
1

NucBreak: Location of structural errors in
a genome assembly by using paired-end
Illumina reads

Supplementary materials

Ksenia Khelik, Geir Kjetil Sandve, Alexander Johan Nederbragt, Torbjørn Rognes

2

Supplementary methods and results

1. Fragment size estimation

Only read pairs satisfying the following conditions are used for fragment size estimation:
1. Each read in a pair is uniquely aligned

2. Both reads are mapped to the same genome sequence

3. The reads have different orientations relative to the genome sequence

4. The read with the reverse orientation is located at the same position or further down on

the sequence compared to the mapping locations of the forward-oriented read

5. The forward- and reverse-oriented reads are not soft-clipped at both sides. However,

the alignments of properly mapped reads may contain short substitutions, insertions

and deletions.

The fragment size is calculated by the formula:

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑟𝑟𝑟𝑟𝑟𝑟_𝑒𝑒𝑒𝑒𝑒𝑒2 − 𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠𝑠𝑠1 + 1 , where

𝑟𝑟𝑟𝑟𝑟𝑟_𝑒𝑒𝑒𝑒𝑒𝑒2 - the location of reverse-oriented read end at the genome chromosome
𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠𝑠𝑠1 - the location of forward-oriented read start at the genome chromosome

The fragment sizes are sorted in ascending order, and for each fragment size the number of

read pairs (#𝑃𝑃) having the given fragment size is calculated. Then 𝑚𝑚𝑚𝑚𝑚𝑚_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and

𝑚𝑚𝑚𝑚𝑚𝑚_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 are found:

𝑚𝑚𝑚𝑚𝑚𝑚_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = {𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖: #𝑃𝑃(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖) ≥ 10 𝑎𝑎𝑎𝑎𝑎𝑎 ∀ 𝑗𝑗 < 𝑖𝑖 #𝑃𝑃(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗) < 10

𝑎𝑎𝑎𝑎𝑎𝑎 ∃𝑘𝑘 = 𝑖𝑖 + 1 … 𝑖𝑖 + 10 #𝑃𝑃(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘) ≥ 10 𝑎𝑎𝑎𝑎𝑎𝑎 #𝑘𝑘 ≥ 3}

𝑚𝑚𝑚𝑚𝑚𝑚_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = {𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖: #𝑃𝑃(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖) ≥ 10 𝑎𝑎𝑎𝑎𝑎𝑎 ∀ 𝑗𝑗 > 𝑖𝑖 #𝑃𝑃(𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗) < 10

𝑎𝑎𝑎𝑎𝑎𝑎 ∃𝑘𝑘 = 𝑖𝑖 − 11 … 𝑖𝑖 − 1 #𝑃𝑃(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘) ≥ 10 𝑎𝑎𝑎𝑎𝑎𝑎 #𝑘𝑘 ≥ 3}

If the number of corresponding read pairs is less than 10 for any fragment size, then:

𝑚𝑚𝑚𝑚𝑚𝑚_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = {max (0, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 − 50): ∀𝑘𝑘 ≠ 𝑖𝑖 #𝑃𝑃(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖) ≥ #𝑃𝑃(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘)}

𝑚𝑚𝑚𝑚𝑚𝑚_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = {𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 + 50: ∀𝑘𝑘 ≠ 𝑖𝑖 #𝑃𝑃(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖) ≥ #𝑃𝑃(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘)}

3

2. Fragment size detection between properly mapped read pairs

Since the reads from properly mapped reads pairs may be soft-clipped in the start or at the

end of the read depending on the read orientation, a fragment size inside properly mapped

reads is calculated by the extended formula:

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑟𝑟𝑟𝑟𝑟𝑟_𝑒𝑒𝑒𝑒𝑒𝑒2 + 𝑒𝑒𝑒𝑒𝑒𝑒_𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2 − 𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠𝑠𝑠1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑1 + 1, where

𝑟𝑟𝑟𝑟𝑟𝑟_𝑒𝑒𝑒𝑒𝑒𝑒2 - the location of the reverse-oriented read end at the genome chromosome
𝑒𝑒𝑒𝑒𝑒𝑒_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2 - the number of soft-clipped bases at the end of the reverse-oriented read
𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠𝑠𝑠1 - the location of the forward-oriented read start at the genome chromosome
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑1- the number of soft-clipped bases in the beginning of the reverse-oriented

read

3. The Velvet, ABySS and SPAdes parameter settings used to obtain assemblies

SPAdes was run with the “-t 2 -k 33 --cov-cutoff 2” parameter settings.
ABySS was run with “k=64” parameter setting.
Velveth was run with k-mer length equal to 31.

Velvetg was run with “-ins_length 180 -scaffolding yes -min_contig_lgth 250 -cov_cutoff 5”

parameter settings.

4. The NucBreak, REAPR and FRCbam parameter settings used to detect
assembly errors

In the Sections 3.1 and 3.2, we used the following parameter settings for the tools:

• NucBreak was run with “--min_frag_size 620 --max_frag_size 790” parameter settings

• In case of REAPR, perfectmap was run with 700 bp average insert size

• FRCbam was run with “--pe-max-insert 776” and the value for “--genome-size”

parameter was detected automatically by using python script for each modification

case.

In the Section 3.3, we used the following parameter settings for the tools:

4

• in case of REAPR, perfectmap was run with 300 bp average insert size

• FRCbam was run with “--pe-max-insert 776 --genome-size 112000000” parameter

settings

In the Section 3.4, we used the following parameter settings for the tools:
• In case of REAPR, perfectmap was run with the following average insert sizes

depending on the genome dataset used:

• Salmonella dataset - 500 bp

• Staphylococcus dataset - 400 bp

• Escherichia dataset - 300 bp

• Pseudomonas dataset - 180 bp

• Bordetella dataset - 450 bp

• Brucella dataset - 500 bp

• Klebsiella dataset - 200 bp

• Enterobacter dataset - 300 bp

• FRCbam was run with the following parameter settings depending on the genome

dataset used:

• Salmonella dataset - “--pe-max-insert 1060 --genome-size 4810000”

• Staphylococcus dataset - “--pe-max-insert 1040 --genome-size 2860000”

• Escherichia dataset - “--pe-max-insert 1110 --genome-size 5480000”

• Pseudomonas dataset - “--pe-max-insert 844 --genome-size 6820000”

• Bordetella dataset - “--pe-max-insert 890 --genome-size 4110000”

• Brucella dataset - “--pe-max-insert 1120 --genome-size 3300000”

• Klebsiella dataset - “--pe-max-insert 950 --genome-size 5720000”

• Enterobacter dataset - “--pe-max-insert 819 --genome-size 5040000”

5. Result evaluation

The ground truth entries may be represented as dots (e.g. in case of deletions, simple

relocations or translocations) or as intervals (e.g. in case of insertion, duplications, relocations

with overlap). If a ground truth entry is an interval, it may be fully covered with reads mapped

back to the query sequences (e.g. in case of inversions) or remain uncovered (e.g. in case of

inserted regions that are not present in the reference genome). In the first case, a tested tool

is expected to mark the regions corresponding to the start- and/or end-points of the ground

truth entry as breakpoints, while in the second case the whole entry is expected to be predicted

as a breakpoint.

5

We say that if a ground truth entry coincides with an obtained breakpoint or the ground truth

entry start- and/or end-points coincide with obtained breakpoints, then we have a true positive

(TP). If a ground truth entry does not coincide with any of obtained breakpoints, then we have

a false negative (FN). To get TPs and FNs, we have run BEDTools with the pairtopair -both’

option. With this option, BEDTool reports an overlap between two intervals A and B if both

ends of A overlap B. If BEDTool reports an overlap for a whole ground truth entry or for its

start- and/or end-points, then we get a TP, otherwise a FN. Having obtained the number of

TPs and FNs, we calculate sensitivity by the formula:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
#𝑇𝑇𝑇𝑇

#𝑇𝑇𝑇𝑇 + #𝐹𝐹𝐹𝐹

Unlike ground truth entries, an obtained result can correspond only to one interval: either to a

whole ground truth entry or to its start- or end-point. If an obtained breakpoint does not coincide

with any of the ground truth entries and with any of the ground truth entry start- and end-points,

then the given obtained breakpoint is a false positive (FP). To get FP, we have run BEDTools

with the ‘‘pairtopair -notboth’ option. With this option, BEDTool reports an overlap between two

intervals A and B, if one or neither of A's ends overlap B. If BEDTool reports an overlap for an

obtained breakpoint with a whole ground truth entry or with its ends, then we get a FP. Having

obtained the number of FPs, we calculate FDR by the formula:

𝐹𝐹𝐹𝐹𝐹𝐹 =
𝐹𝐹𝐹𝐹

𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇

6

Supplementary figures

Figure S1 NucBreak workflow

Figure S2 Properly mapped read pair formation. The black line represents an assembly. The

arrows represent all possible read mapping locations. The cases a) and b) correspond to the

situations when no read pairs are formed or just one read pair is formed, respectively. The

cases c) and d) show examples when several read pairs are formed from two given reads. The

case d) is an example of the situation when reads are mapped to a tandem repeat.

7

Figure S3 Properly mapped read pair categorization. The black line represents an assembly.

The assembly regions marked by red colour correspond to repeated regions. The repeated

regions are identical or near-identical copies of the same repeat. The arrows represent all

possible read mapping locations.

Figure S4 Read paths and path gaps. The black line represents an assembly. The assembly

regions marked by red colour correspond to repeated regions. The repeated regions are

identical or near-identical copies of the same repeat or copies of different repeats. The

arrows represent read paths. The arrows of the same colour correspond to the read paths of

the same type. The rectangles between the read paths indicate path gaps. The example

demonstrates the correct order of the read paths in the absence of assembly errors.

8

Figure S5 Possible type order and locations of read paths in the absence of breakpoints.

9

Figure S6 Sensitivity results for the insertion, duplication and tandem duplication groups,
obtained using the simulated datasets.

Figure S7 Sensitivity results for the deletion, deletion_repeat and deletion_tandem groups,
obtained using the simulated datasets. The deletion_repeat group contains deletions of
interspersed repeats or their parts. The deletion_tandem group contains deletions of tandem
repeats or their parts.

10

Figure S8 Sensitivity results for the inversion, relocation and relocation_overlap groups,
obtained using the simulated datasets. The relocation group consists of relocations with either
inserted regions between misjoined regions (size varied between 10 and 1000) or without them
(size is equal to 0). The relocation_overlap group consists of relocations with overlapped
misjoined regions.

Figure S9 Sensitivity results for the insertion, duplication and tandem duplication groups,
obtained using the simulated datasets.

11

Figure S10 Sensitivity results for the deletion, deletion_repeat and deletion_tandem groups,
obtained using the simulated datasets. The deletion_repeat group contains deletions of
interspersed repeats or their parts. The deletion_tandem group contains deletions of tandem
repeats or their parts.

Figure S11 Sensitivity results for the inversion, relocation and relocation_overlap groups,
obtained using the simulated datasets. The relocation group consists of relocations with either
inserted regions between misjoined regions (size varied between 10 and 1000) or without them
(size is equal to 0). The relocation_overlap group consists of relocations with overlapped
misjoined regions.

12

Figure S12 Sensitivity results for the insertion, duplication and tandem duplication groups,
obtained using the datasets from the Assemblathon 1 project.

Figure S13 Sensitivity results for the deletion, deletion_repeat and deletion_tandem groups,
obtained using the datasets from the Assemblathon 1 project. The deletion_repeat group
contains deletions of interspersed repeats or their parts. The deletion_tandem group contains
deletions of tandem repeats or their parts.

13

Figure S14 Sensitivity results for the inversion, rearrangement and rearrangement_overlap

groups, obtained using the datasets from the Assemblathon 1 project.The rearrangement

group consists of relocations and translocations with either inserted regions between misjoined

regions (size varied between 1 and 1000) or without them (size is equal to 0). The

rearrangement_overlap group consists of relocations and translocations with overlapped

misjoined regions.

Figure S15 Sensitivity results for the reshuffling and substitution groups, obtained using the

datasets from the Assemblathon 1 project.

14

Figure S16 Sensitivity results for the insertion, duplication and tandem duplication groups
obtained using the bacterial genome datasets.

Figure S17 Sensitivity results for the deletion, deletion_repeat and deletion_tandem groups,
obtained using the bacterial genome datasets. The deletion_repeat group contains deletions
of interspersed repeats or their parts. The deletion_tandem group contains deletions of tandem
repeats or their parts.

15

Figure S18 Sensitivity results for the inversion, rearrangement and rearrangement_overlap
groups, obtained using the bacterial genome datasets. The rearrangement group consists of
relocations and translocations with either inserted regions between misjoined regions (size
varied between 1 and 1000) or without them (size is equal to 0). The rearrangement_overlap
group consists of relocations and translocations with overlapped misjoined regions.

Figure S19 Sensitivity results for the reshuffling and substitution groups, obtained using the

bacterial genome datasets.

16

Supplementary tables

Table S1 Genome modifications implemented during the simulation process. G and A denote

a reference genome and assembly, respectively. All other letters denote reference genome

and assembly sequence regions. Diff means difference. C’ is the reverse complement of C.

Insertions

1. G: HB
 A: HCB
 Diff: insertion

 46. G: DLLLLxC
 A: DCLLLLxC
 Diff: duplication

2. G: HBxC
 A: HCBxC
 Diff: duplication

47. G: DLLLLxTKxTKxTK
 A: DTLLLLxTKxTKxTK
 Diff: duplication

3. G: HBxTKxTKxTK
 A: HTBxTKxTKxTK
 Diff: duplication

48. G: DLLLLxTKxTKxTK
 A: DKLLLLxTKxTKxTK
 Diff: duplication

4. G: HBxCxCxC
 A: HCBxCxCxC
 Diff: duplication

49. G: DLLLLxCxCxC
 A: DCLLLLxCxCxC
 Diff: duplication

5. G: HBxTKTKTKTK
 A: HTBxTKTKTKTK
 Diff: duplication

50. G: DKTKTKTKT
 A: DTKTKTKTKT
 Diff: duplication

6. G: HBxCCCC
 A: HCBxCCCC
 Diff: duplication

51. G: DKTKTKTKT
 A: DKKTKTKTKT
 Diff: tandem_duplication

7. G: HBxTKTKTKTK
 A: HKTBxTKTKTKTK
 Diff: duplication

52. G: DCCCC
 A: DCCCCC
 Diff: tandem_duplication

8. G: HBxCCCC
 A: HCCCCBxCCCC
 Diff: duplication

53. G: DKTKTKTKT
 A: DTKKTKTKTKT
 Diff: duplication

9. G: RxRxR
 A: RxCRxR
 Diff: insertion

54. G: DPPPPxTKTKTKTK
 A: DTPPPPxTKTKTKTK
 Diff: duplication

10. G: RxRxRxC
 A: RxCRxRxC
 Diff: duplication

55. G: DPPPPxTKTKTKTK
 A: DKPPPPxTKTKTKTK
 Diff: duplication

11. G: TKxTKxTK
 A: TKxTTKxTK
 Diff: tandem_duplication

56. G: DPPPPxCCCC
 A: DCPPPPxCCCC
 Diff: duplication

12. G: TKxTKxTK
 A: TKxKTKxTK
 Diff: duplication

57. G: DPPPPxTKTKTKTK
 A: DKTPPPPxTKTKTKTK
 Diff: duplication

17

13. G: CxCxC
 A: CxCCxC
 Diff: tandem_duplication

58. G: DPPPPxCCCC
 A: DCCCCPPPPxCCCC
 Diff: duplication

14. G: RxRxRxTKTKTKTK
 A: RxTRxRxTKTKTKTK
 Diff: duplication

59. G: LLLLD
 A: LLLLCD
 Diff: insertion

15. G: RxRxRxTKTKTKTK
 A: RxKRxRxTKTKTKTK
 Diff: duplication

60. G: LLLLDxC
 A: LLLLCDxC
 Diff: duplication

16. G: RxRxRxTKTKTKTK
 A: RxTKRxRxTKTKTKTK
 Diff: duplication

61. G: LLLLDxTKxTKxTK
 A: LLLLTDxTKxTKxTK
 Diff: duplication

17. G: RxRxRxTKTKTKTK
 A: RxKTRxRxTKTKTKTK
 Diff: duplication

62. G: LLLLDxTKxTKxTK
 A: LLLLKDxTKxTKxTK
 Diff: duplication

18. G: RxRxRxCCCC
 A: RxCCCCRxRxCCCC
 Diff: duplication

63. G: LLLLDxCxCxC
 A: LLLLCDxCxCxC
 Diff: duplication

19. G: RxRxRxTKxTKxTK
 A: RxTRxRxTKxTKxTK
 Diff: duplication

64. G: TKTKTKTKD
 A: TKTKTKTKTD
 Diff: duplication

20. G: RxRxRxTKxTKxTK
 A: RxKRxRxTKxTKxTK
 Diff: duplication

65. G: TKTKTKTKD
 A: TKTKTKTKKD
 Diff: tandem_duplication

21. G: RxRxRxCxCxC
 A: RxCRxRxCxCxC
 Diff: duplication

66. G: TKTKTKTKD
 A: TKTKTKTKKTD
 Diff: duplication

22. G: RxRxR
 A: RxRCxR
 Diff: insertion

67. G: PPPPDxTKTKTKTK
 A: PPPPTDxTKTKTKTK
 Diff: duplication

23. G: RxRxRxC
 A: RxRCxRxC
 Diff: duplication

68. G: PPPPDxTKTKTKTK
 A: PPPPKDxTKTKTKTK
 Diff: duplication

24. G: TKxTKxTK
 A: TKxTKTxTK
 Diff: duplication

69. G: PPPPDxCCCC
 A: PPPPCDxCCCC
 Diff: duplication

25. G: TKxTKxTK
 A: TKxTKKxTK
 Diff: tandem_duplication

70. G: PPPPDxTKTKTKTK
 A: PPPPKTDxTKTKTKTK
 Diff: duplication

26. G: RxRxRxTKTKTKTK
 A: RxRTxRxTKTKTKTK
 Diff: duplication

71. G: PPPPDxCCCC
 A: PPPPCCCCDxCCCC
 Diff: duplication

27. G: RxRxRxTKTKTKTK
 A: RxRKxRxTKTKTKTK
 Diff: duplication

72. G: PPPP
 A: PPCPP
 Diff: insertion

18

28. G: RxRxRxTKTKTKTK
 A: RxRTKxRxTKTKTKTK
 Diff: duplication

73. G: PPPPxC
 A: PPCPPxC
 Diff: duplication

29. G: RxRxRxTKTKTKTK
 A: RxRDTxRxTKTKTKTK
 Diff: duplication

74. G: PPPPxTKxTKxTK
 A: PPTPPxTKxTKxTK
 Diff: duplication

30. G: RxRxRxCCCC
 A: RxRCCCCxRxCCCC
 Diff: duplication

75. G: PPPPxTKxTKxTK
 A: PPKPPxTKxTKxTK
 Diff: duplication

31. G: RxRxRxTKxTKxTK
 A: RxRTxRxTKxTKxTK
 Diff: duplication

76. G: PPPPxCxCxC
 A: PPCPPxCxCxC
 Diff: duplication

32. G: RxRxRxTKxTKxTK
 A: RxRKxRxTKxTKxTK
 Diff: duplication

77. G: TKTKTKTK
 A: TKTKKTKTK
 Diff: tandem_duplication

33. G: RxRxRxCxCxC
 A: RxRCxRxCxCxC
 Diff: duplication

78. G: PPPPxTKTKTK
 A: PPTPPxTKTKTK
 Diff: duplication

34. G: RDxRDxRD
 A: RDxRCDxRD
 Diff: insertion

79. G: PPPPxTKTKTK
 A: PPKPPxTKTKTK
 Diff: duplication

35. G: RDxRDxRDxC
 A: RDxRCDxRDxC
 Diff: duplication

80. G: PPPPxCCC
 A: PPCPPxCCC
 Diff: duplication

36. G: TKxTKxTK
 A: TKxTKKxTK
 Diff: tandem_duplication

81. G: PPPPxTKTKTK
 A: PPKTPPxTKTKTK
 Diff: duplication

37. G: RDxRDxRDxTKTKTKTK
 A: RDxRTDxRDxTKTKTKTK
 Diff: duplication

82. G: PPPPxCCC
 A: PPCCCPPxCCC
 Diff: duplication

38. G: RDxRDxRDxTKTKTKTK
 A: RDxRKDxRDxTKTKTKTK
 Diff: duplication

83. G: DKL
 A: DKTKL
 Diff: insertion

39. G: RDxRDxRDxCCCC
 A: RDxRCDxRDxCCCC
 Diff: duplication

84. G: DKLxT
 A: DKTKLxT
 Diff: insertion

40. G: RDxRDxRDxTKTKTKTK
 A: RDxRKTDxRDxTKTKTKTK
 Diff: duplication

85. G: LxKLxLxT
 A: LxKTKLxLxT
 Diff: insertion

41. G: RDxRDxRDxCCCC
 A: RDxRCCCCDxRDxCCCC
 Diff: duplication

86. G: KLxKLxKLxT
 A: KLxKTKLxKLxT
 Diff: insertion

42. G: RDxRDxRDxTKxTKxTK
 A: RDxRTDxRDxTKxTKxTK
 Diff: duplication

87. G: LKxLKxLKxT
 A: LKxLKTKxLKxT
 Diff: insertion

19

43. G: RDxRDxRDxTKxTKxTK
 A: RDxRKDxRDxTKxTKxTK
 Diff: duplication

88. G: DCR
 A: DCCR
 Diff: tandem_duplication

44. G: RDxRDxRDxCxCxC
 A: RDxRCDxRDxCxCxC
 Diff: duplication

89. G: DCR
 A: DCCCCR
 Diff: tandem_duplication

45. G: DLLLL
 A: DCLLLL
 Diff: insertion

90. G: LxCLxL
 A: LxCCLxL
 Diff: tandem_duplication

Deletions

1. G: RCD
 A: RD
 Diff: deletion

14. G: DTKKKK
 A: DKKKK
 Diff: deletion

2. G: RxCRxR
 A: RxRxR
 Diff: deletion

15. G: DTKKKK
 A: DKKK
 Diff: deletion

3. G: KRxTKRxKR
 A: KRxRxKR
 Diff: deletion_repeat

16. G: DTKKKK
 A: DK
 Diff: deletion_tandem

4. G: RxCRxR
 A: RxxR
 Diff: deletion_repeat

17. G: DTKKKKF
 A: DF
 Diff: deletion

5. G: KxTKFxK
 A: KxxK
 Diff: deletion_repeat

18. G: DTLLLLK
 A: D
 Diff: deletion

6. G: CRxCRxCR
 A: CRxRxCR
 Diff: deletion_repeat

19. G: RTKLKLKLKL
 A: RLKLKLKL
 Diff: deletion

7. G: CxCxC
 A: CxxC
 Diff: deletion_repeat

20. G: DTKTKTKTK
 A: DKTKTKTK
 Diff: deletion

8. G: KxKTxK
 A: KxxK
 Diff: deletion_repeat

21. G: DTKTKTKTK
 A: DTKTTKTK
 Diff: deletion

9. G: KTxKTxKT
 A: KTxKxKT
 Diff: deletion_repeat

22. G: TKTKTKTKD
 A: TKTKTKTD
 Diff: deletion

10. G: RTxRTKxRT
 A: RTxRxRT
 Diff: deletion_repeat

23. G: DCCCC
 A: DCCC
 Diff: deletion_tandem

11. G: RxRCxR
 A: RxRxR
 Diff: deletion

24. G: RCCCCD
 A: RD
 Diff: deletion

12. G: KTKxK
 A: KxK
 Diff: deletion_repeat

25. G: DTTTTK
 A: DTTT
 Diff: deletion

20

13. G: KTK
 A: K
 Diff: deletion_repeat

26. G: DTTTTK
 A: D
 Diff: deletion

Relocations Inversions

1. G: SzV
 A: SCV
 Diff: relocation

1. G: DCR
 A: DC’R
 Diff: inversion

2. G: SzV
 A: SV
 Diff: relocation

2. G: DCRxRxR
 A: DC’RxRxR
 Diff: inversion

3. G: SCzCV
 A: SCV
 Diff: relocation_overlap

3. G: DRCxRxR
 A: DRC’xRxR
 Diff: inversion

4. G: RCDxRCDxRCD
 A: RCDxRC’DxRCD
 Diff: inversion

In the simulated modifications, the following lengths of regions were used:
1. Distance between each manipulation case =2500 bp
2. len(H)=800 bp
3. len(B)=800 bp
4. len(x)=800 bp
5. len(C)={17,30,100,250,800} bp
6. len(TK)={[50,70],[100,150],[250,250],[600,600]} bp, where first number in a pair is len(T)

and second number in a pair is len(K)
7. len(R)=600 bp
8. len(D)=600 bp
9. len(L)=200 bp
10. len(P)=400 bp
11. len(F)=len(T) in len(TK)
12. len(S)=1500 bp
13. len(V)=1500 bp
14. len(Z)=15000 bp

21

Table S2 List of bacterial genomes.

Genome Genome
length,
Mb

Accession
number

 Reads
length, bp
(first,
second)

Coverage Read library
accession
number

Bordetella pertussis

str. J081

4,11 GCA_002859625.1 250

250

32x SRR5829829

Brucella melitensis

str. 1

3,30 GCA_900236405.1 243 ± 28.8

243 ± 28.7

40x ERR2192800

Enterobacter cloacae

str. AR_0136

5,04 GCA_002204775.1 233 ± 34.9

233 ± 34.8

23x SRR4025988

Escherichia coli

str. 2014C-3599

5,48 GCA_003018935.1 236 ± 39.0

236 ± 38.8

60x SRR1609862

Klebsiella pneumonia

 str. SGH10

5,72 GCA_002813595.1 146 ± 15.8

146 ± 15.7

32x SRR5082357

Pseudomonas

aeruginosa

str. AR_0095

6.82 GCA_002997005.1 229 ± 38.2

229 ± 36.9

60x SRR3242025

Salmonella enterica

str. CFSAN047866

4,81 GCA_003073535.1 244 ± 27.3

244 ± 27.3

37x SRR3272258

Staphylococcus

aureus

str. CFSAN007896

2,86 GCA_003031425.1 236 ± 41.8

236 ± 41.7

28x SRR5912676

Table S3 Number of ground truth errors in each group.

Error type Error size Simulated
datasets

Assemblathon 1
dataset

Bacterial genome
datasets

insertion 0-9 0 6658 402

10-49 140 892 414

50-299 240 38 133

>300 170 31 15

duplication 0-9 0 23 4

10-49 380 1 12

50-299 1510 11 5

>300 840 287 1

22

tandem_duplication 0-9 0 0 0

10-49 60 23 3

50-299 260 93 14

>300 170 683 0

deletion 0-9 0 6933 437

10-49 60 1091 113

50-299 270 307 96

>300 270 527 19

deletion_repeat 0-9 0 424 24

10-49 40 10 22

50-299 160 21 39

>300 230 7 2

deletion_tandem 0-9 0 1 0

10-49 20 37 1

50-299 30 147 21

>300 40 24 8

inversion 0-9 0 2 0

10-49 80 0 0

50-299 80 6 3

>300 40 94 13

relocation/
rearrangement

0-9 50 749 8

10-49 20 2 0

50-299 20 17 1

>300 10 95 0

relocation_overlap/
rearrangement_overlap

0-9 0 744 13

10-49 20 25 1

50-299 20 152 1

>300 10 76 12

reshuffling 0-9 0 4 0

10-49 0 1 0

50-299 0 11 1

23

>300 0 94 11

substitution 0-9 0 225721 8000

10-49 0 1 0

50-299 0 3 0

>300 0 21 0

	1. Fragment size estimation
	2. Fragment size detection between properly mapped read pairs
	3. The Velvet, ABySS and SPAdes parameter settings used to obtain assemblies
	4. The NucBreak, REAPR and FRCbam parameter settings used to detect assembly errors
	5. Result evaluation

