
Supplementary Material for A Specialized ODE Integrator
for the Efficient Computation of Parameter Sensitivities

Pedro Gonnet1,2, Sotiris Dimopoulos2 , Lukas Widmer2 and Jörg Stelling∗2

1Mathematical Institute, University of Oxford, Oxford, UK
2Department of Biosystems Science and Engineering, ETH Zurich, 8092 Zürich, Switzerland

Email: Pedro Gonnet - gonnet@maths.ox.ac.uk; Sotiris Dimopoulos - sotiris.dimopoulos@bsse.ethz.ch; Lukas Widmer -

luwidmer@ethz.ch; Jörg Stelling∗- joerg.stelling@bsse.ethz.ch;

∗Corresponding author

S1 Implementation Details
For all computations with odeSD and odeSDmex, we used Matlab version 7.10.0.499 (R2010a), 64-bit,
sundialsTB v.2.4.0, a Matlab implementation of radau5 [1], and gcc 4.1.2 under Red Hat 4.1.2-48
Linux on an IBM x3850 M2 server with 64 GB RAM and Intel Xeon X7350 CPUs at 2.93 GHz. For the
performance evaluations, all processes were run in single-threaded mode.

The native c-language odeSDc was compiled using gcc 4.4.5 and linked against the Atlas library 3gf
for the lapack and cblas routines. The comparison of odeSDc and cvodes was run on a 64-bit 2.2 GHz
AMD Opteron running Red Hat 4.4.5-6 Linux.

To achieve reliable timing data, all models were integrated 10 times. Evaluation numbers for deriva-
tives and Jacobians were obtained by designing appropriate function wrappers. Numerical precision was
evaluated as the maximal relative deviation between a reference solution (obtained with radau5 at rel-
ative numerical tolerance of 10−15) and the approximation with variable tolerance at the end time of
integration over all system states. States with values below machine precision were excluded from this
analysis. To determine the average performance as a function of numerical precision, precisions were
binned (with centers as shown in the corresponding figures), and performance indicators were averaged
over these intervals and over all models. For the automatic function generation from SBML models, we
used Symbolic Toolbox V5.2 and the current version of SBtoolbox2 that supports all features of SBML
Level 1 and 2.

S1.1 Details of the Matlab Integrator
To retain a certain level of compatibility, odeSD uses the same calling sequence as the default integrators
in Matlab:

[T, X, TE, YE, IE, S, SE] = odeSD (f, t, x0, opts, params, varargin{:})

where the return value T is a vector containing the time steps and X is a matrix whose columns are
the variables at each time step. The odeSDmex integrator uses the same interface, yet is called using
odeSD wrapper instead of odeSD. The return value S contains a three-dimensional array containing the
values of the parameter sensitivities at each time step. The return values TE, YE, IE and SE contain,
analogously to the Matlab integrators, the data at points where user-specified events (see the Events

option below) were triggered. The parameter sensitivities are only computed if the return value S is
requested. The parameter t is a vector of length at least two containing the time interval over which
to integrate. If t is of length larger than two, the values of x(t) are only stored and returned for those

times. Otherwise, all computed values of x(t) are returned. The optional parameter opts contains an
ODE-options structure as is available for the other Matlab integrators in which the options RelTol,
AbsTol, NormControl, NonNegative, OutputFcn, OutputSel, Refine, Stats, InitialStep, MaxStep,
Events and Jacobian can be set. The optional parameter params, which is required when the output S
is requested, contains a vector of parameter values to be passed to the right-hand side f for sensitivity
analysis and the variable parameters varargin{:} are passed to the right-hand side f.

The right-hand side f is expected to be either a function or a handle on a function of the form

[dxdt, d2xdt2, J f, J Jf, dfdp, d2fdpdt] = f (t, x, params, varargin{:})

where dxdt and d2xdt2 are the first and second derivatives ẋ(t) and ẍ(t) respectively. The output
arguments J f and J Jf are the Jacobian matrices of the first and second derivatives, respectively. The
outputs dfdp and d2fdpdt, which are only required if the parameter sensitivities need to be computed,
are matrices containing the derivatives of the first two outputs with respect to the parameters where the
kth column of dfdp contains the derivatives of the variables with respect to the kth parameter. Similarly,
the function specified with the Jacobian option in opts should have the form

[J f, J Jf] = J (t, x, params, dxdt, varargin{:}).

where the first derivative dxdt is supplied as it may simplify the computation of the Jacobians.
If no initial step size is specified in opts, a default value of 1/100th of the integration interval is

assumed, which is repeatedly scaled by a factor of 0.7 until the extrapolated initial guess x̃(t0 + h) =
x0+hf(x0)+h2/2J(x0)f(x0) satisfies all non-negativity constraints specified by the option NonNegative.

In every step, the algorithm computes an initial guess x̃(t + h) by constructing a BDF over the last
three points and extrapolating to the new time t + h. In case no previous steps are available, a linear
extrapolation using the zeroth and first derivative at t is used, and if only one step is available, the zeroth
and first derivatives of the last two steps are employed.

If the step size has changed from the previous step, the iteration matrix in (8) is reassembled using
the most recent copies of the Jacobians J̃f (t + h, x̃(t + h)) and J̃Jf (t + h, x̃(t + h)) and is decomposed
using an LU factorization. If after two iterations of Newton’s method the solution diverges or is not
expected to converge within five steps (see [2] for details on how convergence is estimated), the Jacobians
are re-evaluated, the iteration matrix is reassembled and decomposed, and the iteration is restarted. If
the Jacobians are up to date, the iteration is abandoned and the step size h is reduced by a factor of 0.7.

Once the Newton iteration has converged, the error is approximated as in (11). The maximum relative
component-wise error is used to compute the scaling factor σ for the next step as in (12) with a tolerance
τ of half of the requested tolerance. Note that since the scaling σ is computed to achieve half of the
required tolerance, a step only fails if σ < (1/2)1/5 ≈ 0.87. If the error estimate is below the requested
tolerance, the algorithm proceeds to compute, if requested, the parameter sensitivities, as per (15). For
the parameter sensitivities, the same error estimator and step size scaling are applied as for the system
variables.

The fifth-degree rule used in the error estimate of both the system variables and the parameter
sensitivities is

g5(t+ h) =
1

6h2−1 + 10h2 + 15hh−1(
6h5−1 + 10h3−1h

2 + 15hh4−1 + h5

h3−1

x(t)− h5

h3−1

x(t− h−1)

+ h
8hh3−1 + 3h4−1 + 6h2h2−1 − h4

h2−1

ẋ(t) + h(3h2−1 + 7hh−1 + 4h2)ẋ(t)

+ h2
3h2h−1 + h3 + 3hh−1 + h3−1

2h−1
ẍ(t)− h2(h2 + h2−1 + 2hh−1)ẍ(t+ h)

)

where h−1 is the size of the previous step.

2

S1.2 Details of the C-language integrator
The interface of the native c-language odeSDc is similar to that of the Matlab version. The calling
sequence, as defined in odeSD.h is

int odeSD (f_t *f , dfdx_t *dfdx , int nr_tspan , double *tspan , int N ,

const double *x0 , struct odeSD_opts *opts , int nr_params ,

const double *params , void *varargin , double **t_out , double **x_out ,

double **s_out);

where f t is a function of the type

int f (double t , const double *x , const double *p , void *varargin , double *f ,

double *dfdt , double *J , double *dJ , double *dfdp , double *d2fdtdp);

and dfdx t is a function of the type

int dfdx (double t , const double *x , const double *f , const double *p ,

void *varargin , double *J , double *dJ , double *dfdp , double *d2fdtdp);

The functions f and dfdx compute the first derivatives and Jacobians, respectively. The resulting
vectors and matrices are stored in column-major order in the output variables f (first derivative), dfdt
(second derivative), J (Jacobian of first derivative), dJ (Jacobian of second derivative), dfdp (derivative
of f with respect to the parameters) and dfdp (derivative of dfdt with respect to the parameters). These
variables point to memory allocated by odeSD and are NULL if the value is not required. The values x and
p contain the N system variables and nr params parameters respectively. The variable varargin passed
to odeSD is passed on to f and dfdx.

The output variables t out, x out and s out are analogous to the return values of the Matlab in-
tegrator and will contain pointers to these arrays in column-major ordering, allocated by odeSD using
malloc.

The argument opts is a pointer to a structure of the type odeSD opts defined in odeSD.h which
contains options analogous to those of odeset in Matlab. The global variable odeSD opts default

contains the default settings. The arguments x0 and params contain the initial system variables and the
parameters respectively and tspan is a pointer to a vector containing nr tspan time steps at which to
evaluate the system variables and parameter sensitivities. If nr tpsan is two, the outputs are stored for
each computed step.

The function odeSD returns the number of output values stored or any value < 0 on error. A stack of
any errors can be displayed using errs dump(FILE *out), defined in errs.h.

S1.3 Automatic Generation of Functions
An important part of this work was the extraction of the necessary mathematical information used by the
solvers from each model in SBML representation [3]. To this end, we developed a Matlab (MathWorks,
Nantucket / MA) interface which, given an SBML model, fully automatically generates a series of suitable
Matlab files that contain both the analytical representations of the system’s derivatives f(t) and ẍ(t) as
well as the Jacobians Jf (t), JJf (t), ∂f(t)/∂p, and ∂ẍ(t)/∂p.

The entries of the derivative ẍ(t) and of the matrix ∂ẍ(t)/∂p are generated explicitly, i.e. without
evaluating Jf (t)f(t). The matrix JJf (t) is constructed as per (9), where the entries of (∂Jf (t)/∂x)f(t)
are computed explicitly and added to the square of the previously computed Jf (t).

The framework makes use of SBToolbox2 [4] for reading the initial SBML model and of Matlab’s
Symbolic Toolbox for performing various differentiations on the system’s equations. The latter was
preferred over parsing and differentiating the expressions in Matlab, as the Symbolic Toolbox provides
the ability to simplify the sometimes clumsy or redundant expressions resulting from a straight-forward
differentiation. The generated function files are written in both standard Matlab and c-language formats
and can be used, in principle, with appropriate wrappers, in any solver. For example, given an SBML
model in Matlab’s current directory, we can write:

3

modelInfo = xml2odefun(modelname,{‘c files’}).

All the necessary function files in c-language format that describe the system will be generated in the
current directory, and a structure providing useful information of the system, modelInfo, is returned.

Producing the system description files for high-dimensional (both in terms of state and parametric
space) systems is a non-trivial task because the computational cost grows quadratically with the system
dimension. In a fully interconnected system we will never be able to avoid such a computational cost.
Remember, however, that biological systems are generally poorly interconnected, resulting in sparse
Jacobians. Parsing the system’s equations prior to differentiation allows us to pinpoint the elements of
the various Jacobians that are non-zero and perform all computations only on these elements. In all the
systems under study, the computational cost grows only linearly with the system size.

S1.4 Framework Usage and Example
The following short Matlab code shows how to construct the integrator input files using our framework:

1 % Generate system files from MyModel.xml

2 curXMLfilename = ’Elowitz2000_6states.xml’;

3 model_info = xml2odefun(curXMLfilename);

4

5 % generate function handles

6 mainfunctionName = ’Elowitz2000_6states ’;

7 jacfunctionName = ’jac_Elowitz2000_6states ’;

8 f = str2func(mainfunctionName);

9 df = str2func(jacfunctionName);

10

11 % take initial conditions and parameters

12 [x0 p0]=feval(f);

13

14 %set the time intervals

15 tspan = linspace (0 ,300 ,200) ’;

16

17 %create the options structure

18 opts = odeset(’RelTol ’, 1.0e-6 , ’AbsTol ’ , eps , ’Jacobian ’ , df);

19

20 %run the integration

21 [T1 ,X1 ,~ ,~ ,~ , S1] = odeSD(f,tspan ,x0 ,opts ,p0);

22

23 % plot the states

24 figure (1); plot (T1 ,X1 , ’.-’);

25

26 % plot the sensitivities of all states w.r.t the 1st parameter

27 figure (2); plot (T1 , squeeze(S1 (: ,1 ,:)) , ’.-’);

We first pass the SBML model through the converter function xml2odefun (line 3) such that the
necessary Matlab files, named MyModel.m and jac MyModel.m, analogously to the name of the SBML
file, are generated. In line 12, we extract the initial conditions for both the variables x0 and the parameters
p0 by calling the right hand side without any arguments. The Jacobian generated by the converter is then
added to an options structure (line 18) so that it can be passed to the integrator (line 21) odeSD, which
then computes the integration and sensitivity analysis. In lines 24 and 27 we plot the system variables
and the parameter sensitivities of the third variable respectively.

Analogously, the c-language files generated by the converter when called with the ’c files’ option,
can be passed to odeSDc as follows

1 /* Standard headers. */

2 #include <stdlib.h>

4

3 #include <stdio.h>

4 #include <string.h>

5 #include <math.h>

6 #include <float.h>

7

8 /* Local headers. */

9 #include "errs.h"

10 #include "odeSD.h"

11

12 /* Model file headers , generated by xml2odefun . */

13 #include "Elowitz2000_6states.h"

14

15 /* Main routine. */

16 int main (int argc , char *argv[]) {

17

18 double *T, *X, *S, *x0;

19 struct odeSD_opts opts = odeSD_opts_default;

20 int i, k, nr_steps;

21 double tspan [2] = { 0.0 , 300.0 };

22 int nneg[Elowitz2000_6states_Nstates];

23

24 /* Init x0. */

25 x0 = (double *) alloca(sizeof(double) * Elowitz2000_6states_Nstates);

26 memcpy(x0 , Elowitz2000_6states_x0 , sizeof(double) * Elowitz2000_6states_Nstates);

27 for (k = 0 ; k < Elowitz2000_6states_Nstates ; k++)

28 if (x0[k] == 0.0)

29 x0[k] = DBL_EPSILON;

30

31 /* Set some options. */

32 opts.RelTol = 1.0e-6;

33 opts.AbsTol = DBL_EPSILON;

34 for (k = 0 ; k < Elowitz2000_6states_Nstates ; k++)

35 nneg[k] = k;

36 opts.NonNegative = nneg;

37 opts.nr_NonNegative = Elowitz2000_6states_Nstates;

38

39 /* Call the integrator on the Elowitz2000_6states problem. */

40 if ((nr_steps = odeSD(&Elowitz2000_6states_f , &Elowitz2000_6states_jac ,

41 2 , tspan , Elowitz2000_6states_Nstates , x0 , &opts ,

42 Elowitz2000_6states_Nparams , Elowitz2000_6states_p , NULL ,

43 &T , &X , &S)) < 0) {

44 errs_dump(stderr);

45 abort ();

46 }

47

48 /* Print the data in gnuplot -readable format. */

49 printf("# t");

50 for (k = 0 ; k < Elowitz2000_6states_Nstates ; k++)

51 printf(" x%02i" , k);

52 printf("\n");

53 for (i = 0 ; i < nr_steps ; i++) {

54 printf("%e" , T[i]);

55 for (k = 0 ; k < Elowitz2000_6states_Nstates ; k++)

56 printf(" %e" , X[i*Elowitz2000_6states_Nstates + k]);

57 printf("\n");

58 }

59

60 /* Clean up after odeSD. */

61 free(T); free(X); free(S);

62

63 /* Exit cleanly. */

64 return 0;

65

66 }

5

S2 Accuracy of the second derivative rule and of the error estimate
To illustrate the effect of the interval width, we determined the truncation error in each step for our
second-derivative rule as well as a BDF and Adams-Bashforth rule of the same degree when integrating
the simple oscillator

f(t,x) = (x2,−x1)
T
, x(t0) = (1, 0)

T
. (1)

We employed a fixed step size of h = 0.1 and used the exact values of x(t) = (sin t, cos t)T for the previous
steps in each case. As predicted, the resulting error of the second-derivative method for this test case is
at least one order of magnitude lower compared to the other methods (Supporting Fig. S1A). Hence, we
expect a substantial improvement of accuracy or efficiency compared to standard first-derivative methods.

Using the same test function (1) as before, we compared our new error estimate with the—computationally
more efficient (O(n) vs. O(n2))—estimate based on the difference of g4(t + h) and g5(t + h) over the
converged solution x1(t+ h). The ratio of predicted to actual errors shown in Supporting Fig. S1B indi-
cates a superior accuracy of our estimate. Furthermore, the almost uniform spacing of the errors along
the x-axis in Figure S4 is a good indication of the robustness of the error estimate.

S3 Results without parameter sensitivities
The results show that our integrator requires less steps than the first-derivative methods. The smaller
number of steps, however, does not always translate into a speed advantage, especially for the larger
models with steady-state behavior (see Fig. 1 and Supporting Fig. S2 for details). On average, the
second-derivative integrator requires an approximately equal number of function evaluations (Fig. 1C),
but a much larger number of evaluations of the Jacobians (Fig. 1D). This effect is a result of the instability
of the second-degree rules at infinity (see Section “Methods: A second-derivative integrator”) and was
already observed in [5] and in [6] when studying the “rober” model therein. It can be understood by
considering the explicit formulation of the Newton iteration matrix M(t+h) (8) in terms of the Jacobian
JJf (9). The matrix J̃f (t + h) is not the exact Jacobian and whatever perturbation it contains will be

amplified in (J̃f (t+ h))2, causing the Newton iteration to converge less often than in the first-derivative
rule, i.e. the step size is limited by variation in the second-derivative Jacobian JJf .

This, however, is only a serious disadvantage for the models with a large number of variables and it
is no disadvantage at all if the Jacobians need to be evaluated at every step, e.g. for very stiff systems
or when computing parameter sensitivities. Integration of such models is not infeasible, but inefficient
when approaching the steady state.

References
1. Engstler C: Matlab implementation of the Radau IIA method of order5

by Ch. Engstler after the Fortran Code RADAU5 of Hairer/Wanner 1999.
[http://na.uni-tuebingen.de/projects.shtml].

2. Shampine LF: Implementation of implicit formulas for the solution of ODEs. SIAM J. Sci.
Statist. Comput. 1980, 1:103–118.

3. Hucka M, Finney A, Sauro H, Bolouri H, Doyle J, Kitano H, Arkin A, Bornstein B, Bray D, Cornish-
Bowden A, Cuellar A, Dronov S, Gilles E, Ginkel M, Gor V, Goryanin I, Hedley W, Hodgman T,
Hofmeyr J, Hunter P, Juty N, Kasberger J, Kremling A, Kummer U, Novere NL, Loew L, Lucio D,
Mendes P, Minch E, Mjolsness E, Nakayama Y, Nelson M, Nielsen P, Sakurada T, Schaff J, Shapiro B,
shimizu T, Spence H, Stelling J, Takahashi K, Tomita M, Wagner J, Wang J: The Systems Biology
Markup Language (SBML): a medium for representation and exchange of biochemical
network models. Bioinformatics 2003, 19(4):524–31.

4. Schmidt H, Jirstrand M: Systems Biology Toolbox for MATLAB: a computational platform
for research in systems biology. Bioinformatics 2006, 22(4):514–5. [Schmidt, Henning Jirstrand,

6

Mats Research Support, Non-U.S. Gov’t England Bioinformatics (Oxford, England) Bioinformatics.
2006 Feb 15;22(4):514-5. Epub 2005 Nov 29.].

5. Enright WH: Second Derivative Multistep Methods for Stiff Ordinary Differential Equa-
tions. SIAM J. Numer. Anal. 1974, 11(2):321–331.

6. Hairer E, Norsett S, Wanner G: Solving Ordinary Differential Equations I. Berlin: Springer Verlag
1987.

7

0 2 4 6 8 10
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

t [−]

T
ru

n
c
a
ti
o
n
 e

rr
o
r

|ε
|
[−

]

0 2 4 6 8 10
10

−1

10
0

10
1

t [−]

E
s
ti
m

a
te

d
 /
 a

c
tu

a
l
e
rr

o
r

[−
]A B

Supporting Figure S1: Numerical errors and error estimation for the simple oscillator example (1). (A)
Truncation errors of the second-derivative formula in (7) (dash-dotted line), of a BDF (solid line), and
of an Adams-Moulton (dashed line) formula of the same degree for the values of x1 with a constant step
size h = 0.1. (B) Ratio of the predicted vs. the exact error of x1 with h = 0.2 for the ‘traditional’
error estimate using the difference between two approximations of different degrees yet computed over
the same nodes, g4(t+ h)− g5(t+ h), (dashed line) and for the new error estimate in (11) (solid line).

10
0

10
2

10
4

Hornberg2005
Kholodenko1999

Singh2006
Borisov2009
Ung2008
Elowitz2000
Leloup1999
Wolf2001

Goldbeter2008
Xie2007

Compute time [ms], Tol 1e−03
10

0
10

2
10

4

Hornberg2005
Kholodenko1999

Singh2006
Borisov2009
Ung2008
Elowitz2000
Leloup1999
Wolf2001

Goldbeter2008
Xie2007

Compute time [ms], Tol 1e−04

10
0

10
2

10
4

Hornberg2005
Kholodenko1999

Singh2006
Borisov2009
Ung2008
Elowitz2000
Leloup1999
Wolf2001

Goldbeter2008
Xie2007

Compute time [ms], Tol 1e−05
10

0
10

2
10

4

Hornberg2005
Kholodenko1999

Singh2006
Borisov2009
Ung2008
Elowitz2000
Leloup1999
Wolf2001

Goldbeter2008
Xie2007

Compute time [ms], Tol 1e−06

A B

C D

10
0

10
2

10
4

Hornberg2005
Kholodenko1999

Singh2006
Borisov2009
Ung2008
Elowitz2000
Leloup1999
Wolf2001

Goldbeter2008
Xie2007

Compute time [ms], Tol 1e−07
10

0
10

2
10

4

Hornberg2005
Kholodenko1999

Singh2006
Borisov2009
Ung2008
Elowitz2000
Leloup1999
Wolf2001

Goldbeter2008
Xie2007

Compute time [ms], Tol 1e−08

10
0

10
2

10
4

Hornberg2005
Kholodenko1999

Singh2006
Borisov2009
Ung2008
Elowitz2000
Leloup1999
Wolf2001

Goldbeter2008
Xie2007

Compute time [ms], Tol 1e−09
10

0
10

2
10

4

Hornberg2005
Kholodenko1999

Singh2006
Borisov2009
Ung2008
Elowitz2000
Leloup1999
Wolf2001

Goldbeter2008
Xie2007

Compute time [ms], Tol 1e−10

E F

G H

Supporting Figure S2: Detailed performance comparison without parameter sensitivities. All models were
integrated for the time spans shown in Table 2. (A-H) Computation times for the individual models
listed in Table 2 with varying relative tolerances (see X-axis labels) using odeSD (white bars), odeSDmex
(black), ode15s (red), radau5 (green), and cvodes (blue).

8

10
0

10
2

10
4

10
6

Hornberg2005
Kholodenko1999

Singh2006
Borisov2009
Ung2008
Elowitz2000
Leloup1999
Wolf2001

Goldbeter2008
Xie2007

Compute time [ms], Tol 1e−03
10

0
10

2
10

4
10

6

Hornberg2005
Kholodenko1999

Singh2006
Borisov2009
Ung2008
Elowitz2000
Leloup1999
Wolf2001

Goldbeter2008
Xie2007

Compute time [ms], Tol 1e−04

10
0

10
2

10
4

10
6

Hornberg2005
Kholodenko1999

Singh2006
Borisov2009
Ung2008
Elowitz2000
Leloup1999
Wolf2001

Goldbeter2008
Xie2007

Compute time [ms], Tol 1e−05
10

0
10

2
10

4
10

6

Hornberg2005
Kholodenko1999

Singh2006
Borisov2009
Ung2008
Elowitz2000
Leloup1999
Wolf2001

Goldbeter2008
Xie2007

Compute time [ms], Tol 1e−06

A B

C D

10
0

10
2

10
4

10
6

Hornberg2005
Kholodenko1999

Singh2006
Borisov2009
Ung2008
Elowitz2000
Leloup1999
Wolf2001

Goldbeter2008
Xie2007

Compute time [ms], Tol 1e−07
10

0
10

2
10

4
10

6

Hornberg2005
Kholodenko1999

Singh2006
Borisov2009
Ung2008
Elowitz2000
Leloup1999
Wolf2001

Goldbeter2008
Xie2007

Compute time [ms], Tol 1e−08

10
0

10
2

10
4

10
6

Hornberg2005
Kholodenko1999

Singh2006
Borisov2009
Ung2008
Elowitz2000
Leloup1999
Wolf2001

Goldbeter2008
Xie2007

Compute time [ms], Tol 1e−09
10

0
10

2
10

4
10

6

Hornberg2005
Kholodenko1999

Singh2006
Borisov2009
Ung2008
Elowitz2000
Leloup1999
Wolf2001

Goldbeter2008
Xie2007

Compute time [ms], Tol 1e−10

E F

G H

Supporting Figure S3: Detailed performance comparison with parameter sensitivities. All models were
integrated for the time spans shown in Table 2. (A-H) Computation times for the individual models
listed in Table 2 with varying relative tolerances (see X-axis labels) using odeSD (white bars), odeSDmex
(black), ode15s (red), radau5 (green), and cvodes (blue).

3 4 5 6 7 8 9 10 11 12 13
0

1

2

3

−log
10

(Precision), Hornberg2005

lo
g

1
0
(C

P
U

 t
im

e
)

[m
s
]

−1 0 1 2 3 4 5 6 7
1

2

3

4

−log
10

(Precision), Kholodenko1999

lo
g

1
0
(C

P
U

 t
im

e
)

[m
s
]

0 1 2 3 4 5 6 7
0

1

2

3

−log
10

(Precision), Elowitz2000

lo
g

1
0
(C

P
U

 t
im

e
)

[m
s
]

−1 0 1 2 3 4 5 6 7 8 9
1

2

3

4

−log
10

(Precision), Goldbeter2008

lo
g

1
0
(C

P
U

 t
im

e
)

[m
s
]

A B

C D

−2 −1 0 1 2 3 4 5 6 7
1

2

3

4

−log
10

(Precision), Leloup1999

lo
g

1
0
(C

P
U

 t
im

e
)

[m
s
]

−2 −1 0 1 2 3 4 5 6 7
2

3

4

5

−log
10

(Precision), Wolf2001

lo
g

1
0
(C

P
U

 t
im

e
)

[m
s
]

0 1 2 3 4 5 6 7 8 9 10
1

2

3

4

−log
10

(Precision), Xie2007

lo
g

1
0
(C

P
U

 t
im

e
)

[m
s
]

E F

G

Supporting Figure S4: Precision-work diagrams for the c-language version odeSDc (open black circles) and
cvodes (filled black circles) with parameter sensitivities. (A-G) Computation times for all models for
which the systems dynamics were solved with all ODE integrators (see X-axis for model specifications)
as a function of precision. The models were integrated for the time spans shown in Table 2.

9

