different impression (Fig. S19b). If we examine the embedding by
the left, middle, and right parts, the streamline plot hides that the length of vectors on the left is much
shorter than the length of vectors in the middle.

a b

Fig. S19. The impact of different visualization approaches. We run scVelo on the Forebrain data and
visualize the exact same vector field using two visualization functions pl.velocity embedding stream
and pl.velocity embedding grid in scVelo, which give us quite different impressions of how the vector
field looks like. (a) The vector field is visualized by streamline plot (The Matplotlib development team,
2022). We use all default parameters for the pl.velocity embedding stream function. (b) The vector field
is visualized by gridding and kernel smoothing. We had to decrease the resolution (density=0.3),
increase the arrow size (arrow size=4), and scale up the arrow length (arrow length=3) to make the
arrows visible. Note that in the middle part, we see some long arrows, while the arrows on the other
parts are fairly short.

In addition to the choice of visualization approaches, options such as resolution also matter. Not
only does the different selection of resolution change the aesthetic impression, but it also affects the
interpretation of the vector fields (Fig. S20), especially locally for some regions in the embedding, such
as the top right part of the pancreas data.

These illustrate how the qualitative impression of a vector field depends on the visualization method.
As the qualitative impression is usually subjective and highly parameter-dependent, we will not pursue
this critical point further. But we strongly recommend using the same visualization tool with choices of
appropriate parameters to compare different vector fields. We tend to favor the gridding approach, as it
more faithfully depicts local vector fields than the streamline plot and is easier to reason.
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Fig. S20. The choice of resolution could affect how the RNA velocity vector field looks. We use three
datasets to show that the choice of resolution could affect how the RNA velocity vector field looks like:
simulated data in (a-b); FUCCI data in (c-d); pancreas data in (d-e). For those datasets, we used the
dynamical model RNA velocity estimates. We use the streamline method to visualize the velocity vector
field in (a), (c), and (e), while we use the grid method in (b), (d), and (f). From left to right, we increase
the level of resolution. Note that how good the vector field looks depends on the subjectively optimal
choice of resolution level, which is difficult to decide and varies across datasets.
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