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Supplementary methods and results 

1. Fragment size estimation 

 

Only read pairs satisfying the following conditions are used for fragment size estimation: 
1. Each read in a pair is uniquely aligned 

2. Both reads are mapped to the same genome sequence 

3. The reads have different orientations relative to the genome sequence 

4. The read with the reverse orientation is located at the same position or further down on 

the sequence compared to the mapping locations of the forward-oriented read  

5. The forward- and reverse-oriented reads are not soft-clipped at both sides. However, 

the alignments of properly mapped reads may contain short substitutions, insertions 

and deletions. 

 

The fragment size is calculated by the formula: 
 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑟𝑟𝑟𝑟𝑟𝑟_𝑒𝑒𝑒𝑒𝑒𝑒2 − 𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠𝑠𝑠1 + 1 , where  

 

𝑟𝑟𝑟𝑟𝑟𝑟_𝑒𝑒𝑒𝑒𝑒𝑒2 - the location of reverse-oriented read end at the genome chromosome 
𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠𝑠𝑠1 - the location of forward-oriented read start at the genome chromosome  

 

The fragment sizes are sorted in ascending order, and for each fragment size the number of 

read pairs (#𝑃𝑃) having the given fragment size is calculated. Then 𝑚𝑚𝑚𝑚𝑚𝑚_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 

𝑚𝑚𝑚𝑚𝑚𝑚_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 are found: 

 

𝑚𝑚𝑚𝑚𝑚𝑚_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = {𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖: #𝑃𝑃(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖) ≥ 10 𝑎𝑎𝑎𝑎𝑎𝑎 ∀ 𝑗𝑗 < 𝑖𝑖  #𝑃𝑃(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗) < 10  

𝑎𝑎𝑎𝑎𝑎𝑎 ∃𝑘𝑘 = 𝑖𝑖 + 1 … 𝑖𝑖 + 10  #𝑃𝑃(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘) ≥ 10 𝑎𝑎𝑎𝑎𝑎𝑎 #𝑘𝑘 ≥ 3} 

 

𝑚𝑚𝑚𝑚𝑚𝑚_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = {𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖: #𝑃𝑃(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖) ≥ 10 𝑎𝑎𝑎𝑎𝑎𝑎 ∀ 𝑗𝑗 > 𝑖𝑖  #𝑃𝑃(𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗) < 10  

𝑎𝑎𝑎𝑎𝑎𝑎 ∃𝑘𝑘 = 𝑖𝑖 − 11 … 𝑖𝑖 − 1  #𝑃𝑃(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘) ≥ 10 𝑎𝑎𝑎𝑎𝑎𝑎 #𝑘𝑘 ≥ 3} 

 

If the number of corresponding read pairs is less than 10 for any fragment size, then: 
 

𝑚𝑚𝑚𝑚𝑚𝑚_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = {max (0, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 − 50): ∀𝑘𝑘 ≠ 𝑖𝑖 #𝑃𝑃(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖) ≥  #𝑃𝑃(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘)} 

𝑚𝑚𝑚𝑚𝑚𝑚_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = {𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖  + 50: ∀𝑘𝑘 ≠ 𝑖𝑖 #𝑃𝑃(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖) ≥  #𝑃𝑃(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘)} 
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2. Fragment size detection between properly mapped read pairs 

 

Since the reads from properly mapped reads pairs may be soft-clipped in the start or at the 

end of the read depending on the read orientation, a fragment size inside properly mapped 

reads is calculated by the extended formula: 
 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑟𝑟𝑟𝑟𝑟𝑟_𝑒𝑒𝑒𝑒𝑒𝑒2 + 𝑒𝑒𝑒𝑒𝑒𝑒_𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2 − 𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠𝑠𝑠1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑1 + 1, where  
 
𝑟𝑟𝑟𝑟𝑟𝑟_𝑒𝑒𝑒𝑒𝑒𝑒2  - the location of the reverse-oriented read end at the genome chromosome 
𝑒𝑒𝑒𝑒𝑒𝑒_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2 - the number of soft-clipped bases at the end of the reverse-oriented read  
𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠𝑠𝑠1 - the location of the forward-oriented read start at the genome chromosome  
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑1- the number of soft-clipped bases in the beginning of the reverse-oriented 

read  

 

3. The Velvet, ABySS and SPAdes parameter settings used to obtain assemblies 

 

SPAdes was run with the “-t 2 -k 33 --cov-cutoff 2” parameter settings. 
ABySS was run with “k=64” parameter setting. 
Velveth was run with k-mer length equal to 31. 

Velvetg was run with “-ins_length 180 -scaffolding yes -min_contig_lgth 250 -cov_cutoff 5” 

parameter settings. 
 

4. The NucBreak, REAPR and FRCbam parameter settings used to detect 
assembly errors 

 
In the Sections 3.1 and 3.2, we used the following parameter settings for the tools: 

• NucBreak was run with “--min_frag_size 620 --max_frag_size 790” parameter settings 

• In case of REAPR, perfectmap was run with 700 bp average insert size  

• FRCbam was run with “--pe-max-insert 776” and the value for “--genome-size” 

parameter was detected automatically by using python script for each modification 

case.  

 

 

In the Section 3.3, we used the following parameter settings for the tools: 
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• in case of REAPR, perfectmap was run with 300 bp average insert size 

• FRCbam was run with “--pe-max-insert 776 --genome-size 112000000” parameter 

settings 

 

In the Section 3.4, we used the following parameter settings for the tools: 
• In case of REAPR, perfectmap was run with the following average insert sizes 

depending on the genome dataset used:   

• Salmonella dataset - 500 bp 

• Staphylococcus dataset - 400 bp 

• Escherichia dataset - 300 bp 

• Pseudomonas dataset - 180 bp 

• Bordetella dataset - 450 bp  

• Brucella dataset - 500 bp 

• Klebsiella dataset - 200 bp 

• Enterobacter dataset - 300 bp 

• FRCbam was run with the following parameter settings depending on the genome 

dataset used: 

• Salmonella dataset - “--pe-max-insert 1060 --genome-size 4810000” 

• Staphylococcus dataset - “--pe-max-insert 1040 --genome-size 2860000” 

• Escherichia dataset - “--pe-max-insert 1110 --genome-size 5480000” 

• Pseudomonas dataset -   “--pe-max-insert 844 --genome-size 6820000” 

• Bordetella dataset -  “--pe-max-insert  890 --genome-size 4110000” 

• Brucella dataset - “--pe-max-insert 1120 --genome-size 3300000” 

• Klebsiella dataset - “--pe-max-insert 950 --genome-size 5720000” 

• Enterobacter dataset - “--pe-max-insert 819 --genome-size 5040000” 

 

5. Result evaluation 

The ground truth entries may be represented as dots (e.g. in case of deletions, simple 

relocations or translocations) or as intervals (e.g. in case of insertion, duplications, relocations 

with overlap). If a ground truth entry is an interval, it may be fully covered with reads mapped 

back to the query sequences (e.g. in case of inversions) or remain uncovered (e.g. in case of 

inserted regions that are not present in the reference genome). In the first case, a tested tool 

is expected to mark the regions corresponding to the start- and/or end-points of the ground 

truth entry as breakpoints, while in the second case the whole entry is expected to be predicted 

as a breakpoint. 
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We say that if a ground truth entry coincides with an obtained breakpoint or the ground truth 

entry start- and/or end-points coincide with obtained breakpoints, then we have a true positive 

(TP). If a ground truth entry does not coincide with any of obtained breakpoints, then we have 

a false negative (FN). To get TPs and FNs, we have run BEDTools with the pairtopair -both’ 

option. With this option, BEDTool reports an overlap between two intervals A and B if both 

ends of A overlap B. If BEDTool reports an overlap for a whole ground truth entry or for its 

start- and/or end-points, then we get a TP, otherwise a FN. Having obtained the number of 

TPs and FNs, we calculate sensitivity by the formula: 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
#𝑇𝑇𝑇𝑇

#𝑇𝑇𝑇𝑇 + #𝐹𝐹𝐹𝐹
 

 

Unlike ground truth entries, an obtained result can correspond only to one interval: either to a 

whole ground truth entry or to its start- or end-point. If an obtained breakpoint does not coincide 

with any of the ground truth entries and with any of the ground truth entry start- and end-points, 

then the given obtained breakpoint is a false positive (FP). To get FP, we have run BEDTools 

with the ‘‘pairtopair -notboth’ option. With this option, BEDTool reports an overlap between two 

intervals A and B, if one or neither of A's ends overlap B. If BEDTool reports an overlap for an 

obtained breakpoint with a whole ground truth entry or with its ends, then we get a FP. Having 

obtained the number of  FPs, we calculate FDR by the formula: 
 

𝐹𝐹𝐹𝐹𝐹𝐹 =
𝐹𝐹𝐹𝐹

𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇
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Supplementary figures 

 

Figure S1 NucBreak workflow 

 

 

Figure S2 Properly mapped read pair formation. The black line represents an assembly. The 

arrows represent all possible read mapping locations. The cases a) and b) correspond to the 

situations when no read pairs are formed or just one read pair is formed, respectively. The 

cases c) and d) show examples when several read pairs are formed from two given reads. The 

case d) is an example of the situation when reads are mapped to a tandem repeat.  
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Figure S3 Properly mapped read pair categorization. The black line represents an assembly. 

The assembly regions marked by red colour correspond to repeated regions. The repeated 

regions are identical or near-identical copies of the same repeat. The arrows represent all 

possible read mapping locations. 

 

 

 

 
 

Figure S4 Read paths and path gaps. The black line represents an assembly. The assembly 

regions marked by red colour correspond to repeated regions. The repeated regions are 

identical or near-identical copies of the same repeat or copies of different repeats. The 

arrows represent read paths. The arrows of the same colour correspond to the read paths of 

the same type. The rectangles between the read paths indicate path gaps.  The example 

demonstrates the correct order of the read paths in the absence of assembly errors. 
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Figure S5 Possible type order and locations of read paths in the absence of breakpoints. 
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Figure S6 Sensitivity results for the insertion, duplication and tandem duplication groups, 
obtained using the simulated datasets. 
 

 

Figure S7 Sensitivity results for the deletion, deletion_repeat and deletion_tandem groups, 
obtained using the simulated datasets. The deletion_repeat group contains deletions of 
interspersed repeats or their parts. The deletion_tandem group contains deletions of tandem 
repeats or their parts. 
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Figure S8 Sensitivity results for the inversion, relocation and relocation_overlap groups, 
obtained using the simulated datasets.  The relocation group consists of relocations with either 
inserted regions between misjoined regions (size varied between 10 and 1000) or without them 
(size is equal to 0). The relocation_overlap group consists of relocations with overlapped 
misjoined regions. 

 
Figure S9 Sensitivity results for the insertion, duplication and tandem duplication groups, 
obtained using the simulated datasets. 
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Figure S10 Sensitivity results for the deletion, deletion_repeat and deletion_tandem groups, 
obtained using the simulated datasets. The deletion_repeat group contains deletions of 
interspersed repeats or their parts. The deletion_tandem group contains deletions of tandem 
repeats or their parts. 

 

 

Figure S11 Sensitivity results for the inversion, relocation and relocation_overlap groups, 
obtained using the simulated datasets. The relocation group consists of relocations with either 
inserted regions between misjoined regions (size varied between 10 and 1000) or without them 
(size is equal to 0). The relocation_overlap group consists of relocations with overlapped 
misjoined regions. 
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Figure S12 Sensitivity results for the insertion, duplication and tandem duplication groups, 
obtained using the datasets from the Assemblathon 1 project. 
 

 

Figure S13 Sensitivity results for the deletion, deletion_repeat and deletion_tandem groups, 
obtained using the datasets from the Assemblathon 1 project.  The deletion_repeat group 
contains deletions of interspersed repeats or their parts. The deletion_tandem group contains 
deletions of tandem repeats or their parts. 
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Figure S14 Sensitivity results for the inversion, rearrangement and rearrangement_overlap 

groups, obtained using the datasets from the Assemblathon 1 project.The rearrangement 

group consists of relocations and translocations with either inserted regions between misjoined 

regions (size varied between 1 and 1000) or without them (size is equal to 0). The 

rearrangement_overlap group consists of relocations and translocations with overlapped 

misjoined regions. 

 

Figure S15 Sensitivity results for the reshuffling and substitution groups, obtained using the 

datasets from the Assemblathon 1 project. 
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Figure S16 Sensitivity results for the insertion, duplication and tandem duplication groups 
obtained using the bacterial genome datasets. 
 

 

Figure S17 Sensitivity results for the deletion, deletion_repeat and deletion_tandem groups, 
obtained using the bacterial genome datasets. The deletion_repeat group contains deletions 
of interspersed repeats or their parts. The deletion_tandem group contains deletions of tandem 
repeats or their parts. 
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Figure S18 Sensitivity results for the inversion, rearrangement and rearrangement_overlap 
groups, obtained using the bacterial genome datasets. The rearrangement group consists of 
relocations and translocations with either inserted regions between misjoined regions (size 
varied between 1 and 1000) or without them (size is equal to 0). The rearrangement_overlap 
group consists of relocations and translocations with overlapped misjoined regions. 
 

 

Figure S19 Sensitivity results for the reshuffling and substitution groups, obtained using the 

bacterial genome datasets. 
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Supplementary tables 

Table S1 Genome modifications implemented during the simulation process. G and A denote 

a reference genome and assembly, respectively. All other letters denote reference genome 

and assembly sequence regions. Diff means difference. C’ is the reverse complement of C. 
 
Insertions 

1. G: HB 
    A: HCB  
    Diff: insertion 

 46. G: DLLLLxC 
        A: DCLLLLxC  
        Diff: duplication 

2. G: HBxC 
    A: HCBxC  
    Diff: duplication 

47. G: DLLLLxTKxTKxTK 
       A: DTLLLLxTKxTKxTK  
       Diff: duplication 

3. G: HBxTKxTKxTK 
    A: HTBxTKxTKxTK 
    Diff: duplication 

48. G: DLLLLxTKxTKxTK 
       A: DKLLLLxTKxTKxTK   
       Diff: duplication 

4. G: HBxCxCxC 
    A: HCBxCxCxC 
    Diff: duplication 

49. G: DLLLLxCxCxC 
       A: DCLLLLxCxCxC  
       Diff: duplication 

5. G: HBxTKTKTKTK 
    A: HTBxTKTKTKTK 
    Diff: duplication 

50. G: DKTKTKTKT 
       A: DTKTKTKTKT  
       Diff: duplication 

6. G: HBxCCCC 
     A: HCBxCCCC 
     Diff: duplication 

51. G: DKTKTKTKT 
       A: DKKTKTKTKT  
       Diff: tandem_duplication 

7. G: HBxTKTKTKTK 
     A: HKTBxTKTKTKTK 
     Diff: duplication 

52. G: DCCCC 
       A: DCCCCC 
       Diff: tandem_duplication 

8. G: HBxCCCC 
    A: HCCCCBxCCCC 
    Diff: duplication 

53. G: DKTKTKTKT 
       A: DTKKTKTKTKT 
       Diff: duplication 

9. G: RxRxR 
     A: RxCRxR 
     Diff: insertion 

54. G: DPPPPxTKTKTKTK 
       A: DTPPPPxTKTKTKTK  
       Diff: duplication 

10. G: RxRxRxC 
       A: RxCRxRxC 
       Diff: duplication 

55. G: DPPPPxTKTKTKTK 
       A: DKPPPPxTKTKTKTK  
       Diff: duplication 

11. G: TKxTKxTK 
       A: TKxTTKxTK 
       Diff: tandem_duplication 

56. G: DPPPPxCCCC 
       A: DCPPPPxCCCC  
       Diff: duplication 

12. G: TKxTKxTK 
       A: TKxKTKxTK 
       Diff: duplication 

57. G: DPPPPxTKTKTKTK 
       A: DKTPPPPxTKTKTKTK 
       Diff: duplication 
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13. G: CxCxC 
       A: CxCCxC 
       Diff: tandem_duplication 

58. G: DPPPPxCCCC 
       A: DCCCCPPPPxCCCC  
       Diff: duplication 

14. G: RxRxRxTKTKTKTK 
       A: RxTRxRxTKTKTKTK 
       Diff: duplication 

59. G: LLLLD 
       A: LLLLCD  
       Diff: insertion 

15. G: RxRxRxTKTKTKTK 
       A: RxKRxRxTKTKTKTK  
       Diff: duplication 

60. G: LLLLDxC 
       A: LLLLCDxC  
       Diff: duplication 

16. G: RxRxRxTKTKTKTK 
       A: RxTKRxRxTKTKTKTK 
       Diff: duplication 

61. G: LLLLDxTKxTKxTK 
       A: LLLLTDxTKxTKxTK  
       Diff: duplication 

17. G: RxRxRxTKTKTKTK 
       A: RxKTRxRxTKTKTKTK 
       Diff: duplication 

62. G: LLLLDxTKxTKxTK 
       A: LLLLKDxTKxTKxTK  
       Diff: duplication 

18. G: RxRxRxCCCC 
       A: RxCCCCRxRxCCCC 
       Diff: duplication 

63. G: LLLLDxCxCxC 
       A: LLLLCDxCxCxC 
       Diff: duplication 

19. G: RxRxRxTKxTKxTK 
       A: RxTRxRxTKxTKxTK 
       Diff: duplication 

64. G: TKTKTKTKD 
      A: TKTKTKTKTD 
      Diff: duplication 

20. G: RxRxRxTKxTKxTK 
       A: RxKRxRxTKxTKxTK 
       Diff: duplication 

65. G: TKTKTKTKD 
       A: TKTKTKTKKD  
       Diff: tandem_duplication 

21. G: RxRxRxCxCxC 
       A: RxCRxRxCxCxC 
      Diff: duplication 

66. G: TKTKTKTKD 
       A: TKTKTKTKKTD 
       Diff: duplication 

22. G: RxRxR 
       A: RxRCxR 
       Diff: insertion 

67. G: PPPPDxTKTKTKTK 
       A: PPPPTDxTKTKTKTK 
       Diff: duplication 

23. G: RxRxRxC 
       A: RxRCxRxC 
       Diff: duplication 

68. G: PPPPDxTKTKTKTK 
       A: PPPPKDxTKTKTKTK 
       Diff: duplication 

24. G: TKxTKxTK 
       A: TKxTKTxTK 
       Diff: duplication 

69. G: PPPPDxCCCC 
       A: PPPPCDxCCCC 
       Diff: duplication 

25. G: TKxTKxTK 
       A: TKxTKKxTK 
       Diff: tandem_duplication 

70. G:  PPPPDxTKTKTKTK 
       A:  PPPPKTDxTKTKTKTK 
       Diff: duplication 

26. G: RxRxRxTKTKTKTK 
       A: RxRTxRxTKTKTKTK  
       Diff: duplication 

71. G: PPPPDxCCCC 
       A: PPPPCCCCDxCCCC  
       Diff: duplication 

27. G: RxRxRxTKTKTKTK 
       A: RxRKxRxTKTKTKTK 
       Diff: duplication 

72. G: PPPP 
       A: PPCPP  
       Diff: insertion 
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28. G: RxRxRxTKTKTKTK 
       A: RxRTKxRxTKTKTKTK  
       Diff: duplication 

73. G:  PPPPxC 
       A:  PPCPPxC  
       Diff: duplication 

29. G: RxRxRxTKTKTKTK 
       A: RxRDTxRxTKTKTKTK  
       Diff: duplication 

74. G: PPPPxTKxTKxTK 
       A: PPTPPxTKxTKxTK  
       Diff: duplication 

30. G: RxRxRxCCCC 
       A: RxRCCCCxRxCCCC 
       Diff: duplication 

75. G: PPPPxTKxTKxTK 
       A: PPKPPxTKxTKxTK 
       Diff: duplication 

31. G: RxRxRxTKxTKxTK 
       A: RxRTxRxTKxTKxTK  
       Diff: duplication 

76. G: PPPPxCxCxC 
       A: PPCPPxCxCxC 
       Diff: duplication 

32. G: RxRxRxTKxTKxTK 
       A: RxRKxRxTKxTKxTK  
       Diff: duplication 

77. G: TKTKTKTK 
       A: TKTKKTKTK  
       Diff: tandem_duplication 

33. G: RxRxRxCxCxC 
       A: RxRCxRxCxCxC  
       Diff: duplication 

78. G:  PPPPxTKTKTK 
       A: PPTPPxTKTKTK  
       Diff: duplication 

34. G: RDxRDxRD 
       A: RDxRCDxRD  
       Diff: insertion 

79. G: PPPPxTKTKTK 
       A: PPKPPxTKTKTK  
       Diff: duplication 

35. G: RDxRDxRDxC 
       A: RDxRCDxRDxC  
       Diff: duplication 

80. G: PPPPxCCC 
       A: PPCPPxCCC  
       Diff: duplication 

36. G: TKxTKxTK 
       A: TKxTKKxTK  
       Diff: tandem_duplication 

81. G: PPPPxTKTKTK 
       A: PPKTPPxTKTKTK  
       Diff: duplication 

37. G: RDxRDxRDxTKTKTKTK 
       A: RDxRTDxRDxTKTKTKTK 
       Diff: duplication 

82. G: PPPPxCCC 
       A: PPCCCPPxCCC 
       Diff: duplication 

38. G: RDxRDxRDxTKTKTKTK 
       A: RDxRKDxRDxTKTKTKTK  
       Diff: duplication 

83. G: DKL 
       A: DKTKL  
       Diff: insertion 

39. G: RDxRDxRDxCCCC 
       A: RDxRCDxRDxCCCC  
       Diff: duplication 

84. G: DKLxT 
       A: DKTKLxT  
       Diff: insertion 

40. G: RDxRDxRDxTKTKTKTK 
       A: RDxRKTDxRDxTKTKTKTK 
       Diff: duplication 

85. G: LxKLxLxT 
       A: LxKTKLxLxT  
       Diff: insertion 

41. G: RDxRDxRDxCCCC 
       A: RDxRCCCCDxRDxCCCC 
       Diff: duplication 

86. G: KLxKLxKLxT 
       A: KLxKTKLxKLxT   
       Diff: insertion 

42. G: RDxRDxRDxTKxTKxTK 
       A: RDxRTDxRDxTKxTKxTK 
       Diff: duplication 

87. G: LKxLKxLKxT 
       A: LKxLKTKxLKxT  
       Diff: insertion 
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43. G: RDxRDxRDxTKxTKxTK 
       A: RDxRKDxRDxTKxTKxTK 
       Diff: duplication 

88. G: DCR 
       A: DCCR 
       Diff: tandem_duplication 

44. G: RDxRDxRDxCxCxC 
       A: RDxRCDxRDxCxCxC   
       Diff: duplication 

89. G: DCR 
       A: DCCCCR  
       Diff: tandem_duplication 

45. G: DLLLL 
       A: DCLLLL 
       Diff: insertion 

90. G: LxCLxL 
       A: LxCCLxL 
       Diff: tandem_duplication 

Deletions 

1. G: RCD 
     A: RD 
     Diff: deletion 

14. G: DTKKKK 
       A: DKKKK  
       Diff: deletion 

2. G: RxCRxR 
     A: RxRxR 
     Diff: deletion 

15. G: DTKKKK 
       A: DKKK  
       Diff: deletion 

3. G: KRxTKRxKR 
     A: KRxRxKR 
     Diff: deletion_repeat 

16. G: DTKKKK 
       A: DK 
       Diff: deletion_tandem 

4. G: RxCRxR 
     A: RxxR 
     Diff: deletion_repeat 

17. G: DTKKKKF 
       A: DF 
       Diff: deletion 

5. G: KxTKFxK 
     A: KxxK 
     Diff: deletion_repeat 

18. G: DTLLLLK 
       A: D  
       Diff: deletion 

6. G: CRxCRxCR 
     A: CRxRxCR  
     Diff: deletion_repeat 

19. G: RTKLKLKLKL 
       A: RLKLKLKL  
       Diff: deletion 

7. G: CxCxC 
     A: CxxC 
    Diff: deletion_repeat 

20. G: DTKTKTKTK 
       A: DKTKTKTK  
       Diff: deletion 

8. G: KxKTxK 
     A: KxxK 
    Diff: deletion_repeat 

21. G: DTKTKTKTK 
       A: DTKTTKTK 
       Diff: deletion 

9. G: KTxKTxKT 
     A: KTxKxKT  
     Diff: deletion_repeat 

22. G: TKTKTKTKD 
       A: TKTKTKTD  
       Diff: deletion 

10. G: RTxRTKxRT 
       A: RTxRxRT  
       Diff: deletion_repeat 

23. G: DCCCC 
       A: DCCC 
       Diff: deletion_tandem 

11. G: RxRCxR 
       A: RxRxR  
       Diff: deletion  

24. G: RCCCCD 
       A: RD 
       Diff: deletion 

12. G: KTKxK 
       A: KxK  
       Diff: deletion_repeat 

25. G: DTTTTK 
       A: DTTT 
       Diff: deletion 
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13. G: KTK 
       A: K  
       Diff: deletion_repeat 

26. G: DTTTTK 
       A: D  
       Diff: deletion 

Relocations Inversions 

1. G: SzV 
     A: SCV  
     Diff: relocation 

1. G: DCR 
     A: DC’R  
     Diff: inversion 

2. G: SzV 
     A: SV 
     Diff: relocation 

2. G: DCRxRxR 
     A: DC’RxRxR 
     Diff: inversion 

3. G: SCzCV 
     A: SCV 
     Diff: relocation_overlap 

3. G: DRCxRxR 
     A: DRC’xRxR  
     Diff: inversion  

 
4. G: RCDxRCDxRCD 
     A: RCDxRC’DxRCD 
     Diff: inversion 

 
In the simulated modifications, the following lengths of regions were used: 
1. Distance between each manipulation case =2500 bp 
2. len(H)=800 bp 
3. len(B)=800 bp 
4. len(x)=800 bp 
5. len(C)={17,30,100,250,800} bp 
6. len(TK)={[50,70],[100,150],[250,250],[600,600]} bp, where first number in a pair is len(T) 

and second number in a pair is len(K) 
7. len(R)=600 bp 
8. len(D)=600 bp 
9. len(L)=200 bp 
10. len(P)=400 bp 
11. len(F)=len(T) in len(TK) 
12. len(S)=1500 bp 
13. len(V)=1500 bp 
14. len(Z)=15000 bp 
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Table S2 List of bacterial genomes. 
 

Genome Genome 
length, 
Mb 

Accession 
number 

 Reads 
length, bp 
(first, 
second) 

Coverage Read library 
accession 
number 

Bordetella pertussis 

str. J081  

4,11 GCA_002859625.1 250 

250 

32x SRR5829829 

Brucella melitensis 

str. 1 

3,30 GCA_900236405.1 243 ± 28.8 

243 ± 28.7 

40x ERR2192800 

Enterobacter cloacae 

str. AR_0136 

5,04 GCA_002204775.1 233 ± 34.9 

233 ± 34.8 

23x SRR4025988 

Escherichia coli  

str. 2014C-3599 

5,48 GCA_003018935.1 236 ± 39.0 

236 ± 38.8 

60x SRR1609862 

Klebsiella pneumonia 

 str. SGH10 

5,72 GCA_002813595.1 146 ± 15.8 

146 ± 15.7 

32x SRR5082357 

Pseudomonas 

aeruginosa  

str. AR_0095 

6.82 GCA_002997005.1 229 ± 38.2 

229 ± 36.9 

60x SRR3242025 

Salmonella enterica 

str. CFSAN047866 

4,81 GCA_003073535.1 244 ± 27.3 

244 ± 27.3 

37x SRR3272258 

Staphylococcus 

aureus  

str. CFSAN007896 

2,86 GCA_003031425.1 236 ± 41.8 

236 ± 41.7 

28x SRR5912676 

 

 

 

 
Table S3 Number of ground truth errors in each group.   
 

Error type Error size Simulated 
datasets 

Assemblathon 1 
dataset 

Bacterial genome 
datasets 

insertion 0-9 0 6658 402 
 

10-49 140 892 414 
 

50-299 240 38 133 
 

>300 170 31 15 

duplication 0-9 0 23 4 
 

10-49 380 1 12 
 

50-299 1510 11 5 
 

>300 840 287 1 
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tandem_duplication 0-9 0 0 0 
 

10-49 60 23 3 
 

50-299 260 93 14 
 

>300 170 683 0 

deletion 0-9 0 6933 437 
 

10-49 60 1091 113 
 

50-299 270 307 96 
 

>300 270 527 19 

deletion_repeat 0-9 0 424 24 
 

10-49 40 10 22 
 

50-299 160 21 39 
 

>300 230 7 2 

deletion_tandem 0-9 0 1 0 
 

10-49 20 37 1 
 

50-299 30 147 21 
 

>300 40 24 8 

inversion 0-9 0 2 0 
 

10-49 80 0 0 
 

50-299 80 6 3 
 

>300 40 94 13 

relocation/ 
rearrangement 

0-9 50 749 8 

 
10-49 20 2 0 

 
50-299 20 17 1 

 
>300 10 95 0 

relocation_overlap/ 
rearrangement_overlap 

0-9 0 744 13 

 
10-49 20 25 1 

 
50-299 20 152 1 

 
>300 10 76 12 

reshuffling 0-9 0 4 0 
 

10-49 0 1 0 
 

50-299 0 11 1 
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>300 0 94 11 

substitution 0-9 0 225721 8000 
 

10-49 0 1 0 
 

50-299 0 3 0 
 

>300 0 21 0 
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