Additional file 6: Multiple sequence alignment of ten members of YABBY family expressed during the functional transition of the cotyledons

Glyma12g316	70.1	MSMDMMATERVCYVHCNFCNTTLAVSVPCSSLLTIVTVRCGHCANLLTV	49
Glyma13q387		MSMDMMATERVCYVHCNFCNTTLAVSVPCSSLLTIVTVRCGHCANLLTV	49
Glyma12g102:	10.1	MSMEMMATERVCYVHCNFCNTILAVSVPYSSLLTIVTVRCGHCANLLSV	49
Glyma06g465		MYVLLCQCVYISESVLVLAFYFLVYILVSVPYSSLLTIVTVRCGHCANLLSV	
Glyma17g1220		-MSSCSIDVAPEQLCYIPCNFCNIVLAVSVPCSSLFDIVTVRCGHCTNLWSV	
Glyma13g226		-MSSCSIDVAREQLCYIPCNFCNIVLAVSVFCSSLFDIVTVRCGHCTNLWSV	
Glyma03g0350		-MSSCSTBVAFEQCTTFCNFCNTVLAVSVFCSSLFBTVTVRCGhCTNLWSV -MSSSSTSFSPDQQHLSPSDQLCYVHCNFCDTVLAVSVFCSSLFBTVTVRCGHCTNLLSV	
Glyma01g333		-MSSSSTSFSPDQ-HLSPSDQLCYVHCNFCDTVLAVSVPCTSLFKTVTVRCGHCTNLLSV	
Glyma05g042		-MSSSSTTLSLDHLPPSEQLCYVHCNICDTVLAVSVPCTSLFKTVTVRCGHCTNLLPV	
Glyma17g147:	10.1	-MSSSSSTLSLDHLPPSEQLCYVHCNICDTVLAVSVPCTSLFKTVTVRCGHCTNLLPV	57
		**** ** **********	
Glyma12g316		NMGASLQTFPSQDTTQLQRQHLSVQEACS-KELGSSSKCKSF-ETVD	
Glyma13g387		NMGASLQTFPSQDTTQLQRQHLSVQEACS-KELGSSSKCKTF-ETVD	
Glyma12g102:		NMGASLQAFPPQDPQSQKQHLSFQEPSS-KELGSSS-KCSKIAPF-EAVE	96
Glyma06g465	60.1	NMGASLQAFPPQDPQSQKQLLSFEEPSSCKELGSSSSKCNKIAPFHEAVE	
Glyma17g122	00.1	NMAAAFQSLSWQDVQGPGQCNPEYRIDTGSTS-KCNNRIAMRAPTT	96
Glyma13g2262	20.1	NMAAAFQSLSWQDVQGSGHCNPEYRIDTGSTS-KCNNRIAMRAPTT	96
Glyma03g0350	00.1	NMRGLLLPSANQLHLGHTFFTP-QNLMEEIRNAPSTNIMMNQLPNPNDLVMSTMRGGP	
Glyma01g333	70.1	NMRGLLLPSANOLHLGHSFFTP-ONLLEEIRNAPSTNMMMNOLPNPNDLVMSTMRGGP	
Glyma05g042		NMRGLLMPSPTQFHLGHSFFSPSHNLLEEIPN-PSPNFLMNQTNLSASNEFSMP-ARIAA	
Glyma17g147:		NMRGLLMPSPTQFHLGHSFFSPSHNLLEEIPN-PTPNFLMNQTNFSASHEFSMP-ARTAA	
orymar/gri/.		** . : * : :	110
Glyma12g316	70 1	HEQOPRIPPIRPPEKRORVPSAYNRFIKEEIQRIKASNPDISHREAFSTAAKNWAHFPHI	154
Glyma13g387		HDOOPRIPPIRPPEKRORVPSAYNRFIKEEIQRIKASNPDISHREAFSTAAKNWAHFPHI	
Glyma12g102		HEL-PRIPPIRPTEKRHRVPSAYNRFIKEEIQRIKASNPDISHREAFSSAAKNWAHFPHI	
Glyma06g465		HEQ-PRIPPIRPTEKRHRVPSAYNRFIKEEIQRIKASNPDISHREAFSSAAKNWAHFPHI	
Glyma17g1220		HVTEERVVN-RPPEKRCRVPSAYNQFIKEEIQRIKANNPDISHREAFSTAAKNWAHFPHI	155
Glyma13g2262		HVTEERVVN-RPPEKRCRVPSAYNQFIKEEIQRIKANNPDISHREAFSTAAKNWAHFPHI	155
Glyma03g0350		EETPKPPSANRPPEKRQRVPSAYNRFIKDEIQRIKAGNPDISHREAFSAAAKNWAHFPHI	
Glyma01g333		EETPKPPSANRPPEKRQRVPSAYNRFIKDEIQRIKAGNPDISHREAFSAAAKNWAHFPHI	
Glyma05g042		DELPR-PIMNRPPEKRQRVPSAYNRFIKDEIQRIKSVNPDITHREAFSAAAKNWAHFPHI	
Glyma17g147	10.1	DELPRPPITNRPPEKRQRVPSAYNRFIKDEIQRIKSVNPDITHREAFSAAAKNWAHFPHI	175
		** *** ********************************	
Glyma12g3167	70.1	HFGLKLDGNKQAKLD-QGDGTQKSNGFY 181	
Glyma13g3875		HFGLKLDGNKQAKLD-QGDGTQKSNGFY 181	
Glyma12g1021		HFGLKNLKLDGNKQEKLD-QGEGAEKSNGFY 185	
Glyma06g465(HFGLKNLKLDGNKQEKLD-QGEGAEKSNGFY 191	
Glyma17g1220		HFGLMLESNNQAKMDNVSEKHLMPRAALLNK 186	
Glyma13g2262		HFGLMLESNNQVKMENVSEKHLMSRAALLNK 186	
Glyma03g0350		HFGLMPDNQPVKKANVR-QEAEDVLMKDGFFAPANVGVSPY 216	
Glyma01g3337		HFGLMPDNQPVKKANVR-QEAEDVLMKDGFFAPANVGVSPY 215	
Glyma05g042(HFGLMPD-QTVKKTNVCQQEGEEVLMKDGFYASANVGVSPY 214	
Glyma17g1471	10.1	HFGLMPD-QTVKKTNVCQQDGEEVLMKDGFYASANVGVSPY 215	
		**** :: .: .	

Our RNA-Seq data revealed that ten specific members of YABBY transcription factor family expressed during functional transition (stage-4 and stage-5) of soybean seedling development. Two of them showed high sequence homology and they are closely related. These two members of YABBY family possess the short peptide sequence (black rectangle) used for developing the antibody. Thus, our antibody is specific for those two members of YABBY family which showed a clear expression pattern during the functional transition of the cotyledons.