
Figure 11. A screenshot of our running trusted application demonstratorJava Crytographic Engine (JCE) and Bouncy Castle Crypto
API to implement privacy CA. The privacy CA application is
running on the server. To measure the performance, we first
tested the login without remote attestation, simply using user
name and password. The average time for authentication was
0.015 seconds. We then use login with remote attestation.
For the purpose of remote attestation, we used RSA 2048
bit and AES 256 bit with CBC attributes for public and
symmetric key encryption respectively. SHA-1 with 160-bit
was used as the hash function. We obtained the random
numbers from the RNG function of the TPM chip. We
measured that, on average, using remote attestation took
7.628 seconds, compared to 0.015 seconds using plain
user name and password combination. We believe that this
overhead was due to the following:

• Device initialisation, required data collection and cre-
ation of the AIK cryptographic key: average 2.39
seconds;

• Certificate creation by the Privacy CA: average 1.96
seconds;

• Certificate activation after verifying the environment
the key has created has not changed: average 3.27.

In short, the overhead is the cost of “hardening” the login
process using TPM, where most of the time is spent on
executing TPM functions and attestation.An analysis on
attestation based authentication is also reported in [50]

Further analysis of the attestation protocol revealed that
39% time was spent on making TPM function calls via the
TCG software stack (TSS), whereas 61% time was spent
on non-TPM related function calls such as connection to

remote hosts. We further analysed the time spent on TPM
calls and identified four critical function calls in the mutual
attestation protocol. This is done to ensure that there is no
hidden overhead to any particular function calls to TPM
chip other than the expense incurred to making TPM calls
in general, as well as possibility of optimizing TPM calls.
These are: CollateIdentity, IdentityCredential, Quote, and
VerifyIdentityCredential. Out of time spent on TPM calls,
CollateIdentity took 48% time, IdentityCredential took 19%,
Quote took 19% and VerifyIdentityCredential took 14%. We
conducted further analysis of implementation code with the
aim of minimizing the number of TPM calls and the com-
plexity of code at each stage. This led us to the conclusion
that TPM calls are stable as each TPM call at different
stages took about the same time without having particular
overhead on any specific TPM calls because of different
implementation code. For example, both IdentityCredential
and Quote made about 12 TPM calls, whereas VerifyIdentity
Credential made 9 TPM calls. CollateIdentity made 20 TPM
calls, as well as complex calculation of bytes, to create and
use credentials taking more time than calls used in other
stages. These observations led us to believe that there is no
overhead placed in any particular TPM calls in our imple-
mentation. However, if these calls are repeated for every
message exchanged between USB-device and the enterprise
server, the TPM calls become a bottleneck for efficient
transfer of data between to and from USB device. From
these simulation results, we observed that reducing a large
number protocol messages that subsequently triggers a large
number of TPM calls might result in an efficient attestation




