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1 Computational Framework

1.1 Mechanical Forces

Time Evolution Equations: In a two-dimensional space, a bacterial cell (i) can be mod-

eled as a rigid rod with center of mass coordinates (~ri), center of mass velocities (~vi), orien-

tation with respect to some specified axis (φi), density (ρi), and length (li). Here we assume

that the intracellular density is constant for all cells (ρi = ρ) so that the mass of a given cell

can be calculated using:

mi = ρli (1)

With this assumption, we can write down the fundamental equations that govern cellular

motion, namely Newton’s laws, for the force and torque of a rigid body moving in a viscous

substance:

ρli
d2~ri
dt2

= ~Fi({~r}, {~v})− βρli
d~ri
dt

(2)

ρl3i
12

d2φi
dt2

= τi({~r}, {~v})−
βρl3i
12

dφi
dt

(3)

where the brackets ({}) denote a function of all coordinates and velocities and β denotes the

drag from the surrounding viscous medium. The torque is calculated from the cross product

of the the lever arm and the corresponding force.

The unique aspects of simulating a bacterial population lie in the facts that cells grow

and divide, that the particle number of the system is not conserved, and that li is a function

of time. In order to successfully model the dynamics of such a system, the division time for

a given bacterial cell is chosen as the typical time scale of the system and the diameter of

the cell is chosen as the basic spatial length scale. Here we introduce two corresponding new
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variables:

~ri = rc~qi

t = tcτ (4)

where rc and tc have dimensions of length and time respectively. With this change of vari-

ables, length in the system can be written as

li = rcLi (5)

Our equations of motion can thus been written as

ρr2cLi
t2c

d2~qi
dτ 2

= ~Fi −
βρr2cLi
tc

d~qi
dτ

(6)

ρr3cL
3
i

12t2c

d2φi
dτ 2

= τi −
βρr3cL

3
i

12tc

dφi
dτ

(7)

where the forces and torques are also functions of dimensionless variables. Such nondimen-

sionalization allows to arrange the terms in a way that emphasizes the contribution of the

inertia term to the overall motion as

1

βtc

d2~qi
dτ 2

=
tc

βρr2cLi
Fi −

d~qi
dτ

(8)

1

βtc

d2φi
dτ 2

=
12tc

βρr3cL
3
i

τi −
dφi
dτ

(9)

To implement simulation, we need to specify the force and torque; however, we notice

there are now two clear timescales for the system, namely 1/β which governs that amount of

time for a given particle to change velocity and another timescale associated with the force

which governs the typical time for an interaction. The detailed forms are presented below.

Hertzian Forces: The following equation for the magnitude of contact force was used
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to describe the expansion of a bacterial colony on a solid substrate (S1) .

Fij =

 Ed
1
2h

3
2
ij : hij > 0

0 : hij ≤ 0

where E is a constant describing the rigidity of the rod, d is the interaction diameter of the

rod, and hij = d − |~rci − ~rcj|. Here, ~rci and ~rcj denote the closest points between the two

rods. In addition, the direction of the force is in the same direction as ~rci − ~rcj. Using this

force form, the equations of motion for rods in contact can be expressed as:

1

βtc

d2~qi
dτ 2

=
∑

contacts

Ed
1
2 tc(d− rc|~qci − ~qcj|)

3
2

βρr2cLi
q̂cij −

d~qi
dτ

1

βtc

d2~qi
dτ 2

=
∑

contacts

Etc(1− |~qci − ~qcj|)
3
2

βρLi
q̂cij −

d~qi
dτ

1

βtc

d2~qi
dτ 2

=
∑

contacts

(
Etc
βρ

)(
(1− |~qci − ~qcj|)

3
2

Li

)
q̂cij −

d~qi
dτ

(10)

where the sum over contacts includes cells that have a nonzero contact force (i.e. hij > 0).

Similarly, the equations for torque can be written as:

1

βtc

d2φi
dτ 2

=
∑

contacts

(
Etc
βρ

)(
12(1− |~qci − ~qcj|)

3
2

L3
i

)
q̂cij × (~qci − ~qi)−

dφi
dτ

(11)

From the above equations, we can explicitly see the two timescales in the problem, namely:

t1 =
βρ

E

t2 =
1

β
(12)

Alternatively, we can use the combined parameter ζ = βρ instead. For bacteria (E. coli)
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growing on a solid substrate, the estimated values are (S1)

ζ = 200 Pa · hr

E = 4× 106 Pa (13)

To estimate t1 and t2, we also need the density of a bacterial cell which can be approximated

as

ρ ≈ 10−15kg

3× 10−6m

≈ 3× 10−10 kg/m (14)

From the above estimates, we can obtain the two time scales as

t1 ≈ 5× 10−5hr

t2 ≈ 1.2× 10−19hr (15)

from which we find that the timescale for the velocity to change is much shorter than the

timescale for cellular interaction. Therefore, for a practical simulation, it is thus appropriate

to neglect the inertial term and choose a longer physical time step, which results in the first

order equations for force and torque below:

d~qi
dτ

=
∑

contacts

(
Etc
βρ

)(
(1− |~qci − ~qcj|)

3
2

Li

)
q̂ij

dφi
dτ

=
∑

contacts

(
Etc
βρ

)(
12(1− |~qci − ~qcj|)

3
2

L3
i

)
q̂ij × (~qci − ~qi) (16)

Notably, the timescale for interactions (t1) also provides a point of reference for choosing the

integration timestep during simulations because it tells the order of magnitude for time that

two rods will contact. Thus, to ensure successful simulation of cellular collisions, we shall
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choose a timestep that is smaller than t1. A reasonable choice would be:

∆τ =
t1

10tc

= 10−5 (17)

where we used 0.5 hr (typical division time for E. coli in exponential growth) for tc. Notice

that this corresponds to the interval in real time:

∆t = 5× 10−6hr (18)

It is important to note that this separation of timescales for t1 and t2 is a direct conse-

quence of slow movement of cells on a solid substrate. For liquid environments, the timescales

may be of similar magnitude during which eliminating the acceleration term in the equations

of motion will not be appropriate.

Numerical Integration: The Euler method was used to integrate the time evolution

of the force and torque equations. Due to the differences in growth rates of the cells with

different interactions, we found it helpful to choose a variable timestep instead of choosing

a minimal fixed time interval. The variable timestep was determined by ensuring that the

maximal movement of any cell was a small fraction of the cell diameter. This strategy enabled

substantially faster simulations for the case of populations with slow overall growth rates

due to deleterious interactions (i.e. competition). The force calculations were implemented

utilizing the following procedures: (1) cells were classified to a spatial grid; (2) cells in

nearest neighbor grids were tested for possible overlaps by finding the closest points for each

respective pair of cells; (3) cells that overlapped were assembled into a list; (4) forces and

torques at the closest contact points were calculated in parallel and output to a force list;

(5) forces and torques were combined for each cell. Some sample code from (S2) was used

to aid in development.
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Table S1: Summary of Mechanical Force Equations

Description Equation

Forces
d~qi
dτ

=
∑

contacts

(
Etc
βρ

)(
(1− |~qci − ~qcj|)

3
2

Li

)
q̂ij

Torques
dφi
dτ

=
∑

contacts

(
Etc
βρ

)(
12(1− |~qci − ~qcj|)

3
2

L3
i

)
q̂ij × (~qci − ~qi)

Description Parameter Value

Length Scale rc 1 µm

Time Scale tc 30 min

Cell diameter d 1 µm

Elasticity constant E 4× 106 Pa

Drag constant ζ = βρ 200 Pa · hr

1.2 Diffusible Chemicals

Time Evolution Equations: Every chemical (c) in the system is governed by a corre-

sponding reaction-diffusion equation as

dc

dt
= Dc∇2c+ αcf(ρc, c)− βcc ∈ Ω

c = c0 ∈ ∂Ω (19)

where Dc is the diffusion constant, αc and f(ρc, c) determine production (or consumption) by

cells, ρc is the density of cells that interact with the chemical, and βc determines degradation.

Ω is a two-dimensional rectangular region and ∂Ω is the boundary; c0 is the concentration

on the boundary. For the shared nutrition source (n), we assume that there is no auto-

degradation (i.e. βn = 0). We also re-scale the nutrition concentration so that its value on

the boundary equals 1. For the chemicals that mediate cellular interactions, we impose a

reactive boundary (c0 = 0). Similarly, we scale the concentration so that αc = 1. Moreover,

in all cases, the two dimensional region simulated is much larger than the colony size, so that
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the reactive boundary condition for the diffusible chemicals should have negligible effects.

Nutrition: Based on the Monod function (S3), the exact equation for nutrition is given

as

dn

dt
= Dn∇2n− αn

ρn

κ+ n
(20)

where n is nutrition, ρ is the total density of all species at a grid point in space, defined as

the area of all cells within a grid divided by the area of the grid. Parameters were chosen

to approximately reproduce the experimentally determined width of actively growing cells

of bacterial colonies (30-40µm) (S4), which are in agreement with previous simulations (S1).

The non-dimensional values are Dn = 250, αn = 1, and κ = 0.333. The boundary of the

simulated area serves as a constant source of nutrient.

Chemicals for Interactions: For chemicals other than nutrition, its production by

a given species is assumed constant. Therefore, the corresponding dimensionless reaction-

diffusion equation has a form of

dc

dt
= Dc∇2c+ ρc − βcc (21)

where c is the chemical, ρc is the density of the producer species at a grid point in space. In

this work, the diffusion (Dc) and degradation (βc) parameters (Dc = 1000 and βc = 10) were

chosen so that cellular interaction range is on the order of few spatial grid points. Notably,

for a well occupied spatial grid in the absence of diffusion, the steady state value for a given

chemical follows

0 = ρc − βcc

0 = 1− βcc

c =
1

βc
(22)
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which provides an estimate for the level of chemical within the densely packed region of the

expanding colony.

Numerical Integration: The Euler method was employed for simulating all of the

reaction-diffusion equations. A discretized version of the diffusion operator from a Taylor

expansion to second order in grid size was used. A grid size of 5 was used throughout

simulations, which is comparable to the max length for a single cell. The simulated region

was a square with a side length of 1000, which is much larger than the typical final radius

of the colonies (≈ 200)

Table S2: Summary of Diffusion Equations. The value for nutrient sensitivity is taken with
respect to the maximal concentration at the simulation boundary. Degradation, consump-
tion, and diffusion parameters were chosen to give a desired length scale for active cell growth
and interactions.

Description Equation

Nutrients
dn

dt
= Dn∇2n− αn

ρn

κ+ n

Interactions
dc

dt
= Dc∇2c+ ρc − βcc

Description Parameter Value

Nutrient diffusion Dn 500 µm2/hr

Nutrient consumption αn 2 hr−1

Nutrient sensitivity κ 0.333

Toxin/Public good diffusion Dc 2000 µm2/hr

Toxin/Public degradation βc 20 hr−1

1.3 Cell Growth and Division

Cellular growth follows the following equation:

dli
dt

= gAi
n

κ+ n
(1− ξT ) (23)
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where li is the length of the cell (i), Ai is the cell area, g is the maximal growth rate, κ is the

parameter associated with nutrient consumption (0.333 as in section 1.2), ξ is an interaction

parameter, and T is the concentration of diffusible chemical produced by the other species.

This specific form for elongation is similar to that found in (S1).

As discussed previously, we expect the maximal concentration of the diffusible chemicals

to be approximately 1/βc (or 1/10 in the simulations) for a well-packed spatial grid of

producing cells. We thus chose the interaction parameter ξ so that the exposure of the cell

to the maximal concentration resulted in either cessation of cell growth (toxin) or doubling

of cell growth (public good) ( ξ = +10 or −10 respectively). To ensure that the cells in the

population never decrease in length, the growth rate was truncated to zero for any possible

negative rates that arose.

The growth constant g was determined by considering the case of nutrient saturation

(n = 1) at which the doubling time is approximately one time unit in the absence of other

diffusible chemicals, i.e.,

dli
dt

= gAi
1

κ+ 1

=
g

κ+ 1

(π
4

+ li

)
li =

(
l0 +

π

4

)
e

g
κ+1

t − π

4
(24)

Calculating the time for a cell to grow from a length of 1.0 to 3.0 for division gives:

e
g
κ+1

t =
3 + π

4

1 + π
4

t =
κ+ 1

g
ln

(
3 + π

4

1 + π
4

)
(25)
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Finally, by setting the above time as 1 and plugging in the parameter value of κ, we obtained

g = (1.333)(0.752)

g ≈ 1 (26)

For cellular division, we assumed that each cell has a length that increases over time

until it reaches a specified division length. The total length at division for a given cell

was generated randomly from a Gaussian distribution with a mean of 4 and a standard

deviation of 0.3. Any values for division length outside of [3.1, 4.9] were truncated to the

extreme values. Notably, the total length (i.e. length plus the mechanical interaction range)

is conserved during division so that newly divided cells did not overlap. Each daughter cell

received a fraction of the parent length between 0.4 and 0.6 (adding up to one in total)

randomly.
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2 ODE Analysis

To interpret the results obtained from the simulation of our community modeling framework,

we considered a simplified case of the system–a well-mixed model. As shown below, the model

consists of three variables, including nutrition (n) and the populations of two cellular species

(u and v).

dn

dt
= (n0 − n)D − u

γ

(
mn

κ+ n

)
− v

γ

(
mn

κ+ n

)
du

dt
=

(
mn

κ+ n
(1− ξ1v)

)
u−Du

dv

dt
=

(
mn

κ+ n
(1− ξ2u)

)
v −Dv (27)

The parameters are nutrient supply (n0), degradation or flow rate (D), nutrient consumption

(m), consumption to growth ratio (γ), nutrient sensititivey (κ), and interspecies interaction

strength (ξ1 and ξ2). Notice that the first term on the right hand side of the equations for

both u and v consists of nutrient consumption and interaction terms; the second term results

form death or flow out of the system. As we are primarily interested in the system’s steady

states and their stabilities, we performed the change of variables using

t =
t

D

n = n0n

u =
n0γD

m
u

v =
n0γD

m
v (28)
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which results in the following equations after dropping the bars and rescaling the parameters:

dn

dt
= 1− n− u

(
n

κ+ n

)
− v

(
n

κ+ n

)
du

dt
=

(
αn

κ+ n
(1− ξ1v)

)
u− u

dv

dt
=

(
αn

κ+ n
(1− ξ2u)

)
v − v (29)

The steady states of the system can then be derived by setting the above equations to

zero. When considering the solutions to the equations, there are three possible types: u and

v both are zeros; one of them is zero; and neither of them is zero. For the case where both

are zero, the steady state solution is:

n = 1

u = 0

v = 0 (30)

For the case where v is extinct and u is nonzero, the steady state solution is:

n =
κ

α− 1

u = α

(
1− κ

α− 1

)
v = 0 (31)

Similarly, the steady state solution for the case of u is extinct and v is nonzero can also be

expressed. Furthermore, for the case where both are nonzero, the detail expression can also

be derived (It is not listed here as the expression is quite cumbersome).

Next we studied the stability of the system at the steady states for given types of inter-

action. As the extinction of the both species is trivial, we primarily focused on the cases
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where at least one species survives, which require the following condition:

α > 1 + κ (32)

for positive κ.

We found that, as long as the above condition is satisfied, the state with both u and

v extinct is linearly unstable as desired. Evaluating the Jacobian for the other two single

species fixed points shows that the u nonzero, v extinct state is stable as long as ξ2 > 0.

Similarly, the u extinct, v nonzero state is stable as long as ξ1 > 0.

A numerical exploration of the number of stable steady states in Mathematica confirmed

the above analytical results. For parameter values of α = 2 and κ = 1/3, we explored the

impacts of social interaction on the system’s steady state properties by varying the values

of ξ1 and ξ2 from −0.2 to 0.2. Here, the values for ξ1 and ξ2 were kept relatively small

to reflect the realistic case where cellular interactions from toxins or public goods are a

secondary effect compared with that from nutrition. As shown in Figure 6 in the main text,

the different values for ξ1 and ξ2 lead to different outcomes (extinction, bistable extinction,

and coexistence). The axes in the plot are marginal cases (with zero eigenvalues), however,

the test cases through simulations show extinction (SI Figure S12). For the figures, Figure

6C in the main text and Supporting Figure S12, interaction parameters (ξ1 and ξ2) were

assigned 0, −0.1, or 0.1 depending on the interaction type being tested.
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3 Supporting Figures

Figure S1: The fraction of green cell lineages as a function of the total cells of the communities
that are neutral, mutualistic, and competing. It is a supplement to Figure 4C in the main
text.
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Figure S2: Statistical analysis of bacterial communities that are compared according to time
evolution. Six simulation runs were performed for each interaction type in order to obtain
the statistics.
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Figure S3: Statistical analysis of the role of social interactions in determining community
structure for the case of a medium initial density (64 cells, 1:1 ratio).

S17



Figure S4: Statistical analysis of the role of social interactions in determining community
structure for the case of a medium initial density (16 cells, 1:1 ratio).
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Figure S5: Changing the initial density has little effect on colony roughness for both amen-
salism and competition.
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Figure S6: Representative structures emerged from amensal communities with three different
initial densities: high (256 cells), medium (64 cells) and low (16 cells). As the initial cell
density drops, the number of total green cells (victim species) increases, eventually resulting
in coexistence.
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Figure S7: Statistical analysis of the role of social interactions in determining community
structure for the case of a high initial density (256 cells) and a 1:7 relative abundance.
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Figure S8: Statistical analysis of the role of social interactions in determining community
structure for the case of a high initial density (256 cells) and a 1:3 relative abundance.
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Figure S9: Statistical analysis of the role of social interactions in determining community
structure for the case of a high initial density (256 cells) and a 3:1 relative abundance.
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Figure S10: Statistical analysis of the role of social interactions in determining community
structure for the case of a high initial density (256 cells) and a 7:1 relative abundance.
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Figure S11: Fraction of green cells as a function of total cells in mutualistic communities with
different initial relative abundance. Mutualism tends to decrease deviations in the relative
abundance away from 1:1.

S25



Figure S12: Simulations of well-mixed two-species communities with different social interac-
tions. For control, the green cell fraction is determined purely by the initial conditions. For
commensalism, the red cells always go extinct. For amensalism, the green cells always go
extinct. For mutualism, equal species abundance is achieved. For competition, one of the
species goes extinct depending on initial conditions. For parasitism, the red cells always go
extinct. This figure supplements Figure 6 in the main text.
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Figure S13: Time course images for cell density using the well-mixed initial conditions with
high cell density and Neutralism. The total cell density (top row) shows a densely packed
quasi-circular colony with a maximum height corresponding to approximately 10 cells packed
in one spacial grid (5 µm by 5 µm). The values for cell density were calculated by counting
the number of cells with a center of mass at a specified spatial grid point. Since cells with a
center of mass at one grid point may extend into a neighboring grid, the values were averaged
over nearest neighbors. The cell densities for individual species (i.e. green or red) are shown
in rows 2 and 3. The mesh lines shown in the image correspond to approximately 6 spatial
grids in the simulation. The boundary of the grid was chosen for display purposes; the actual
simulation boundary is more distant from the expanding colony to minimize effects from the
boundary conditions.
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Figure S14: Time course images for cell density using the well-mixed initial conditions with
medium cell density and Neutralism. The total cell density (top row) shows a densely packed
quasi-circular colony with a maximum height corresponding to approximately 10 cells packed
in one spacial grid (5 µm by 5 µm). The values for cell density were calculated by counting
the number of cells with a center of mass at a specified spatial grid point. Since cells with a
center of mass at one grid point may extend into a neighboring grid, the values were averaged
over nearest neighbors. The cell densities for individual species (i.e. green or red) are shown
in rows 2 and 3. The mesh lines shown in the image correspond to approximately 6 spatial
grids in the simulation. The boundary of the grid was chosen for display purposes; the actual
simulation boundary is more distant from the expanding colony to minimize effects from the
boundary conditions.
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Figure S15: Time course images for cell density using the well-mixed initial conditions with
low cell density and Neutralism. The total cell density (top row) shows a densely packed
quasi-circular colony with a maximum height corresponding to approximately 10 cells packed
in one spacial grid (5 µm by 5 µm). The values for cell density were calculated by counting
the number of cells with a center of mass at a specified spatial grid point. Since cells with a
center of mass at one grid point may extend into a neighboring grid, the values were averaged
over nearest neighbors. The cell densities for individual species (i.e. green or red) are shown
in rows 2 and 3. The mesh lines shown in the image correspond to approximately 6 spatial
grids in the simulation. The boundary of the grid was chosen for display purposes; the actual
simulation boundary is more distant from the expanding colony to minimize effects from the
boundary conditions.
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Figure S16: Time course images for cell density using the well-mixed initial conditions with
high cell density and Mutualism. The total cell density (top row) shows a densely packed
quasi-circular colony with a maximum height corresponding to approximately 10 cells packed
in one spacial grid (5 µm by 5 µm). The values for cell density were calculated by counting
the number of cells with a center of mass at a specified spatial grid point. Since cells with a
center of mass at one grid point may extend into a neighboring grid, the values were averaged
over nearest neighbors. The cell densities for individual species (i.e. green or red) are shown
in rows 2 and 3. The mesh lines shown in the image correspond to approximately 6 spatial
grids in the simulation. The boundary of the grid was chosen for display purposes; the actual
simulation boundary is more distant from the expanding colony to minimize effects from the
boundary conditions.
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Figure S17: Time course images for cell density using the well-mixed initial conditions with
medium cell density and Mutualism. The total cell density (top row) shows a densely packed
quasi-circular colony with a maximum height corresponding to approximately 10 cells packed
in one spacial grid (5 µm by 5 µm). The values for cell density were calculated by counting
the number of cells with a center of mass at a specified spatial grid point. Since cells with a
center of mass at one grid point may extend into a neighboring grid, the values were averaged
over nearest neighbors. The cell densities for individual species (i.e. green or red) are shown
in rows 2 and 3. The mesh lines shown in the image correspond to approximately 6 spatial
grids in the simulation. The boundary of the grid was chosen for display purposes; the actual
simulation boundary is more distant from the expanding colony to minimize effects from the
boundary conditions.
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Figure S18: Time course images for cell density using the well-mixed initial conditions with
low cell density and Mutualism. The total cell density (top row) shows a densely packed
quasi-circular colony with a maximum height corresponding to approximately 10 cells packed
in one spacial grid (5 µm by 5 µm). The values for cell density were calculated by counting
the number of cells with a center of mass at a specified spatial grid point. Since cells with a
center of mass at one grid point may extend into a neighboring grid, the values were averaged
over nearest neighbors. The cell densities for individual species (i.e. green or red) are shown
in rows 2 and 3. The mesh lines shown in the image correspond to approximately 6 spatial
grids in the simulation. The boundary of the grid was chosen for display purposes; the actual
simulation boundary is more distant from the expanding colony to minimize effects from the
boundary conditions.
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Figure S19: Time course images for cell density using the well-mixed initial conditions with
high cell density and Competition. The total cell density (top row) shows a densely packed
quasi-circular colony with a maximum height corresponding to approximately 10 cells packed
in one spacial grid (5 µm by 5 µm). The values for cell density were calculated by counting
the number of cells with a center of mass at a specified spatial grid point. Since cells with a
center of mass at one grid point may extend into a neighboring grid, the values were averaged
over nearest neighbors. The cell densities for individual species (i.e. green or red) are shown
in rows 2 and 3. The mesh lines shown in the image correspond to approximately 6 spatial
grids in the simulation. The boundary of the grid was chosen for display purposes; the actual
simulation boundary is more distant from the expanding colony to minimize effects from the
boundary conditions.
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Figure S20: Time course images for cell density using the well-mixed initial conditions with
medium cell density and Competition. The total cell density (top row) shows a densely
packed quasi-circular colony with a maximum height corresponding to approximately 10
cells packed in one spacial grid (5 µm by 5 µm). The values for cell density were calculated
by counting the number of cells with a center of mass at a specified spatial grid point.
Since cells with a center of mass at one grid point may extend into a neighboring grid, the
values were averaged over nearest neighbors. The cell densities for individual species (i.e.
green or red) are shown in rows 2 and 3. The mesh lines shown in the image correspond to
approximately 6 spatial grids in the simulation. The boundary of the grid was chosen for
display purposes; the actual simulation boundary is more distant from the expanding colony
to minimize effects from the boundary conditions.
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Figure S21: Time course images for cell density using the well-mixed initial conditions with
low cell density and Competition. The total cell density (top row) shows a densely packed
quasi-circular colony with a maximum height corresponding to approximately 10 cells packed
in one spacial grid (5 µm by 5 µm). The values for cell density were calculated by counting
the number of cells with a center of mass at a specified spatial grid point. Since cells with a
center of mass at one grid point may extend into a neighboring grid, the values were averaged
over nearest neighbors. The cell densities for individual species (i.e. green or red) are shown
in rows 2 and 3. The mesh lines shown in the image correspond to approximately 6 spatial
grids in the simulation. The boundary of the grid was chosen for display purposes; the actual
simulation boundary is more distant from the expanding colony to minimize effects from the
boundary conditions.
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Figure S22: Comparison of the cell number density plots and the single cell image for a
top down view of the final state for a simulation with well-mixed initial conditions and
Neutralism. The two-dimensional nature of the simulations allows the local density to be
inferred by considering the color of the single cells in the images of the far right column.
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Figure S23: Comparison of the cell number density plots and the single cell image for a
top down view of the final state for a simulation with well-mixed initial conditions and
Mutualism. The two-dimensional nature of the simulations allows the local density to be
inferred by considering the color of the single cells in the images of the far right column.
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Figure S24: Comparison of the cell number density plots and the single cell image for a
top down view of the final state for a simulation with well-mixed initial conditions and
Competition. The two-dimensional nature of the simulations allows the local density to be
inferred by considering the color of the single cells in the images of the far right column.
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4 Supporting Tables

Table S3: Run statistics for the case with an equal initial relative abundance and a medium
initial density.

Control Commensalism Amensalism Competition Mutualism Parasitism
Green Fraction 0.50± 0.10 0.68± 0.07 0.20± 0.12 0.49± 0.16 0.50± 0.06 0.89± 0.05
Roughness 0.89± 0.02 0.87± 0.04 1.03± 0.06 1.56± 0.26 0.96± 0.10 0.91± 0.04
Lineages 27.83± 0.41 28.17± 0.75 22.33± 3.44 24.33± 1.97 30.33± 1.63 23.00± 2.83

Green Lineages 14.17± 1.94 14.50± 1.76 8.50± 5.09 12.33± 2.42 15.17± 1.94 14.67± 2.42
Sectors 16.83± 4.67 15.50± 3.27 4.17± 2.40 6.17± 3.60 18.33± 6.25 3.50± 2.51

Table S4: Run statistics for the case with an equal initial relative abundance and a low
initial density.

Control Commensalism Amensalism Competition Mutualism Parasitism
Green Fraction 0.53± 0.07 0.67± 0.06 0.35± 0.10 0.53± 0.11 0.53± 0.05 0.82± 0.07
Roughness 0.88± 0.01 0.89± 0.05 1.02± 0.08 1.30± 0.26 1.01± 0.08 0.93± 0.03
Lineages 12.00± 0.00 12.00± 0.00 11.17± 1.17 11.33± 0.52 12.00± 0.00 11.00± 1.26

Green Lineages 6.33± 0.82 6.33± 0.82 5.50± 1.38 5.83± 0.75 6.33± 0.82 6.33± 0.82
Sectors 7.00± 2.76 7.00± 2.53 4.67± 2.07 4.33± 1.97 7.83± 2.99 3.50± 1.76
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Table S5: Run statistics for the case with a 1:7 initial relative abundance and a high initial
density.

Control Commensalism Amensalism Competition Mutualism Parasitism
Green Fraction 0.89± 0.02 0.92± 0.02 0.86± 0.03 0.99± 0.00 0.72± 0.01 0.99± 0.00
Roughness 0.91± 0.01 0.90± 0.10 0.98± 0.15 0.93± 0.15 1.09± 0.20 0.91± 0.01
Lineages 61.20± 1.64 64.40± 1.67 56.20± 2.49 56.20± 1.64 82.20± 4.44 59.20± 3.49

Green Lineages 54.60± 1.67 57.80± 1.64 49.80± 1.92 54.00± 0.71 69.60± 4.72 56.80± 2.68
Sectors 5.80± 2.77 4.40± 2.30 8.60± 0.89 1.00± 0.00 20.40± 3.51 1.00± 0.00

Table S6: Run statistics the case with a 1:3 initial relative abundance and a high density.

Control Commensalism Amensalism Competition Mutualism Parasitism
Green Fraction 0.78± 0.02 0.84± 0.01 0.59± 0.06 0.97± 0.00 0.62± 0.01 0.98± 0.00
Roughness 0.90± 0.01 0.87± 0.04 1.00± 0.06 1.14± 0.25 0.95± 0.07 0.90± 0.01
Lineages 61.60± 1.52 67.80± 2.59 54.00± 3.61 51.20± 3.56 94.20± 2.17 55.60± 2.88

Green Lineages 48.00± 3.46 53.40± 1.67 39.80± 4.76 46.60± 2.30 70.20± 3.56 49.60± 2.30
Sectors 16.80± 1.48 7.20± 4.15 9.80± 2.77 1.20± 0.45 29.00± 4.30 1.00± 0.00

Table S7: Run statistics for a 3:1 initial relative abundance and a high initial density.

Control Commensalism Amensalism Competition Mutualism Parasitism
Green Fraction 0.25± 0.04 0.54± 0.05 0.03± 0.00 0.04± 0.00 0.40± 0.03 0.77± 0.06
Roughness 0.90± 0.01 0.90± 0.06 0.88± 0.06 1.17± 0.12 0.89± 0.06 0.93± 0.05
Lineages 60.60± 1.67 72.80± 3.96 53.60± 2.88 49.40± 2.51 93.40± 3.78 57.00± 6.60

Green Lineages 16.40± 2.88 23.60± 2.79 7.40± 2.07 5.80± 0.84 28.20± 4.44 23.40± 1.34
Sectors 15.20± 5.40 21.40± 4.39 1.00± 0.00 1.40± 0.55 29.60± 4.62 5.40± 0.89

Table S8: Run statistics for a 7:1 initial relative abundance and a high initial density.

Control Commensalism Amensalism Competition Mutualism Parasitism
Green Fraction 0.14± 0.03 0.40± 0.03 0.01± 0.00 0.01± 0.00 0.30± 0.03 0.55± 0.04
Roughness 0.90± 0.01 0.96± 0.07 0.87± 0.04 1.00± 0.08 1.10± 0.07 0.96± 0.04
Lineages 63.00± 0.71 69.00± 1.87 57.60± 2.41 55.20± 1.30 82.60± 2.19 59.00± 3.08

Green Lineages 8.40± 1.67 12.40± 2.41 4.00± 1.58 3.80± 0.45 13.00± 2.24 12.20± 2.28
Sectors 9.40± 2.30 18.60± 5.50 1.00± 0.00 1.00± 0.00 24.20± 5.97 6.80± 1.64

Table S9: Run statistics for communities simulated using the well-mixed model. The mean
and standard deviation of the fraction of green cells were obtained using 1000 runs of simu-
lations with random initial conditions (each of the species concentrations is between 0 and
1 and nutrition is set to be 1).

Control Competition Mutualism
Green Fraction 0.50± 0.24 0.48± 0.50 0.50± 0.00
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