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1 Notations and definitions
Definition 1 (Real-valued series). This work focuses on real-valued signals, discretized on t
time stamps, such as for instance x := [x1, . . . , xt] which can simply be referred to as vector
x ∈ Rt.

Definition 2 (Wasserstein-1 distance on real-valued series). Let x, y ∈ Rt. The W1 distance
between x and y reads:

dW1(x, y) =
t∑

k=1

|Fx(k)− Fy(k)| = ‖Fx − Fy‖`1

where Fx and Fy are the empirical cumulative function
:
s of signals x and y, respectively:

Fx(k) =

k(k≤t)∑
i=1

xi

‖x‖`1

and

Fy(k) =

k(k≤t)∑
i=1

yi

‖y‖`1

Definition 3 (Positive definite and positive semi-definite kernel). A kernel k(·, ·) is positive
semi-definite (PSD) (respectively, positive definite (PD)) if and only if it is symmetric and
for any choice of n distinct x1, . . . , xn ∈ Rt (respectively, ∈ Rt \ 0) and of c1, . . . , cn ∈ R:

n∑
i,j=1

cicjk(xi, xj) ≥ 0 (respectively, > 0). (1)
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Property 1. A kernel k is PSD if and only if for any set of n distinct x1, . . . , xn ∈ Rt, the
kernel matrix K ∈ Rn×n defined by Kij = k(xi, xj) has only non-negative eigenvalues.

Proof. [1] (Theorem 4.1.10 p.231)

Definition 4 (Gaussian W1 kernel). ∀ x, y ∈ Rt,∀ γ ∈ R∗+, the Gaussian W1 kernel reads:

kγGW1(x, y) = e−γ·dW1
(x,y)2 (2)

Definition 5 (Laplacian W1 kernel). ∀ x, y ∈ Rt,∀ γ ∈ R∗+, the Laplacian W1 kernel reads:

kγLW1(x, y) = e−γ·dW1
(x,y) (3)

Definition 6 (Exponential 1D kernel [2]). ∀ x, y ∈ R,∀γ ∈ R∗+, the Exponential 1D kernel
reads:

kγE1D(x, y) = e−γ·|x−y| (4)

Property 2. ∀ x, y ∈ R, γ ∈ R∗+, the Exponential 1D kernel kγE1D(x, y) is positive definite.

Proof. [3] (Corollary 2.10. p. 78 and Theorem 2.2 p. 74)

2 Gaussian W1 kernel
Conjecture 1. ∀x, y ∈ Rt, ∀ γ ∈ R∗+ the kernel kγ1 (x, y) = e−γ·‖x−y‖

2
`1 is positive definite.

If Conjecture 1 holds, then, demonstrating the positive definiteness of kγGW1 is possible by
following a line akin to the one used in the kγLW1 case (see Section 3).

Nevertheless, we provide here empirical supports for the PSD-ness of kγGW1 (which is suf-
ficient to apply the kernel trick): For each dataset, we performed 5 Nyström approximations
of the Gaussian W1 kernel matrix, as described in Algorithm 1 (main article) with different
random subsampling, and we verified that all the eigenvalues were non-negative (leading to
a PSD kernel, according to Property 1). The results are reported on Figures 1, 2 and 3,
which display the 5 series of eigenvalues (for datasets Ecoli-DIA, Ecoli-FMS and UPS2GT,
respectively), sorted by decreasing order, together with the largest (λmax) and smallest (λmin)
eigenvalues across all the 5 tests. In addition, we observed that for raw data like Ecoli ones,
for which CHICKN was designed, the λmin is clearly positive (contrarily to datasets such as
UPS2GT, which by construction may not lead to full rank data matrices). This makes us
optimistic about Conjecture 1.

3 Laplacian W1 kernel
Lemma 1. Let (Xi)

m
i=1 is a sequence of non empty sets, ∀i ∈ {1, . . . ,m} xi, yi ∈ Xi and

(ki)
m
i=1 is a sequence of positive definite kernels such that ki : Xi × Xi → R, then a kernel

defined as:

K((x1, . . . , xm), (y1, . . . , ym)) =
m∏
i=1

k(xi, yi) (5)

is positive definite on X1 × · · · ×Xm.
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Figure 1: Matrix spectrum for the 5 repetitions (each with a specific color) of Nyström
approximation resulting from Ecoli-DIA dataset. The minimal and maximum values (λmin
and λmax, respectively) over these 5 tests are indicated in the upper right corner.
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Figure 2: Matrix spectrum for the 5 repetitions (each with a specific color) of Nyström
approximation resulting from Ecoli-FMS dataset. The minimal and maximum values (λmin
and λmax, respectively) over these 5 tests are indicated in the upper right corner.
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Figure 3: Matrix spectrum for the 5 repetitions (each with a specific color) of Nyström
approximation resulting from UPS2GT dataset. The minimal and maximum values (λmin
and λmax, respectively) over these 5 tests are indicated in the upper right corner.
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Proof. [3] (Corollary 1.13 p. 70).

Lemma 2. ∀x, y ∈ Rt and γ ∈ R∗+ the kernel kγ2 (x, y) = e−γ·‖x−y‖`1 is positive definite.

Proof. The `1 norm of a vector x reads

‖x‖`1 =
t∑
i=1

|xi|,

where xi is ith coordinate of x. The kernel kγ2 (x, y) can be rewritten as follows:

kγ2 (x, y) =
t∏
i=1

e−γ·|x
i−yi|

where (e−γ·|x
i−yi|)ti=1 is a sequence of Exponential 1D kernels, which are positive definite on

R ( Property 2). Thus, according to Lemma 1, kγ2 (x, y) is also positive definite.

Corollary 1. The Laplacian W1 kernel (see Definition 5) is positive definite.

Proof. It is sufficient to notice that according the Definition 2, the Wasserstein-1 distance
dW1(x, y) reads ‖Fx − Fy‖`1 , where Fx and Fy are the empirical cumulative functions, i.e.
vectors ∈ Rt. As the set of the empirical cumulative function XF = {F ∈ Rt | F 1 ≤, · · · ≤
Ft,

∑t
i=1 F

i = 1} is a subset of Rt, the positive definiteness of kγLW1 derives directly from the
positive definiteness of kγ2 (Lemma 2).
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