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Abstract

Background Count data generated by next-generation sequencing assays do not measure
absolute transcript abundances. Instead, the data are constrained to an arbitrary “library size”
by the sequencing depth of the assay, and typically must be normalized prior to statistical
analysis. The constrained nature of these data means one could alternatively use a log-ratio
transformation in lieu of normalization, as often done when testing for differential abundance
(DA) of operational taxonomic units (OTUs) in 16S rRNA data. Therefore, we benchmark
how well the ALDEx2 package, a transformation-based DA tool, detects differential expression
in high-throughput RNA-sequencing data (RNA-Seq), compared to conventional RNA-Seq
methods such as edgeR and DESeq2.

Results To evaluate the performance of log-ratio transformation-based tools, we apply
the ALDEx2 package to two simulated, and two real, RNA-Seq data sets. One of the latter
was previously used to benchmark dozens of conventional RNA-Seq differential expression
methods, enabling us to directly compare transformation-based approaches. We show that
ALDEx2, widely used in meta-genomics research, identifies differentially expressed genes (and
transcripts) from RNA-Seq data with high precision and, given sufficient sample sizes, high
recall too (regardless of the alignment and quantification procedure used). Although we show
that the choice in log-ratio transformation can affect performance, ALDEx2 has high precision
(i.e., few false positives) across all transformations. Finally, we present a novel, iterative
log-ratio transformation (now implemented in ALDEx2) that further improves performance in
simulations.

Conclusions Our results suggest that log-ratio transformation-based methods can work
to measure differential expression from RNA-Seq data, provided that certain assumptions are
met. Moreover, these methods have very high precision (i.e., few false positives) in simulations
and perform well on real data too. With previously demonstrated applicability to 16S rRNA
data, ALDEx2 can thus serve as a single tool for data from multiple sequencing modalities.
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Figure 1: Differential expression analysis of low variance simulated data. This figure shows
the performance (y-axis) of a complete differential expression analysis, organized by differential
expression method (x-axis) and the number of replicates per group (panel). The acronyms clr,
iqlr, malr, ii1, and ii5 describe log-ratio transformations (see Methods). The acronyms slFMD,
slQUASI, and stsl describe alignment and quantification procedures (see Methods). Missing data
suggest that the method did not call any transcripts differentially expressed (and therefore has no
precision or recall). The horizontal line indicates a precision of 0.95, equivalent to the requested
false discovery rate (FDR) of 0.05. This figure describes ALDEx2 performance based on the column
“we.eBH”.
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Figure 2: Differential expression analysis of low variance simulated data. This figure shows
the performance (y-axis) of a complete differential expression analysis, organized by differential
expression method (x-axis) and alignment and quantification procedure (panel). The acronyms
clr, iqlr, malr, ii1, and ii5 describe log-ratio transformations (see Methods). The acronyms slFMD,
slQUASI, and stsl describe alignment and quantification procedures (see Methods). Missing data
suggest that the method did not call any transcripts differentially expressed (and therefore has no
precision or recall). Precision (top-panel) and recall (bottom-panel) appear largely unaffected by
choice in the alignment and quantification procedure. The horizontal line indicates a precision of
0.95, equivalent to the requested false discovery rate (FDR) of 0.05. This figure describes ALDEx2
performance based on the column “we.eBH”.
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Figure 3: Differential expression analysis of high variance simulated data. This figure
shows the performance (y-axis) of a complete differential expression analysis, organized by differ-
ential expression method (x-axis) and the number of replicates per group (panel). The acronyms
clr, iqlr, malr, ii1, and ii5 describe log-ratio transformations (see Methods). The acronyms slFMD,
slQUASI, and stsl describe alignment and quantification procedures (see Methods). Missing data
suggest that the method did not call any transcripts differentially expressed (and therefore has no
precision or recall). The horizontal line indicates a precision of 0.95, equivalent to the requested
false discovery rate (FDR) of 0.05. This figure describes ALDEx2 performance based on the column
“we.eBH”.
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Figure 4: FDR for the differential expression analysis of low variance data. This figure
shows the false discovery rate (FDR) (y-axis) versus the differential expression method (x-axis).
FDR is calculated by analyzing two groups of replicates sampled from the same parent population
(repeated 5 times). The results are further organized by alignment and quantification method, and
the number of replicates per group. The acronyms clr, iqlr, malr, ii1, and ii5 describe log-ratio
transformations (see Methods). The acronyms slFMD, slQUASI, and stsl describe alignment and
quantification procedures (see Methods). For these low variance data, all methods control FDR
below α = 0.05, although ALDEx2 appears to control FDR better than edgeR and DESeq2.
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Figure 5: FDR for the differential expression analysis of high variance data. This figure
shows the false discovery rate (FDR) (y-axis) versus the differential expression method (x-axis).
FDR is calculated by analyzing two groups of replicates sampled from the same parent population
(repeated 5 times). The results are further organized by alignment and quantification method, and
the number of replicates per group. The acronyms clr, iqlr, malr, ii1, and ii5 describe log-ratio
transformations (see Methods). The acronyms slFMD, slQUASI, and stsl describe alignment and
quantification procedures (see Methods). For these high variance data, edgeR and DESeq2 have an
FDR above α = 0.05. Of concern, DESeq2 calls 15% of transcripts differentially expressed when
there are only two replicates per group and all replicates come from the same population.
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