
Appendix

In this appendix we use probability theory to analyze SURF and ReliefF. This enables us to
approximate the success rates of these methods for any sample size and any epistatic two-
way penetrance function. We first discuss penetrance functions, then SURF and ReliefF,
and conclude with examples involving two specific penetrance functions.

1 Penetrance functions

We assume that we are given a sample of N individuals, each of class either s, for sick, or
w, for well. Two relevant, epistatic SNPs, say SNP 1 and SNP 2, govern the distribution of
these classes according to a given penetrance function. All other SNPs, numbered 3 through
NI + 2, have no effect.

We also assume that each SNP of each individual is in one of three states: 1, 2, or 3
corresponding to the genotypes AA, Aa, and aa, respectively. Let pij be the probability that
SNP i of a random individual is in state j, and put ~Pi = 〈pi1, pi2, pi3〉, a vector associated
with the ith SNP. We assume Hardy–Weinberg equilibrium holds. So if the frequency of
the major allele of SNP i is p, then pi1 = p2, pi2 = 2p(1− p) and pi3 = (1− p)2. The states
of different SNPs are independent. Thus P (ij) = p1ip2j , where P (ij) is the probability an
individual has genotype ij, meaning SNP 1 has state i and SNP 2 state j.

Set fij = P (s|ij), the probability that an individual is in class s if his genotype is
ij. These probabilities are given by the penetrance function. Let ~Ci = 〈f1i, f2i, f3i〉 and
~Ri = 〈fi1, fi2, fi3〉 for i = 1, 2 and 3. (The six vectors ~Ri and ~Ci are just the rows and
columns of the penetrance table.) To say that SNP 1 and SNP 2 are an epistatic pair means
that all six marginal penetrances ~P1 · ~Ci and ~P2 · ~Ri, i = 1, 2, 3 are equal. Their common
value is often denoted by k, and is the probability an individual is sick regardless of her
genotype.

We will often use P (ij|s), the probability a sick individual has genotype ij. By Bayes’
formula

P (ij|s) =
P (ij)P (s|ij)

k
=

p1ip2jfij

k
.

Similarly

P (ij|w) =
P (ij)P (w|ij)

1− k
=

p1ip2j(1− fij)
1− k

.

These, together with the assumption that SNPs 1 and 2 are epistatic give, for fixed i,

3∑

j=1

P (ij|s) =
p1i

k

∑

j

p2jfij =
p1i

k
~P2 · ~Ri = p1i

and
3∑

j=1

P (ij|w) =
p1i

1− k

∑

j

p2j(1− fij) =
p1i

1− k

(( ∑

j

p2j

)
− ~P2 · ~Ri

)
= p1i.

Similarly, for fixed j,
3∑

i=1

P (ij|s) = p2j =
3∑

i=1

P (ij|w).

For n = 0, 1 and 2, let PH(n∆) be the probability that exactly n of the two relevant SNPs
change state in going from an arbitrary individual to another of the same class. Similarly,
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PM (n∆) are, by definition, probabilities of numbers of state changes for arbitrary misses,
rather than hits. There are two types of hits: sick-to-sick and well-to-well. Probabilities
involving these analogous to the PH(n∆) are denoted by Pss(n∆) and Pww(n∆). We have

Pss(0∆) =
3∑

i,j=1

(P (ij|s))2 and Pww(0∆) =
3∑

i,j=1

(P (ij|w))2 .

Also,

Pss(1∆) =
3∑

i,j=1

P (ij|s)
( ∑

` 6=j

P (i`|s) +
∑

k 6=i

P (kj|s)
)

=
3∑

i,j=1

P (ij|s)
((

p1i − P (ij|s)) +
(
p2j − P (ij|s))

)

= ||~P1||2 + ||~P2||2 − 2Pss(0∆),

where ||~Pi|| is the norm of the vector ~Pi. For the last equality we have used that∑
i,j P (ij|s) = 1 and

3∑

i,j=1

P (ij|s) p1i =
∑

j

P (1j|s) p11 +
∑

j

P (2j|s) p12 +
∑

j

P (3j|s) p13 = ||~P1||2.

A similar computation shows that

Pww(1∆) = ||~P1||2 + ||~P2||2 − 2Pww(0∆).

Assuming that the number of sick individuals in the sample equals the number of well
ones, we have

PH(0∆) =
1
2
(
Pss(0∆) + Pww(0∆)

)

and
PH(1∆) =

1
2
(
Pss(1∆) + Pww(1∆)

)
= ||~P1||2 + ||~P2||2 − 2PH(0∆).

Similar computations for misses give

PM (0∆) =
∑

i,j

P (ij|s)P (ij|w) and PM (1∆) = ||~P1||2 + ||~P2||2 − 2PM (0∆).

Computing PM (2∆) directly or using the fact that
∑2

n=0 PM (n∆) = 1 gives

PM (2∆) = PM (0∆) + 1− (||~P1||2 + ||~P2||2).
Likewise,

PH(2∆) = PH(0∆) + 1− (||~P1||2 + ||~P2||2).
It now follows that

PH(2∆)− PM (2∆) =
1
2

(
PM (1∆)− PH(1∆)

)
= PH(0∆)− PM (0∆). (1)

We note that the derivation of this requires that SNPs 1 and 2 are epistatic. We will see
that the quantity PH(0∆)−PM (0∆) in equation (1) is a measure of how well SURF detects
the relevant SNPs. It is a considerably more accurate measure of this than heritability.
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2 SURF

Let SNP i be any SNP, relevant or not. The probability that it is in the same state, or
matches, in two randomly chosen individuals is ||Pi||2. We now assume that all NI irrelevant
SNPs have the same major allele frequency. Then the number of matching irrelevant SNPs
in a random pair of individuals satisfies the binomial distribution corresponding to the
Bernoulli trials process with NI trials and probability of success ||~P ||2, where ~P = ~P3. By
the Central Limit theorem we have, to very good approximation

P (≥ d matching irrelevant SNPs in a random pair) = p(d) =
1√
2π

∫ ∞

a(d)

e−
1
2 x2

dx, (2)

where

a(d) =
d− 1

2 −NI ||~P ||2√
NI ||~P ||2(1− ||~P ||2)

.

Now fix a random individual Ii. This partitions the sample set of individuals (with Ii

removed) into six sets Hj∆ and Mj∆, where j = 0, 1 and 2. The set Hj∆ consists of all
individuals in the same class as Ii with exactly j relevant SNPs in a different state from
those of Ii. The Mj∆ are defined similarly with j the number of state changes between
misses. The cardinalities of these sets are

|Mj∆| = PM (j∆)
N

2
and |Hj∆| = PH(j∆)

N

2
,

where N is the sample size. (These are really expected cardinalities, but we use them as
approximations. We also neglect, for now, the fact that there is one fewer hit than miss.)

Let b(n, p) be the random variable giving the number of successes in a Bernoulli trials
process consisting of n trials with p the probability of success of each. The random variable
b(|M1∆|, p(d− 1)) then counts the number of individuals in the set M1∆ with d− 1 or more
irrelevant SNPs in the same state as those of the fixed individual Ii. This is the same as the
number of individuals in this set having distance ≤ 1000−d from Ii. Similarly b(|M2∆|, p(d))
is the number in the set M2∆ with d or more matching SNPs, and b(|M0∆|, p(d − 2)) the
number in the the set M0∆ with such SNPs. The random variable

SM
i = b(

|M1∆|
2

, p(d− 1)) + b(|M2∆|, p(d))

then approximates part of individual Ii’s contribution to the relief score of a relevant SNP.
This part comes from all misses within distance 1000− d of Ii. The random variable

SH
i = b(

1
2
|H1∆|, p(d− 1)) + b(|H2∆|, p(d))

gives the corresponding contribution from hits. The total contribution of individual Ii to
the (unnormalized) relief score of a relevant SNP using those hits and misses with distance
≤ 1000− d from Ii is

SR
i = SM

i − SH
i .

Up to the approximation given by the Central Limit Theorem, the probability density
functions (or, briefly, the PDFs) of the random variables b(n, p) are gaussians. Since con-
volution preserves these, the probability density function of SR

i is also a gaussian, so is
determined by its mean and variance.
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The mean of SR
i is

M(SR
i ) = p(d− 1)

1
2
(|M1∆| − |H1∆|

)
+ p(d)

(|M2∆| − |H2∆|
)

=
N

2

(
p(d− 1)

1
2
(
PM (1∆)− PH(1∆)

)− p(d)
(
PH(2∆)− PM (2∆)

)

=
N

2
(
p(d− 1)− p(d)

)(
PH(0∆)− PM (0∆)

)
using equation (1)

=
N

2

(
1√
2π

∫ a(d)

a(d−1)

e−
1
2 x2

dx

)(
PH(0∆)− PM (0∆)

)
. (3)

Regardless of the penetrance function, this has maximum value when d is chosen so that
0 ∈ [a(d− 1), a(d)], or when d is 1

2 + NI ||~P ||2 rounded up to the nearest integer.
The variance of SR

i is

V (SR
i ) =

1
2
p(d− 1)(1− p(d− 1))

(|M1∆|+ |H1∆|
)

+ p(d)(1− p(d))
(|M2∆|+ |H2∆|

)

≈ N

2
p(d− 1)(1− p(d− 1))

(1
2
PM (1∆) + PM (2∆) +

1
2
PH(1∆) + PH(2∆)

)

= N p(d− 1)(1− p(d− 1)) P (∆), (4)

where P (∆) = 1−||~P ||2 is the probability that an irrelevant SNP has different states in two
arbitrary individuals.

Next we consider the score of an arbitrary, irrelevant SNP, say SNP k. We continue to
assume that Ii is a random, fixed individual, and Mj∆ and Hj∆ the associated partitioning
sets. Let H∆ be the subset of those individuals in the same class as Ii with the state of
SNP k differing from that of Ii. Define a subset M∆ of misses similarly. Individual Ii’s
contribution to the score of SNP k is given by the random variable

SI
i =

2∑

i=0

(
b(|M∆ ∩Mi∆|, p1(d− 2 + i))− b(|H∆ ∩Hi∆|, p1(d− 2 + i))

)
.

Here p1(d) is defined just as p(d) was in equation (2), except with NI − 1 in place of NI .
Since the states of an irrelevant SNP are independant of those of all other SNPs, we have
|M∆ ∩Mi∆| ≈ P (∆)PM (i∆)N

2 , and so the mean of SI
i ,

M(SI
i ) ≈ N

2
P (∆)

2∑

i=0

(PM (i∆)− PH(i∆))p1(d− 2 + i)

=
N

2
P (∆)(PH(0∆)− PM (0∆))

(
2p1(d− 1)− p1(d− 2)− p1(d)

)
.

The variance is

V (SI
i ) =

N

2
P (∆)

2∑

i=0

(PH(i∆) + PM (i∆))p1(d− 2 + i)(1− p1(d− 2 + i))

≈ N

2
P (∆)

2∑

i=0

(PH(i∆) + PM (i∆))p(d− 1)(1− p(d− 1))

= N p(d− 1)(1− p(d− 1))P (∆). (5)

Next we work towards finding the values of d which makes SURF most effective, that is
most likely to assign higher scores to relevant SNPs than to irrelevant ones. The functions
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M(SR
i ), V (SR

i ) and V (SI
i ) of d are all decreasing, or very nearly so, on the interval [b,NI+2].

Here b ≈ 1
2 + NI ||~P ||2 is the value of d which maximizes M(SR

i ) or, equivalently, the one
such that p(d) is closest to 1/2. The function M(SI

i ) is ≈ 0 on [b,NI + 2]. (It’s actually

slightly < 0 here, attaining its minimum near d = b +
√

NI ||~P ||2(1− ||~P ||2).)
Let SR

i,1 and SR
i,2 be individual Ii’s contributions to the scores of the two relevant SNPs.

A computable, but crude measure of the effectiveness of SURF is the probability that both
SR

i,1 and SR
i,2 are > individual Ii’s contribution to the score of a random irrelevant SNP.

This probability is

P (min{SR
i,1, S

R
i,2} > SI

i ) =
∫ ∞

−∞
φI
∗(x)(1− ΦR

∗ (x))2dx (6)

where φI
∗ is the PDF of SI

i , so a gaussian with mean and variance as above, and ΦR
∗ is the

CDF of SR
i . Machine computation shows that P (min{SR

i,1, S
R
i,2} > SI

i ) is largest at b and
decreases on [b,NI + 2], very slowly near b.

An accurate and standard measure of the effectiveness of SURF, the success rate, is

P(n) = P
(

min
{ N∑

i=1

SR
i,1,

N∑

i=1

SR
i,2

}
> n% of all SNP scores

)
.

This is difficult to compute since the score of an irrelevant SNP is
∑N

i=1 SI
i , and the SI

i

are not independent random variables. Nor are the SR
i . Indeed, let Nr(Ik,H) be the set

of all hits within distance r of Ik, and Nr(Ik,M) all such misses. Then if Ii and Ij are
relatively close individuals, their neighborhoods Nr(Ii,H) and Nr(Ij ,H) tend to be similar
for large r, as do Nr(Ii,M) and Nr(Ij , M). Thus if the state of an irrelevant SNP agrees
in individuals Ii and Ij , its scores SI

i and SI
j are somewhat correlated. This correlation

decreases as r decreases. Thus the variances of
∑

SR
i and

∑
SI

i decrease more quickly
with r than equations (2) and (3) might indicate. Since P (min{SR

i,1, S
R
i,2} > SI

i ) is slowly
decreasing near b, we thus expect that the optimal values of d are somewhat > b.

If φR and φI , the PDFs of
∑

i SR
i and

∑
i SI

i , respectively, are known, then the success
rate can be computed via

P(n) =
∫ ∞

`(n)

φR
min(x) dx (7)

where `(n) = (ΦI)−1( n
100 ), ΦI(t) =

∫ t

−∞ φI(x) dx being the CDF of
∑

i SI
i , and φR

min(x) =
d
dx

(
− (∫∞

x
φR(t) dt

)2
)

is the PDF of min
{ ∑N

i=1 SR
i,1,

∑N
i=1 SR

i,2

}
.

3 Relief using a single nearest neighbor

Next we analyze Relief. Let S be any of the sets Hj∆ or Mj∆ (or any subset of the set
of individuals provided the states of the irrelevant SNPs of members of S are randomly
assigned according to the given allele frequencies). Let M(Ij , Ii), or just Mij , denote the
number of irrelevant SNPs of individuals Ii and Ij which match. We will find the probability
density function of the random variable Max|S| = max

Ij

M(Ij , Ii), where Ij ranges over S

and Ii is fixed. Note that if we disregard relevant SNPs, then NI −Max|S| is the distance
from Ii to its closest neighbor in S.
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Set

Φ(z) =
1√
2π

∫ b(z)

−∞
e−

1
2 x2

dx, where b(z) =
z + 1

2 −NI ||~P ||2√
NI ||~P ||2(1− ||~P ||2)

. (8)

Then, as with the probability p(d) in equation (2) above, we have, for an arbitrary pair of
individuals Ii and Ij , the good approximation

P (M(Ii, Ij) ≤ z) = Φ(z). (9)

Since the states of irrelevant SNPs among different individuals are independent

P (Max|S| ≤ z) =
(
P (Mij ≤ z)

)|S| =
(
Φ(z)

)|S|

and so
P (Max|S| = z) =

d

dz

((
P (Mij ≤ z)

)|S|) =
d

dz

((
Φ(z)

)|S|)
.

Next we define probabilities PCH(n∆) and PCM (n∆) for n = 0, 1 and 2. These are
analogous to the PH(n∆) and PM (n∆) above, but use closest hits and misses rather than
arbitrary ones. Specifically, PCH(n∆) is the probability that exactly n relevant SNPs change
state in going from an arbitrary individual to a (random) closest neighbor in the same class.
Closest misses are used for PCM (n∆). We express the PCH(n∆) and PCM (n∆) in a number
of different forms. All rely on the fact that if Ij ∈ Mk∆, then the number of SNPs of Ii and
Ij which match is Mij + (2− k). Abbreviating P (Max|Mn∆| = z) to PM|Mn∆|(z) we have

PCM (2∆) =
∫ ∞

z=0

∫ z−1

y=0

∫ z−2

x=0

PM|M2∆|(z)PM|M1∆|(y) PM|M0∆|(x)dx dy dz

=
∫ ∞

0

(
Φ(z − 2)

)|M0∆|(Φ(z − 1)
)|M1∆| d

dz

((
Φ(z)

)|M2∆|
)
dz

=
∫ ∞

0

P (Max|M0∆| ≤ z − 2)P (Max|M1∆| ≤ z − 1)P (Max|M2∆| = z)dz

In general,

PCM (k∆) =
∫ ∞

0

(
Φ(z − 2 + i)

)|Mi∆|(Φ(z − 2 + j)
)|Mj∆| d

dz

((
Φ(z − 2 + k)

)|Mk∆|
)
dz (10)

where k = 0, 1 or 2, and {i, j, k} = {1, 2, 3}. Changing each M to H gives analogous
formulas for the PCH(k∆). As a check, we note that

1 =
∫ ∞

0

d

dx

{(
Φ(x)

)|M2∆|(Φ(x− 1)
)|M1∆|(Φ(x− 2)

)|M0∆|
}

dx

= PCM (2∆) + PCM (1∆) + PCM (0∆).

For the version of Relief in which only a single nearest neighbor is used, individual
Ii’s contribution to the score of a relevant SNP is given by the random variable UR

i =
b(1, PR

CM (∆)) − b(1, PR
CH(∆)). Here PR

CM (∆) = 1
2PCM (1∆) + PCM (2∆), the probability

that SNP 1 changes state in going from Ii to a (random) closest miss, and PR
CH(∆) =

1
2PCH(1∆) + PCH(2∆). The mean of UR

i is

M(UR
i ) = PR

CM (∆)− PR
CH(∆) =

2∑

i=0

i

2
(
PCM (i∆)− PCH(i∆)

)
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and the variance is

V (UR
i ) = PR

CM (∆)(1− PR
CM (∆)) + PR

CH(∆)(1− PR
CH(∆)).

For the score of an irrelevant SNP, say SNP k, we first define Φ1 just as Φ was, but with
NI − 1 in place of NI in equation (8). Let

FM (x) = PM (2∆)Φ1(x) + PM (1∆)Φ1(x− 1) + PM (0∆)Φ1(x− 2).

This is the probability that given a random individual Ij ∈ M∆, the number of SNPs, both
relevant and irrelevant, of Ii and Ij which agree is ≤ x. Note that FM (x − 1) is the same
probability, but for Ij ∈ MΣ, the set consisting of all misses with SNP k in the same state as
that of individual Ii. The probability that SNP k of a random closest miss does not match
SNP k of individual Ii is

PCM (∆) =
∫ ∞

−∞

{
d

dx
(FM (x))|M∆|

}
(FM (x− 1))|MΣ|dx.

From now on we omit those expressions involving hits which can be obtained from the
analogous displayed ones by changing each M to H.

Individual Ii’s contribution to the score of SNP k is U I
i = b(1, PCM (∆))− b(1, PCH(∆))

which has mean PCM (∆) − PCH(∆) and variance PCM (∆)(1 − PCM (∆)) + PCH(∆)(1 −
PCH(∆)).

4 ReliefF with n nearest neighbors

Relief algorithms typically use 10 nearest neighbors, rather than just one. To analize this,
let PCM (c1∆, . . . , cn∆) be the probability that a (random) miss closest to individual Ii is in
the set Mc1∆, a (random) second closest miss is in Mc2∆, etc., up to a random nth closest
miss is in Mcn∆. For k = 0, 1 and 2, let nk =

∑n−1
i=1 δ(k, ci), the number of the c1, . . . , cn−1

equal to k. Then, for each (c1, . . . , cn) ∈ {0, 1, 2}n, we have

PCM (c1∆, . . . , cn∆) =
2∏

k=0

(|Mk∆|
nk

)
nk!

×
∫ ∞

0

Rc1...cn−1(x)
∏2

i=0

(
Φ(x− 2 + i)

)|Mi∆|−ni

(
Φ(x− 2 + cn)

)|Mcn∆|−ncn

d

dx

((
Φ(x− 2 + cn)

)|Mcn∆|−ncn

)
dx.

Here Rc1...cn(x) is the probability that for a random n-tuple (I1, . . . , In) of distinct indi-
viduals in Mc1∆ × . . . ×Mcn∆, we have M(I1, Ii) ≥ . . . ≥ M(In, Ii) ≥ x. It can be given
inductively by

Rc1...cn(x) =
∫ ∞

t=x

Rc1...cn−1(t)
d

dt

(
Φ(t− 2 + cn)

)
dt

where
Rc1(x) =

∫ ∞

t=x

d

dt

(
Φ(t− 2 + c1)

)
dt = 1− Φ(x− 2 + c1).

Again, as a check, we note that

0 =
2∏

k=0

(|Mk∆|
nk

)
nk!

∫ ∞

−∞

d

dx

{
Rc1...cn−1(x)

2∏

i=0

(
Φ(x− 2 + i)

)|Mi∆|−ni
}

dx
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= −PCM (c1∆, . . . , cn−1∆) +
2∑

i=0

PCM (c1∆, . . . , cn−1∆, i∆).

Now for ReliefF using n nearest neighbors, let TM
i be individual Ii’s contribution due

to misses to the score of a relevant SNP. Then we have

P (TM
i = k) =

∑

ci∆

P
(∑n

j=1b
(
1,

cj

2
)

= k
)

PCM (c1∆, . . . , cn∆),

where here and below
∑

ci∆
indicates the sum over all 3n possibilities for c1∆, . . . , cn∆. So

the mean of TM
i is

M(TM
i ) =

n∑

k=0

k P (TM
i = k) =

∑

ci∆

n∑

k=0

k P
(∑n

j=1b
(
1,

cj

2
)

= k
)

PCM (c1∆, . . . , cn∆)

=
∑

ci∆

∑n
j=1 cj

2
PCM (c1∆, . . . , cn∆).

The variance is V (TM
i ) = M((TM

i )2)− (M(TM
i ))2, where

M((TM
i )2) =

∑

ci∆

n∑

k=0

k2 P
(∑n

j=1b
(
1,

cj

2

)
= k

)
PCM (c1∆, . . . , cn∆)

=
∑

ci∆




n∑

j=1

cj

2

(
1− cj

2

)
+

(∑n
j=1 cj

2

)2

PCM (c1∆, . . . , cn∆).

Thus TR
i = TM

i −TH
i , individual Ii’s contribution to the score of a relevant SNP, has mean

M(TR
i ) =

∑

ci∆

∑n
j=1 cj

2
(
PCM (c1∆, . . . , cn∆)− PCH(c1∆, . . . , cn∆)

)
(11)

and variance

V (TR
i ) = V (TM

i ) + V (TH
i ). (12)

We remark that, as with SURF, the random variables TR
i are not indepedant since, for

instance, the relation “is the nearest neighbor of” among individuals tends to be symmetric.
The discussion of irrelevant SNP scores parallels that of the relevant ones. Using analo-

gous notation with an I, for irrelevant, appended we have, for each (c1, . . . , cn) ∈ {0, 1}n,

P I
CM (c1∆, . . . , cn∆) =

1∏

k=0

(|Mk|
mk

)
mk!

×
∫ ∞

0

RI
c1...cn−1

(x)
∏1

i=0

(
FM (x− 1 + i)

)|Mi|−mi

(
FM (x− 1 + cn)

)|Mcn |−mcn

d

dx

((
FM (x− 1 + cn)

)|Mcn |−mcn

)
dx

where M0 = MΣ, M1 = M∆, mk =
∑n−1

i=1 δ(k, ci), RI
c1...cn

(x) =
∫∞

t=x
RI

c1...cn−1
(t) d

dt

(
FM (t−

1 + cn)
)
dt and RI

c1
(x) =

∫∞
t=x

d
dt

(
FM (t− 1 + c1)

)
dt = 1− FM (x− 1 + c1).

So the mean and variance of T I
i , individual Ii’s contribution to an irrelevant SNP score,

are
M(T I

i ) =
∑

ci∆

(
∑n

i=1 ci)
(
P I

CM (c1∆, . . . , cn∆)− P I
CH(c1∆, . . . , cn∆)

)
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and
V (T I

i ) = V (TM,I
i ) + V (TH,I

i )

where

V (TM,I
i ) =

∑

ci∆

(
∑n

i=1 ci)
2
P I

CM (ci∆, . . . , cn∆)−
(∑

ci∆

(
∑n

i=1 ci)P I
CM (ci∆, . . . , cn∆)

)2

.

5 Examples

We conclude by using the ideas developed in this appendix to compare SURF with ReliefF
using 10 nearest neighbors. We assume a sample size of 1600 and use the .1 heritability
penetrance functions of models 19 and 17.

For relevant SNPs, equation (11) gives, for model 19, expected Relief scores of .01187,
.02260 and .03068 using 1, 2 and 3 nearest neighbors, respectively. According to equation
(12), variances of these scores are .49206, .98226 and 1.47110, respectively. For model 17,
means are .00545, .01038 and .01503, and variances .49174, .98163 and 1.47019, respectively.
Extrapolating to 10 nearest neighbors, we set M(TR

i ) = .087 and V (TR
i ) = 4.865 for model

19, and M(TR
i ) = .046 and V (TR

i ) = 4.86 for model 17. Means of irrelevant SNP scores
are ≈ 0, and variances of relevant and irrelevant SNP scores are nearly the same. So we set
M(T I

i ) = 0 and V (TR
i ) = V (T I

i ) for both models.
For SURF we use the quantities given by equations (3) and (4) and the approximations

of setting M(SI
i ) = 0 and V (SR

i ) = V (SI
i ). We also set d = 384 which maximizes M(SR

i )
as discussed just after equation (3).

We would now like to use equation (7), and its analog for ReliefF, to compute the success
rates of the two methods, but don’t know the PDFs φI and φR implicit in this equation.
So we approximate these by assuming that the random variables SI

i , as well as the SR
i ,

are independent and use the Central Limit theorem. The PDFs of
∑

i T I
i and

∑
i TR

i are
approximated similarly. Then equation (7) overestimates slightly the success rates since,
as mentioned, the SI

i and the SR
i , as well as the T I

i and TR
i can be somewhat correlated.

Machine computation using equation (7) and the approximate PDFs gives the success rates
shown in Figure 1.

The quantity given by equation (1) for model 17 is .02502, which is about average for the
five penetrance functions with heritability .1 used in our simulations. So the figure involving
model 17 is representative of the success rates of the two methods. For model 19, equation
(1) gives .05446, the highest value of the five. Figure 2 for model 19 is included to show how
much success rates depend on penetrance functions, even those having the same heritability.

The number of nearest neighbors used by SURF in our simulations is, on the average,
one fourth the sample size. Since SURF outperforms Relief, one wonders if Relief algorithms
could be improved by using many more than the usual 10 nearest neighbors for detecting
epistatic pairs. Our preliminary work here looks very promising.
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Figure 1: Success rates computed using equation (7) for Model 17
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Figure 2: Success rates computed using equation (7) for Model 19

100 90 80 70 60 50

0
20

40
60

80
10

0

P
ow

er

Percentile

ReliefF
SURF

11


