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1 Notations and definitions

Definition 1 (Real-valued series). This work focuses on real-valued signals, discretized on t

time stamps, such as for instance x := [z', ... '] which can simply be referred to as vector

x € R

Definition 2 (Wasserstein-1 distance on real-valued series). Let z,y € RY. The W1 distance
between x and y reads:

t
dwi(,y) = ) |Fa(k) = B, (k)| = |Fz = Flle
k=1

where F, and F, are the empirical cumulative functions of signals x and y, respectively:

and

Definition 3 (Positive definite and positive semi-definite kernel). A kernel k(-,-) is positive
semi-definite (PSD) (respectively, positive definite (PD)) if and only if it is symmetric and
for any choice of n distinct x4, ..., 1z, € R" (respectively, € R*\ 0) and of 1, ..., ¢, € R:

n

Z cicik(x;,x;) > 0 (respectively, > 0). (1)

ij=1



Property 1. A kernel k is PSD if and only if for any set of n distinct 1, ..., x, € R, the
kernel matriz K € R™" defined by K;; = k(z;,z;) has only non-negative eigenvalues.

Proof. [1] (Theorem 4.1.10 p.231) ]
Definition 4 (Gaussian W1 kernel). V z,y € R", YV v € R% | the Gaussian W1 kernel reads:
Ko (,y) = 77 m @) (2)
Definition 5 (Laplacian W1 kernel). V z,y € R",Y v € RY, the Laplacian W1 kernel reads:
K (,4) = 7o) )

Definition 6 (Exponential 1D kernel [2]). V z,y € R,Vy € RY, the Ezponential 1D kernel
reads:

Kpip(a,y) = e vl (4)
Property 2. V z,y € R, v € RY, the Exponential 1D kernel k), ,(x,y) is positive definite.
Proof. [3| (Corollary 2.10. p. 78 and Theorem 2.2 p. 74) O

2 Gaussian W1 kernel

Conjecture 1. Vz,y € R", Y v € RY the kernel ki (z,y) = e v lrulE g positive definite.

If Conjecture 1 holds, then, demonstrating the positive definiteness of &/, is possible by
following a line akin to the one used in the k), case (see Section 3).

Nevertheless, we provide here empirical supports for the PSD-ness of k/yy; (which is suf-
ficient to apply the kernel trick): For each dataset, we performed 5 Nystrém approximations
of the Gaussian W1 kernel matrix, as described in Algorithm 1 (main article) with different
random subsampling, and we verified that all the eigenvalues were non-negative (leading to
a PSD kernel, according to Property 1). The results are reported on Figures 1, 2 and 3,
which display the 5 series of eigenvalues (for datasets Ecoli-DIA, Ecoli-FMS and UPS2GT,
respectively), sorted by decreasing order, together with the largest (A\q.) and smallest (Ain)
eigenvalues across all the 5 tests. In addition, we observed that for raw data like Ecoli ones,
for which CHICKN was designed, the \,,;, is clearly positive (contrarily to datasets such as
UPS2GT, which by construction may not lead to full rank data matrices). This makes us
optimistic about Conjecture 1.

3 Laplacian W1 kernel

m

Lemma 1. Let (X;)™, is a sequence of non empty sets, Vi € {1,...,m} z',y" € X; and
(ki)™ is a sequence of positive definite kernels such that k; : X; x X; — R, then a kernel
defined as:

m

K(@' 2™, o y™) = [ R ) (5)

i=1
15 positive definite on X; X - -+ X X,,.
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Figure 1: Matrix spectrum for the 5 repetitions (each with a specific color) of Nystrom
approximation resulting from Ecoli-DIA dataset. The minimal and maximum values (Ayin
and \,q., respectively) over these 5 tests are indicated in the upper right corner.
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Figure 2: Matrix spectrum for the 5 repetitions (each with a specific color) of Nystrom
approximation resulting from Ecoli-FMS dataset. The minimal and maximum values (Ain
and \,q., respectively) over these 5 tests are indicated in the upper right corner.
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Figure 3: Matrix spectrum for the 5 repetitions (each with a specific color) of Nystrom
approximation resulting from UPS2GT dataset. The minimal and maximum values (Anin
and \,q., respectively) over these 5 tests are indicated in the upper right corner.



Proof. [3| (Corollary 1.13 p. 70). O
Lemma 2. Vz,y € R and v € R® the kernel kj(z,y) = e 1#=vla s positive definite.

Proof. The ¢, norm of a vector x reads

t

lzlle =) I,

=1

th

where 7 is i coordinate of z. The kernel kJ(x,y) can be rewritten as follows:

k] (z,y) = He—vlr—yl

where (e~ =¥'1)t_| is a sequence of Exponential 1D kernels, which are positive definite on
R ( Property 2). Thus, according to Lemma 1, k; (z,y) is also positive definite. ]

Corollary 1. The Laplacian W1 kernel (see Definition 5) is positive definite.

Proof. It is sufficient to notice that according the Definition 2, the Wasserstein-1 distance
dwi(z,y) reads ||F, — Fy|le,, where F, and F, are the empirical cumulative functions, i.e.

vectors € RY. As the set of the empirical cumulatlve function Xp = {F e R | F1 <,--- <
F, Zl | F* =1} is a subset of RY, the positive definiteness of k], derives directly from the
positive definiteness of kj (Lemma 2). O
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