
USB-based
Trusted Computing 

Platform

Host Machine

Privacy CA

Application Server

Figure 8. A reference enterprise architecture for USB-based TC platformFigure 8 presents a high level enterprise architecture
showing how a USB-based TCP is meant to be used, and the
components that are required to support it. There are three
components involved in running an application based on the
USB-based TCP. In a typical use scenario, a USB-based
TCP is plugged into an unknown host computer. Depending
on the application selected, the host computer may also be
used to allow the user access to a variety of Input/Output
interfaces such as a screen display and keyboard/mouse Note
that they are not a part of the USB-based TCP reference plat-
form as shown in Figure 4. The Privacy Certifying Authority
(Privacy CA) validates a USB-based TCP’s characteristics to
a remote party by running a TCG attestation protocol. This
means all devices’ characteristics are known to the Privacy
CA. The application server hosts an application that USB-
Based TCP uses to process any critical transaction.

Based on the above enterprise architecture, we have devel-
oped a small demonstration application that exercises most
of our USB-based TCP’s capabilities. Our demonstrator
uses a familiar banking transaction scenario which allows a
customer to view account balances and transfer money from
one account to another after successful authentication took
place. The layouts and technologies used in our demonstrator
are shown in Figure 9.

Our USB-based TCP contains a mini Web server, de-
veloped in-house, that contains sufficient functionality to
process SOAP formatted HTTP request/response messages
Similarly, we also have another mini Web server running
on the Privacy CA component. These mini Web servers
enable us to conduct driverless communication among the

components in our enterprise architecture using standard
Web languages such as HTML, JavaScript, and AJAX.
The application server hosts our banking demonstration
written in JSP. The Apache Tomcat Server and Apache
Axis engine are also installed in our application server to
support Web-based services. Java Objects are used in the
application server to provide database functionality to allow
us to store the banking information for each customer. We
developed our own in-house Privacy CA as a standalone Java
application.

When the device is plugged in to the host machine, it al-
locates a link local IP address to it, used for communication
between the local host and the device. When a user types a
URL to access services from the application server, the host
machine becomes aware of the IP address of the application
server. However, the USB device and application server are
unaware of each other’s IP address as the current addresses
are local. We solved this issue by designing a Web page
with embedded JavaScript code that performs as an address
proxy. We next describe the design and implementation of
the Web page in the context of the attestation protocol, and
include some code snippets to illustrate the important points.

Figure 10 illustrates the overall Web page components. A
JavaScript-based proxy is embedded in the main page. The
proxy is basically a listener that watches for any incoming or
outgoing messages. The main page itself contains two iframe
tags. Each iframe uploads HTML files that are located on the
portable device and the Privacy CA. These files are loaded
when the main page is rendered by the client browser. Once
loaded, the JavaScript proxy code associated with the main
page starts executing, allowing communication by both the
device and Privacy CA to the application server.

The mobile and trusted platform operates within this
scenario operates as follows.

1) A customer plugs in the TCP device into the USB
port on an untrusted host PC. When the device is
plugged in, it draws power from the host PC and
boots its operating system. It then loads libraries and
applications as shown in Figure 7.

2) The customer uses a known, secured browser to access
the bank’s application through a URL. The main page
contains two iframes as follows.

<iframe src=<%=pcaURL%>
/privacyCA.htm id="caFrame" />

<iframe src=<%=tedURL%>
/ted.htm id="tedFrame" />

The first iframe is designed for privacy CA and the
second for the TCP device.

3) When the main page is rendered, two HTML pages,
privacyCA.htm and ted.htm, are uploaded connect-
ing the application server to the device and privacy
CA. The user then performs a simple name/password




