
Embedded CPU

External 
Applications

TSS Server
Native 

Applications

Lightweight TSS Library

Embedded 
Operating SystemTPM Driver

I2C Driver

USB 
Extension

TPM 
Extension

USB Driver

Figure 7. The Layered Software Architecture
includes USB, I2C and TPM device drivers. All compilation
and configuration of the kernel is done through the Open-
Embedded (OE) development environment. As mentioned,
the prototype has a specially reduced, customized kernel so
as to improve its power efficiency, responsiveness and boot
up speed.

The USB driver allows the platform to appear to clients
as a IP network device. We have used the popular Linux
USB Ethernet/RNDIS gadget driver in the kernel module.
Adopting this approach meant that the platform can be easily
connect to most operating systems, such as Ubuntu Linux,
Apple Mac OS X and Windows. This module establishes
a Remote Network Device Interface Specification (RNDIS)
link between the platform and the client, upon which TCP/IP
is used. The platform runs a lightweight DHCP server, which
dynamically assigns an IP address to the host. Through this
IP link, the USB based trusted device can communicate with
other machines on the network.

The TPM chip is connected to the embedded CPU via
the I2C bus. The I2C device driver and TPM driver is used
by the TPM library to access the TPM chip. The I2C driver
makes the TPM chip appear as a device file in Linux, and
the TPM driver maintains the I/O state of the device file. The
TPM driver provides operations tpmSend and tpmReceive to
send and receive data from the TPM chip. If the device file is
closed, the TPM driver initializes the device, and then open
the device file, which is then ready to be read and written.
The TPM driver can also output the raw bytes to and from
the TPM chip for facilitating debugging.

The TPM library provides the operations to handle TPM
commands. The main operation takes as the input a com-
mand name and the command parameters, returning the
result received from the underlying TPM chip. The TPM
library also provides an interface file, which explicitly de-
scribes the parameter and output structures for each com-
mand. For example, the inputs for the command TPM.Sign
includes a key handle for the signing key, the usage autho-
rization for the key, the data to be signed and its size, and
the output of this command includes the signed data and its

size.
To process the TPM commands efficiently, we made

the following two design decisions. First, we adopted a
template-based TPM command construction. The TPM li-
brary prepares a command template for each TPM command
in the runtime stack. When issuing a TPM command, it
replaces the template with the corresponding parameters
without allocating new memory in the heap. Second, we
only implemented a subset of TPM commands that are
suitable for a portable trusted platform. For example, our
TPM library does not create migratable keys when using the
command TPM.CreateWrapKey since the device is already
a portable device.

One important and particularly difficult part of handling
TPM commands is to generate correct input and output
authorization. With incorrect authorization, the commands
cannot be executed by the TPM chip nor the output be
correctly accepted. It should be noted that some TPM
commands do not need authorization, while others may need
one or two authorization handles. The TPM library pro-
vides several operations which can automatically generate
or check authorization bytes, hence making it easier to deal
with TPM command authorization. Using these operations
greatly improve the correctness of command authorization
and the development efficiency.

At the top of the supporting software architecture is
the Trusted Software Stack (TSS) library and the TSS
server. The TSS is a specification defined by TCG [45],
describing the TPM commands and other cryptographic
operations for the application developer. We have designed
a lightweight TSS library as the portable device may not
need a library similar to a general-purpose device such as
PC. The main operation in our TSS library is to support
remote attestation. This operations involves the TPM com-
mands TPM.MakeIdentity for creating an attestation identity
key, and TPM.ActivateIdentityKey for activating the identity
certificate receiving from the Privacy CA.

The portable trusted device needs to support two types
of applications: native and external. We refer applications
that run within the operating environment of portable trusted
device and need to be measured for attestation purpose to
as native applications. The applications that run outside the
portable trusted device, but use the TPM in the portable
trusted device are referred to as external applications. For
example, an enterprise Web-based applications may use
portable trusted device for authentication purpose. We have
defined TSS server to support such external applications.

The TSS server is a daemon that allows external Web
applications to access the platform’s TPM functionalities.
The TSS server provides TPM functionality to Web-based
applications by embedding the commands in HTTP, while
device local applications are able to directly access the TSS
library as designed by the current TCG specification.

For example, when an application wants make a TPM


