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1 Mathematical Modeling

1.1 Kinetic reactions

TGN

kg0−−→ APPinit

APPinit
KG1−−−→ APPG1

APPinit
KG2−−−→ APPG2

APPG2 + APPG2

kg3−−−⇀↽−−−
k−g3

APPG2d

APPG1 + SORLAG1
ks1−−−⇀↽−−−
k−s1

CAPPG1SORLAG1

APPG2 + SORLAG2
ks2−−−⇀↽−−−
k−s2

CAPPG2SORLAG2

cell surface

APPG1
KCS1−−−→ APPCS1

APPG2d
KCS2−−−→ APPCS2d

αinit
KC1−−−→ α1

αinit
KC2−−−→ α2

α2 + α2
kc3−−−⇀↽−−−
k−c3

α2d

APPCS1 + α1
k5−−⇀↽−−
k−5

CAPPCS1α1
k6−→ sAPPα1 + C831 + α1

APPCS2d + α2d
k51−−−⇀↽−−−
k−51

CAPPCS2dα2d
k61−−→ 2 · sAPPα2 + C832d + α2d

endosome

APPCS1
ke1−−−⇀↽−−−
k−e1

APPE1

APPCS2d
ke2−−−⇀↽−−−
k−e2

APPE2d

βinit
KB1−−−→ β1

βinit
KB2−−−→ β2

β2 + β2
kb3−−−⇀↽−−−
k−b3

β2d

APPE1 + β1
k3−−⇀↽−−
k−3

CAPPE1β1
k4−→ sAPPβ1 + C991 + β1

APPE2d + β2d
k31−−−⇀↽−−−
k−31

CAPPE2dβ2d
k41−−→ 2 · sAPPβ2 + C992d + β2d

1.2 Ordinary differential equations (ODEs)

APP
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˙APPinit = kg0 − (kg1 + kg2) ·APPinit + k−g1 ·APPG1 + k−g2 ·APPG2

˙APPG1 = kg1 ·APPinit − (k−g1 + kcs1) ·APPG1 + k−cs1 ·APPCS1 −
ks1 ·APPG1 · SORLAG1 + k−s1 · CAPPG1SORLAG1

˙APPG2 = kg2 ·APPinit − k−g2 ·APPG2 + 2 · (k−g3 ·APPG2d − kg3 ·APP 2
G2)−

ks2 ·APPG2 · SORLAG2 + k−s2 · CAPPG2SORLAG2

˙APPG2d = 2 · (kg3 ·APP 2
G2 − k−g3 ·APPG2d)− kcs2 ·APPG2d + k−cs2 ·APPCS2d

˙APPCS1 = kcs1 ·APPG1 − (k−cs1 + ke1) ·APPCS1 + k−e1 ·APPE1 −
k5 ·APPCS1 · α1 + k−5 · CAPPCS1α1

˙APPCS2d = kcs2 ·APPG2d − (k−cs2 + ke2) ·APPCS2d + k−e2 ·APPE2d −
k51 ·APPCS2d · α2d + k−51 · CAPPCS2dα2d

˙APPE1 = ke1 ·APPCS1 − k−e1 ·APPE1 − k3 ·APPE1 · β1 + k−3 · CAPPE1β1

˙APPE2d = ke2 ·APPCS2d − k−e2 ·APPE2d − k31 ·APPE2d · β2d + k−31 · CAPPE2dβ2d

influence of SORLA

˙CAPPG1SORLAG1 = ks1 ·APPG1 · SORLAG1 − k−s1 · CAPPG1SORLAG1

˙CAPPG2SORLAG2 = ks2 ·APPG2 · SORLAG2 − k−s2 · CAPPG2SORLAG2

˙SORLAG1 = − ˙CAPPG1SORLAG1

˙SORLAG2 = − ˙CAPPG2SORLAG2

complex formations of APP and secretases

˙CAPPCS1α1 = k5 ·APPCS1 · α1 − (k−5 + k6) · CAPPCS1α1

˙CAPPCS2dα2d = k51 ·APPCS2d · α2d − (k−51 + k61) · CAPPCS2dα2d

˙CAPPE1β1 = k3 ·APPE1 · β1 − (k−3 + k4) · CAPPE1β1

˙CAPPE2dβ2d = k31 ·APPE2d · β2d − (k−31 + k41) · CAPPE2dβ2d

secretases

˙αinit = k−c1 · α1 + k−c2 · α2 − (kc1 + kc2) · αinit
α̇1 = kc1 · αinit − k−c1 · α1 − ˙CAPPCS1α1

α̇2 = kc2 · αinit − k−c2 · α2 − 2 · (kc3 · α2
2 − k−c3 · α2d)

˙α2d = 2 · (kc3 · α2
2 − k−c3 · α2d)− ˙CAPPCS2dα2d

˙βinit = k−b1 · β1 + k−b2 · β2 − (kb1 + kb2) · βinit
β̇1 = kb1 · βinit − k−b1 · β1 − ˙CAPPE1β1

β̇2 = kb2 · βinit − k−b2 · β2 − 2 · (kb3 · β2
2 − k−b3 · β2d)

˙β2d = 2 · (kb3 · β2
2 − k−b3 · β2d)− ˙CAPPE2dβ2d

products
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˙sAPPα1 = k6 · CAPPCS1α1

˙C831 = k6 · CAPPCS1α1

˙sAPPα2 = 2 · k61 · CAPPCS2dα2d

˙C832d = k61 · CAPPCS2dα2d

˙sAPPβ1 = k4 · CAPPE1β1

˙C991 = k4 · CAPPE1β1

˙sAPPβ2 = 2 · k41 · CAPPE2dβ2d

˙C992d = k41 · CAPPE2dβ2d

1.3 Assumptions

1.3.1 Quasi-steady state

When quasi-steady state is assumed to a complex, e.g. ˙CAPPCS1α1, without loss of generality
˙CAPPCS1α1 = 0. We will show computational details for this example and the others will follow

similarly.

˙CAPPCS1α1 = k5 ·APPCS1 · α1 − (k−5 + k6) · CAPPCS1α1

0 = k5 ·APPCS1 · α1 − (k−5 + k6) · CAPPCS1α1

CAPPCS1α1 =
k5 · α1 ·APPCS1

k−5 + k6

Therefore,

CAPPCS1α1 =
α1 ·APPCS1

KMα1
, KMα1 =

k−5 + k6

k5

CAPPE1β1 =
β1 ·APPE1

KMβ1
, KMβ1 =

k−3 + k4

k3

CAPPCS2dα2d =
α2d ·APPCS2d

KMα2d
, KMα2d =

k−51 + k61

k51

CAPPE2dβ2d =
β2d ·APPE2d

KMβ2d
, KMβ2d =

k−31 + k41

k31

1.3.2 Rapid-Equilibrium

Without loss of generality, rapid-equilibrium is assumed to ˙CAPPG1SORLAG1 and ˙CAPPG2SORLAG2

such that ˙CAPPG1SORLAG1 = 0 and ˙CAPPG2SORLAG2 = 0. The assumption gives rise to,

CAPPG1SORLAG1 = KS1 · SORLAG1 ·APPG1 , where KS1 =
ks1
k−s1

, and

CAPPG2SORLAG2 = KS2 · SORLAG2 ·APPG2 , where KS2 =
ks2
k−s2

.

1.3.3 Quasi-equilibrium

Recall the biochemical networks of the transportation of reactants shown in previous section,
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APPinit
KG1−−−→ APPG1

APPinit
KG2−−−→ APPG2

APPG1
KCS1−−−→ APPCS1

APPG2d
KCS2−−−→ APPCS2d

αinit
KC1−−−→ α1

αinit
KC2−−−→ α2

βinit
KB1−−−→ β1

βinit
KB2−−−→ β2

The second reactant is assumed to be in quasi-equilibrium with the first reactant. Without loss of
generality, the concentration of the second reactant is related to the first reactant by an ordinary
equilibrium expression, such as

APPG1 = KG1 ·APPinit , where KG1 =
kg1
k−g1

,

APPG2 = KG2 ·APPinit , where KG2 =
kg2
k−g2

,

APPCS1 = KCS1 ·APPG1 , where KCS1 =
kcs1
k−cs1

,

APPCS2d = KCS2 ·APPG2d , where KCS2 =
kcs2
k−cs2

,

α1 = KC1 · αinit , where KC1 =
kc1
k−c1

,

α2 = KC2 · αinit , where KC2 =
kc2
k−c2

,

β1 = KB1 · βinit , where KB1 =
kb1
k−b1

,

β2 = KB2 · βinit , where KB2 =
kb2
k−b2

,

1.3.4 Ratio of association constant

Recall the biochemical networks of the transportation of reactants shown in previous section,

APPCS1
ke1−−−⇀↽−−−
k−e1

APPE1

APPCS2d
ke2−−−⇀↽−−−
k−e2

APPE2d

and also the dimerization of reactants,

APPG2 + APPG2

kg3−−−⇀↽−−−
k−g3

APPG2d

α2 + α2
kc3−−−⇀↽−−−
k−c3

α2d

β2 + β2
kb3−−−⇀↽−−−
k−b3

β2d

We take one example and compute for its ratio of association constant:

KE1 =
ke1
k−e1

=
APPE1

APPCS1
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such that

APPE1 = KE1 ·APPCS1 , where KE1 =
ke1
k−e1

.

The others follow similar approach of computation and are denoted as follows:

APPE2d = KE2 ·APPCS2d , where KE2 =
ke2
k−e2

,

APPG2d = KG3 ·APP 2
G2 , where KG3 =

kg3
k−g3

,

α2d = KC3 · α2
2 , where KC3 =

kc3
k−c3

,

β2d = KB3 · β2
2 , where KB3 =

kb3
k−b3

,

1.3.5 Law of conservation

Law of conservation is assumed to APP, α-secretase, β-secretase, and SORLA. Regardless of
SORLA, the total amounts of APP, α-secretase, β-secretase, and SORLA, that are conserved
in the system, are represented by the following equations:

αTot = αinit + αmonomer + αdimer (1)

βTot = βinit + βmonomer + βdimer (2)

APPTot = APPinit +APPmonomer +APPdimer (3)

SORLATot = SORLAmonomer + SORLAdimer (4)

In order to differentiate the functions in the presence and in the absence of SORLA, the reactants
and complexes are denoted as functions with respect to the reactants they depend on in the process
of computation. For example, f(x1, y1) is the function f that is dependent on the representation
of x1 and y1.
In the absence of SORLA,

αmonomer = α1(αinit) + CAPPCS1α1(APPinit, αinit)

αdimer = α2(αinit) + 2 · [α2d(αinit) + CAPPCS2dα2d(APPinit, αinit)]

βmonomer = β1(βinit) + CAPPE1β1(APPinit, βinit)

βdimer = β2(βinit) + 2 · [β2d(βinit) + CAPPE2dβ2d(APPinit, βinit)] (5)

APPmonomer = APPG1(APPinit) +APPCS1(APPinit) +APPE1(APPinit) +

CAPPCS1α1(APPinit, αinit) + CAPPE1β1(APPinit, βinit)

APPdimer = APPG2(APPinit) + 2 · [APPG2d(APPinit) +APPCS2d(APPinit) +APPE2d(APPinit) +

CAPPCS2dα2d(APPinit, αinit) + CAPPE2dβ2d(APPinit, βinit)]

The equations above are substituted into Equations (1), (2), and (3), APPinit, αinit and βinit are
solved with respect to APPTot, αTot and βTot.
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For APPTot without SORLA,

APPTot = APPinit +

KG1 ·APPinit ·
{

1 +KCS1 ·
[
1 +

KC1 · αinit
KMα1

]
+KE1 ·KCS1 ·

[
1 +

KB1 · βinit
KMβ1

]}
+

KG2 ·APPinit + 2 ·KG3 · (KG2 ·APPinit)2 ·

{
1 +KCS2 ·

[
1 +

KC3 · (KC2 · αinit)2

KMα2d

]
+

KE2 ·KCS2 ·

[
1 +

KB3 · (KB2 · βinit)2

KMβ2d

]}
(6)

Due to the complexity of Equation (6), the computation of APPinit with respect to APPTot will not
be shown algebraically, but it will be solved using fzero() function that is available in MATLAB.
Nevertheless, the algebraic computation for αinit and βinit are shown below. We will show the com-
putation for αinit and the solution for βinit will follow similarly. Take αTot shown in Equation (1),
i.e.

αTot = αinit + αmonomer + αdimer

αmonomer and αdimer from Equation (5) are substituted into Equation (1), which leads to

αTot = αinit + [α1(αinit) + CAPPCS1α1(APPinit, αinit)] +

{α2(αinit) + 2 · [α2d(αinit) + CAPPCS2dα2d(APPinit, αinit)]}

Further substitutions of the notations that are derived in the previous sections give

αTot = αinit +KC1 · αinit ·
(

1 +
APPCS1

KMα1

)
+KC2 · αinit + 2 ·KC3 · (KC2 · αinit)2 ·

(
1 +

APPCS2d

KMα2d

)
= αinit +KC1 · αinit ·

(
1 +

KCS1 ·KG1 ·APPinit
KMα1

)
+KC2 · αinit +

2 ·KC3 · (KC2 · αinit)2 ·

(
1 +

KCS2 ·KG3 · (KG2 ·APPinit)2

KMα2d

)
(7)

such that

αinit =
−Bα ±

√
B2
α − 4 ·Aα · Cα

2 ·Aα
(8)

where

Aα = 2 ·KC3 ·K2
C2 ·

(
1 +

KCS2 ·KG3 · (KG2 ·APPinit)2

KMα2d

)

Bα = 1 +KC1 ·
(

1 +
KCS1 ·KG1 ·APPinit

KMα1

)
+KC2

Cα = −αTot.

Similarly for βTot shown in Equation (1):

βinit =
−Bβ ±

√
B2
β − 4 ·Aβ · Cβ

2 ·Aβ
(9)

where

Aβ = 2 ·KB3 ·K2
B2 ·

(
1 +

KE2 ·KCS2 ·KG3 · (KG2 ·APPinit)2

KMβ2d

)

Bβ = 1 +KB1 ·
(

1 +
KE1 ·KCS1 ·KG1 ·APPinit

KMβ1

)
+KB2

Cβ = −βTot.
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Note that only the positive solutions are biologically meaningful.

In the presence of SORLA, one of the main objective of our study is to differentiate the in-
fluence of SORLA in monomer and in dimer processing. Hence, it is necessary to further assume
law of conservation in each processing. Otherwise, the SORLA assigned in each processing will
indirectly affect the other processing (which can easily be shown by simple algebraic equations).

Here, we consider SORLA to be directly influencing the amounts of free APP available in monomer
and dimer processing without affecting APPinit. Again, it is important to emphasize that the reason
behind this is because of the objective we set at the beginning of the study. Thus, in the presence
of SORLA, the effect of SORLA into the free APP starts with APPG1 for monomer processing
and APPG2 for dimer processing. Henceforth, the equations shown in Equation (5) are rewritten
in the following ways:

αmonomer = α1 + CAPPCS1α1(APPG1, α1)

αdimer = α2 + 2 · (α2d(α2) + CAPPCS2dα2d(APPG2, α2))

βmonomer = β1 + CAPPE1β1(APPG1, β1)

βdimer = β2 + 2 · [β2d(β2) + CAPPE2dβ2d(APPG2, β2)] (10)

APPmonomer = APPG1 +APPCS1(APPG1) +APPE1(APPG1) +

CAPPCS1α1(APPG1, α1) + CAPPE1β1(APPG1, β1) +

CAPPG1SORLAG1(APPG1, SORLAG1)

APPdimer = APPG2 + 2 · [APPG2d(APPG2) +APPCS2d(APPG2) +APPE2d(APPG2) +

CAPPCS2dα2d(APPG2, α2) + CAPPE2dβ2d(APPG2, β2)] +

CAPPG2SORLAG2(APPG2, SORLAG2)

SORLAmonomer = SORLAG1 + CAPPG1SORLAG1(APPG1, SORLAG1)

SORLAdimer = SORLAG2 + CAPPG2SORLAG2(APPG2, SORLAG2)

Similarly, the equations above are substituted to Equations (1), (2), and (3). APPG1, α1 and β1

are solved with respect to the total amount of APPmonomer, αmonomer and βmonomer concentrations
calculated from the case without SORLA. Likewise, APPG2, α2 and β2 are solved with respect to the
total amount of APPdimer, αdimer and βdimer concentrations derived from the case without SORLA.

Moreover,

SORLAmonomer = SORLAG1 + CAPPG1SORLAG1(APPG1, SORLAG1)

= SORLAG1 · (1 +KS1 ·APPG1)

implies that
SORLAG1 = SORLAmonomer · (1 +KS1 ·APPG1)−1

and thus

CAPPG1SORLAG1 = KS1 ·APPG1 · [SORLAmonomer · (1 +KS1 ·APPG1)−1]

Similarly,

CAPPG2SORLAG2 = KS2 ·APPG2 · [SORLAdimer · (1 +KS2 ·APPG2)−1]
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For APPTot with SORLA,

APPTot = APPinit +

APPG1 ·
{

1 +KCS1 ·
[
1 +

α1

KMα1

]
+KE1 ·KCS1 ·

[
1 +

β1

KMβ1

]}
+

KS1 ·APPG1 ·
[
SORLAmonomer
1 +KS1 ·APPG1

]
+KS2 ·APPG2 ·

[
SORLAdimer

1 +KS2 ·APPG2

]
+

APPG2 + 2 ·KG3 ·APP 2
G2 ·

{
1 +KCS2 ·

[
1 +

KC3 · α2
2

KMα2d

]
+

KE2 ·KCS2 ·
[
1 +

KB3 · β2
2

KMβ2d

]}
(11)

Due to the complexity of Equation (11), the computations of APPG1 and APPG2 will not be shown
algebraically; but it will be calculated using fzero() function in MATLAB. Nevertheless, the alge-
braic computation for α1, α2, β1 and β2 are shown below. We will show the computation for α1

and α2 and the solutions for β1 and β2 will follow similarly.

First, we compute the amounts of αmonomer and αdimer without SORLA (Equation (5)) given
APPinit (Equation (6)), αinit (Equation (8)) and βinit (Equation (9)) that are solved previously,
i.e.

αmonomer = KC1 · αinit ·
(

1 +
KCS1 ·KG1 ·APPinit

KMα1

)
αdimer = KC2 · αinit + 2 ·KC3 · (KC2 · αinit)2 ·

(
1 +

KCS2 ·KG3 · (KG2 ·APPinit)2

KMα2d

)

Next, we used the calculated values of αmonomer and αdimer (shown right above), and substitute
them into Equation 10:

αmonomer = α1 + CAPPCS1α1(APPG1, α1)

αdimer = α2 + 2 · [α2d(α2) + CAPPCS2dα2d(APPG2, α2)]

which can be rewritten as

αmonomer = α1 ·
(

1 +
KCS1 ·APPG1

KMα1

)
αdimer = α2 + 2 ·KC3 · α2

2 ·
(

1 +
KCS2 ·KG3 ·APP 2

G2

KMα2d

)

Lastly, we solved for α1 and α2 with respect to the conserved amount of αmonomer and αdimer
(calculated previously):

α1 = αmonomer ·
(

1 +
KCS1 ·APPG1

KMα1

)−1

(12)

α2 =

−1±
√

1 + 8 · αdimer ·
[
KC3 ·

(
1 +

KCS2·KG3·APP 2
G2

KMα2d

)]
4 ·KC3 ·

(
1 +

KCS2·KG3·APP 2
G2

KMα2d

) (13)

Similarly, take

βmonomer = β1 + CAPPE1β1(APPG1, β1)

βdimer = β2 + 2 · (β2d(β2) + CAPPE2dβ2d(APPG2, β2))

9



such that

β1 = βmonomer ·
(

1 +
KE1 ·KCS1 ·APPG1

KMβ1

)−1

(14)

β2 =

−1±
√

1 + 8 · βdimer ·
[
KB3 ·

(
1 +

KE2·KCS2·KG3·APP 2
G2

KMβ2d

)]
4 ·KB3 ·

(
1 +

KE2·KCS2·KG3·APP 2
G2

KMβ2d

) (15)

Note that only the positive solutions are biologically meaningful.

1.4 End products

The representation of the products are summarized below:

For APP-monomer processing,

˙sAPPα1 = k6 ·
α1 ·APPCS1

KMα1

˙sAPPβ1 = k4 ·
β1 ·APPE1

KMβ1
(16)

while for APP-dimer processing,

˙sAPPα2 = 2 · k61 ·
α2d ·APPCS2d

KMα2d

˙sAPPβ2 = 2 · k41 ·
β2d ·APPE2d

KMβ2d
. (17)

As a whole, for the compartment model with both APP-monomer and APP-dimer processing,

˙sAPPαTot = ˙sAPPα1 + ˙sAPPα2

˙sAPPβTot = ˙sAPPβ1 + ˙sAPPβ2 (18)

wherein APPCS1, APPE1, APPCS2d, APPE2d, α1, β1, α2d, and β2d are functions with respect
to APPinit, αinit, and βinit in the absence of SORLA; and they are functions with respect to
APPG1, APPG2, α1, α2, β1, β2, SORLAG1, and SORLAG2 in the presence of SORLA. All the
computations are done with respect to the given or estimated conserved values of APPTot, αTot,
βTot, and SORLATot.
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2 List of Additional Tables

Table S1. Description of the variables used in the biochemical network.

Notation Description

TGN compartment

APPinit initial APP
APPG1 monomeric form of APP in the monomer processing
APPG2 monomeric form of APP in the dimer processing
APPG2d dimeric form of APP in the dimer processing
SORLAG1 SORLA in the monomer processing
SORLAG2 SORLA in the dimer processing
CAPPG1SORLAG1 complex of APPG1 and SORLAG1 in the monomer processing
CAPPG2SORLAG2 complex of APPG2 and SORLAG2 in the dimer processing

Cell surface compartment

APPCS1 monomeric form of APP in the monomer processing
APPCS2d dimeric form of APP in the dimer processing
αinit initial α-secretase
α1 monomeric form of α-secretase in the monomer processing
α2 monomeric form of α-secretase in the dimer processing
α2d dimeric form of α-secretase in the dimer processing
CAPPCS1α1 complex of APPCS1 and α1, formed within monomer processing
CAPPCS2dα2d complex of APPCS2d and α2d, formed within dimer processing
C831 fragment C83, resulting from monomer processing
C832d fragment C83-dimer, resulting from dimer processing
sAPPα1 soluble APPα, resulting from monomer processing
sAPPα2 soluble APPα, resulting from dimer processing

Endosome compartment

APPE1 monomeric form of APP in the monomer processing
APPE2d dimeric form of APP in the dimer processing
βinit initial β-secretase
β1 monomeric form of β-secretase in the monomer processing
β2 monomeric form of β-secretase in the dimer processing
β2d dimeric form of β-secretase in the dimer processing
CAPPE1β1 complex of APPE1 and β1, formed within monomer processing
CAPPE2dβ2d complex of APPE2d and β2d, formed within dimer processing
C991 fragment C99 in monomer processing
C992d fragment C99-dimer in dimer processing
sAPPβ1 soluble APPβ, resulting from monomer processing
sAPPβ2 soluble APPβ, resulting from dimer processing
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Table S2. Description of the variables and parameters used in the mathematical model.

A. List of variables:

Notation Unit Description
APPinit fmol free initial APP-monomer in TGN
APPG1 fmol free APP-monomer in monomer processing of TGN
APPG2 fmol free APP-monomer in dimer processing of TGN
APPG2d fmol free APP-dimer in dimer processing of TGN
APPCS1 fmol free APP-monomer in monomer processing of cell surface
APPCS2d fmol free APP-dimer in dimer processing of cell surface
APPE1 fmol free APP-monomer in monomer processing of endosome
APPE2d fmol free APP-dimer in dimer processing of endosome

αinit fmol free initial α-secretase within cell surface
α1 fmol free α-secretase-monomer in monomer processing within cell surface
α2 fmol free α-secretase-monomer in dimer processing within cell surface
α2d fmol free α-secretase-dimer in dimer processing within cell surface
βinit fmol free initial β-secretase within endosome
β1 fmol free β-secretase-monomer in monomer processing within endosome
β2 fmol free β-secretase-monomer in dimer processing within endosome
β2d fmol free β-secretase-dimer in dimer processing within endosome

CAPPCS1α1 fmol complex of APPCS1 and α1, formed within monomer processing of cell surface
CAPPE1β1 fmol complex of APPE1 and β1, formed within monomer processing of endosome
CAPPCS2dα2d fmol complex of APPCS2d and α2d, formed within dimer processing of cell surface
CAPPE2dβ2d fmol complex of APPE2d and β2d, formed within dimer processing of endosome
sAPPα1 fmol soluble APPα resulting from monomer processing of cell surface
sAPPβ1 fmol soluble APPβ resulting from monomer processing of endosome
sAPPα2 fmol soluble APPα resulting from dimer processing of cell surface
sAPPβ2 fmol soluble APPβ resulting from dimer processing of endosome

SORLAG1 fmol free SORLA in the monomer processing of TGN
SORLAG2 fmol free SORLA in the dimer processing of TGN
CAPPG1SORLAG1 fmol complex of APPG1 and SORLAG1 in the monomer processing of TGN
CAPPG2SORLAG2 fmol complex of APPG2 and SORLAG2 in the dimer processing of TGN

APPmonomer fmol total APP conserved in the monomer processing
APPdimer fmol total APP conserved in the dimer processing
APPTot fmol total APP conserved in the whole system
SORLAmonomer fmol total SORLA conserved in the monomer processing
SORLAdimer fmol total SORLA conserved in the dimer processing
SORLATot fmol total SORLA conserved in the whole system
αmonomer fmol total α-secretase conserved in the monomer processing
αdimer fmol total α-secretase conserved in the dimer processing
αTot fmol total α-secretase conserved in the whole system
βmomoner fmol total β-secretase conserved in the monomer processing
βdimer fmol total β-secretase conserved in the dimer processing
βTot fmol total β-secretase conserved in the whole system
sAPPαTot fmol total soluble APPα
sAPPβTot fmol total soluble APPβ
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Table S2. Description of the variables and parameters used in the mathematical model.

B. List of parameters:

Notation Unit Description
KG1 equilibrium constant of APPinit and APPG1

KG2 equilibrium constant of APPinit and APPG2

KCS1 equilibrium constant of APPG1 and APPCS1
KCS2 equilibrium constant of APPG2d and APPCS2d
KE1 equilibrium constant of APPCS1 and APPE1

KE2 equilibrium constant of APPCS2d and APPE2d

KC1 equilibrium constant of αinit and α1

KC2 equilibrium constant of αinit and α2

KB1 equilibrium constant of βinit and β1
KB2 equilibrium constant of βinit and β2

KG3 fmol−1 association constant of APP dimerization
KB3 fmol−1 association constant of β-secretase dimerization
KC3 fmol−1 association constant of α-secretase dimerization
KS1 fmol−1 association constant of APPG1 and SORLAG1

KS2 fmol−1 association constant of APPG2 and SORLAG2

ki fmol−1· h−1 binding rate constant (where i = 1, 3, 5, 31, 51)
kj h−1 dissociation rate constant (where j = −1,−3,−5,−31,−51,−g3,−b3,−c3, 4, 6, 41, 61)
kh fmol−1· h−1 dimerization rate constant (where h = g3, b3, c3)
kq h−1 inflow rate constant (where q = g1, g2, cs1, cs2, e1, e2, c1, c2, b1, b2)
kt h−1 outflow rate constant (where q = −g1,−g2,−cs1,−cs2,−e1,−e2,−c1,−c2,−b1,−b2)
kr fmol· h−1 initial rate (where r = g0)

KMα1 fmol defined by (k6 + k−5)/k5
KMβ1 fmol defined by (k4 + k−3)/k3
KMα2d fmol defined by (k61 + k−51)/k51
KMβ2d fmol defined by (k41 + k−31)/k31
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Table S3. Steps in computer simulations.

I Sort experimental data according to the total amount of APP values

II For simulation purpose, the unit of measurements is unified into fmol (i.e. the values of APPTot is
converted from Molar to fmol, wherein the unit of measurement for sAPPα and sAPPβ remains as
fmol)

III The initial values of the parameters are randomly assigned using the rand() function.

IV The initial values described in Step III are used by the lsqnonlin() function to estimate the parameter
values of the mathematical model, whereby the following tasks are performed:

i Given the total amount of APP values from the experimental data without SORLA, the fzero()function
is used to solve for APPinit

ii Use the APPinit that is solved in (i) to solve for αinit and βinit while simultaneously estimating
the values for αTot and βTot.

iii Since, the total amount of APP values measured between the experimental data without SORLA
and the experimental data with SORLA are different. Thus, it is necessary to compute for the
corresponding free APP in the both cases, i.e. with and without SORLA.

iv Use the values of APPinit, αinit, and βinit that are calculated in (i) and (ii) to solve for the
conserved amount of APP, α-, and β-secretase in monomer and in dimer processing without
SORLA, i.e. APPmonomer, APPdimer, αmonomer, αdimer, βmonomer, and βdimer.

v Use APPmonomer, APPdimer, αmonomer, αdimer, βmonomer, and βdimer that are solved in (iv)
to recalculate for the values of APPG1, APPG2, α1, α2, β1, and β2, which are influenced by
SORLA.

vi Then, apply APP, α-, and β-secretase that are calculated in (i) and (ii) into the production rate
equations of sAPPα and sAPPβ without SORLA, and those in (v) into that of with SORLA.

vii Lastly, the sum of weighted squares of differences between the experimental data and results in
(vi) are being minimized, i.e. the predicted and observed total amount of

1 sAPPα without SORLA

2 sAPPβ without SORLA

3 sAPPα with SORLA

4 sAPPβ with SORLA

5 APP with SORLA. (This step is necessary because the free APP in the case of with SORLA
are computed indirectly)
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Table S4. Estimated parameter values for Figure 2: Residual= 2.15× 101.

parameter (units) values parameter (units) values

αTot (fmol) 5.52× 103 βTot (fmol) 1.31× 101

KB3 (fmol−1) 2.55× 10−2 KC3 (fmol−1) 1.52× 10−5

KG3 (fmol−1) 4.45× 1011

Monomer processing Dimer processing

KG1 1.19× 10−9 KG2 2.00× 10−7

KCS1 2.01× 108 KCS2 2.38× 100

KE1 7.33× 10−2 KE2 2.41× 100

KC1 1.80× 101 KC2 1.64× 103

KB1 2.37× 101 KB2 1.90× 102

SORLAmonomer (fmol) 1.23× 101 SORLAdimer (fmol) 2.43× 105

KS1 (fmol−1) 3.16× 10−9 KS2 (fmol−1) 8.35× 103

k6 (h−1) 7.29× 10−4 k61 (h−1) 1.77× 101

KMα1 (fmol) 1.37× 10−2 KMα2d (fmol) 5.91× 103

k4 (h−1) 5.25× 102 k41 (h−1) 6.59× 10−1

KMβ1 (fmol) 2.23× 102 KMβ2d (fmol) 6.50× 101
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3 List of Additional Figures

Figure S1: Concentration values of the secretases with higher SORLATot values. Sim-
ulations of the influence of intermediate levels of SORLA on APP processing on the amount of
α-secretase (A-F) and β-secretase (G-L) concentration. The term “used” refers to the complex
formation of the secretases and APP, while the term “free” refers to the secretases that are not
bound in a complex. There are five intermediate levels of SORLA, namely, 0% (solid line), 100%,
200%, 1000%, and 5000% (dashed line) of SORLATot (where SORLATot = 2.43×105 fmol). When
there is only solid line in a plot, it is because solid and dashed lines are superimposed. Starting from
the first column, there shows the amount of α- (A) and β-secretase (G) that is free in monomer
processing. In the second column, it shows the amount of α- (B) and β-secretase (H) that is free
in dimer processing. The amount of α- (C) and β-secretase (I) used in monomer processing are
shown in the third column, whereas those used in dimer processing (D, J) are shown in the fourth
column. In the fifth column, there shows the total amount of α- (E) and β-secretase (K) that is
free (blue line) and used (orange line) in the system. Lastly, there is the total amount of α- (F)
and β-secretase (L) in monomer (blue line) and in dimer (orange line) processing of the system.
The black lines in (E, F) and in (K, L) are the estimated total amount of α-and β-secretase, re-
spectively. In particular, the black line in (E, K) represents the sum of the secretase concentration
depicted by the blue and orange lines, while the one in (F, L) indicates the sum of the secretase
concentration depicted by the red and green lines. Notice that the solid and dashed lines for both
blue and orange colors deviate in (K). This, however, is not the case in (E).
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