Supplementary Material for Sandve, Abul &
Drablgs: Compo: composite motif discovery
using discrete models

Enforcing distance constraints in support set computation

A central part of Compo is determination of the support set of a composite
motif. In the basic set model without distance constraints, the support set of
a composite motif is calculated simply as the intersection of the support sets of
all component motifs. When using distance constraints, this becomes somewhat
more complicated. As each single motif may have many hits, we can not simply
compare a set of unique positions for each component motif. Instead, distance
constraints can be checked either by sliding a window across a sequence of start-
and end-positions or by enumerating motif hits for each component motif.

In a sliding window approach, the start and end positions of each hit for
each component motif are sorted in increasing order. This sorted list can then
be traversed from start to end by iteratively adding positions from the list to
the front of a queue, and removing positions from the back of the queue when
they have been passed by the sliding window (when a newly added position
is further beyond a given position than the distance constraint). Each time a
new position is added to the queue, a set of motifs having both start- and end-
positions contained in the queue is updated. If the cardinality of this set is high
enough (the number of component motifs, possibly minus the allowed number
of motif misses), the composite motif has a hit in this sequence conforming to
the distance constraints. This can be efficiently computed, with computation
dominated by initial sorting of positions, or by the computation of the set of
motifs contained in the queue at each time. As the sliding window may contain
several hits for the same motif, computation of the set of contained motifs, and
optionally checking for motif overlaps is however not straightforward.

In enumerating motif hits, the span between first and last position is cal-
culated for each combination of hit positions for the component motifs. The
minimum span is found and compared against the distance constraint. If single
motif misses are allowed, the different ways of choosing a hit position for M out
of the N component motifs are enumerated, with the span checked as before.
If motif overlaps should not be allowed, this can be checked simply by testing
testing each pair of motif hits. The enumeration of motif hits is exponential to
the number of component motifs that have more than one hit. In practical cases,
however, the number of component motifs is not very high. This approach can

handle motif misses and avoid overlaps, and can also be given a quite straight-
forward recursive implementation. We have therefore chosen to implement the
enumeration approach.

Calculating hit-probability when allowing non-perfect matches
The hit-probability of a composite motif is calculated incrementally from the hit-
probabilities of a base composite motif X and an added single motif y. Using
the same vocabulary as in the main manuscript, the formula for incremental
hit-probability can be derived as follows:

P(Xy') = > P(Xy'y) (1)
y=0,1

P(Xy',y=1)+ P(Xy',y=0) (2)

= P(Xy'ly=1)x P(y)+ P(Xy'ly=0) x (1 - P(y)) (3)

= P(Xy'ly=1) x P(y) + P(X°) x (1 - P(y)) (4)

= P(X')x P(y)+ P(X°) x (1= P(y)) (5)

= P(y) x (P(X") - P(X°)) — P(X°) (6)

In the formula, P(y) and P(y = 1) are the same notations and therefore P(y =
0) =1 — P(y) can be substituted. For simplicity of presentation the derivation
is shown for the case of allowing 1 mismatch, but the derivation carries over
directly to the general case of allowing up to m mismatches. Note that hits
for the new motif y are assumed independent from hits for the motifs X in
background, and note that Hg(_l is a strict subset of H%.

Calculating hit-probability under distance constraints
Hit-probability for the basic case is defined as the approximate probability that
a motif has an instance in a random sequence, and is computed incrementally
for composite motifs with a simple and efficient formula. The computation gets
somewhat more complicated when the hits of all component motifs are required
to be within a sequence window of a given length. Computing the approximate
probability that a single motif hits in a single sequence window is done similarly
to before: Sw, =1— (1 — ppos)l, where 1 is now length of the sequence window
For composite motifs, this is as before computed incrementally:

Swyx., = Swx *Sw,, where Swx and Sw, now refer to probabilities for a single
sequence window of base composite motif and new single motif respectively.

As the distance constraint refers to a sliding window, the composite motif
can occur in one or more of several overlapping windows. We define the set
of overlapping windows of length L in a sequence of length I as {w;, for0 <=
i <l — L}. We also define the probability that a composite motif occurs in

a specific window, given that it does not occur in the preceding window (shift
probability): Ss = P(w;| Av;—1). For single motifs (with autocorrelation still
ignored), this is simply the probability of the single motif having a hit at a
specific position (ppes). For composite motifs this is computed incrementally by
the following formula:

Ssx.. = (Ssx& Swx&Sw,)|(Swx&Ss.& Lfw,)=1—(1—-S8sx (1 — Swx) -
Sw,) - (1 = Swx x Ss, - (1 — Sw,))

The (approximate) probability that a composite motif occurs in at least one
of the overlapping windows, is then the probabilty of either occuring in the first
window, or occuring in any other window, given that it did not occur in the
preceding (overlapping) window:

S = Swy||Ssi||...||Ss; =1~ (1 — Sw) * (1 — Ss)—1L)

Although the computation that consider distance constraints certainly alters
the absolute values of significance, the ordering of motifs based on score will be
roughly the same as if the hit-probability formula for the basic case was used.
That is, for a specific distance constraint value, if a motif A scores higher than
motif B using the significance computation described in this section, it will usu-
ally also score higher with the simple formula given for the basic case (although
exceptions to this can be easily constructed). As motif scoring is only a rough
approximation to the biological case, we do not see these small inaccuracies as
problematic. This means that we can use the simple and computationally effi-
cient formula to rank motifs even when we apply a single distance constraint. If
we want to compare composite motifs across different distance constraints, we
make use of the significance evaluation described here. For each value of dis-
tance constraint we can then use the simple formula to evaluate and rank motifs
during search. Afterwards, the best scoring candidate motifs for each distance
constraint value are compared using the significance formulas described in this
section. Finally, the best scoring composite motif across distance constraint
values is returned.

It is quite straightforward to combine constraints on distance described here
with allowing motif misses as described in a previous section. The changes to the
basic formulas that were needed for each extension are basically combined. This
has been done in our implementation which supports the discovery of composite
motifs with distance constraints while also allowing motif misses. The details
of this can be inspected in the freely available Python source code.

Branch-and-bound approach

A branch-and-bound approach is used to prune the search tree of composite
motifs. This requires efficient computation of a reasonably tight bound for the
score in a subtree.

As we do not consider any ordering between components, we choose to only
traverse composite motifs with increasing motif index on added single motifs.
This avoids exploring several permutations of single motifs that corresponds to
the same unordered combination. By initially sorting the list of single motifs

according to increasing hit-probability, we know that a newly added single motifs
will always have equal or higher hit-probability compared to the last added
single motif. This allows computing a bound on hit-probability for the subtree
efficiently. As the support of a composite motif can never increase when adding
new components (for the same number of allowed misses), the current support
of a composite motif is also a bound on the support on any composite motif in
the subtree.

We compute bounds in a general way by iteratively adding optimistic vir-
tual single motifs up to the maximum allowed number of components. If this
maximum number is reached without any of the virtual composite motifs ex-
ceeding the bound, the original composite motif is pruned. An optimistic motif
is simply a virtual motif with significance equal to the computed upper bound,
and hits in all sequences. For the basic case this simply amounts to a bound on
support equal to the current support, and a bound on hit-probability that is the
hit-probability of the last added single motif raised to the number of additional
components allowed, multiplied by the current composite motif hit-probability.

Computational efficiency and numerical concerns

As the number of single motifs might typically be much higher than the number
of sequences (especially if discrete maximal motifs are used, as output by e.g.
Teiresias.), we have implemented item set mining algorithms that suites this.
We enumerate combinations of motifs and incrementally update the support set
of Composite motifs. For very large number of motifs, we have made an im-
plementation in C++ using efficient bitstring-operations directly on bitstrings
representing the support set [1]. As both support set and hit-probability might
be time-consuming to compute from ground up for each composite motif con-
sidered, we also use simple operations that incrementally compute these values
from parents as the search tree is traversed in a depth-first manner.

For very long and specific motifs, the hit-probability P, will typically be very
low. If motif significance is used as combined measure for interestingness, the
values may become very small and introduce numerical problems in calculations.
Log-values may therefore be used to represent hit-probability and motif signif-
icance. In the basic incremental calculations of hit-probability, multiplications
are replaced by additions, also making the calculations more computationally
efficient. When allowing non-perfect composite motif matches there are some
additions in the original incremental formulas, making the calculations based on
log-values slightly more complex and time consuming. As default we have only
used log-values intermediately in motif significance calculations in order to make
the source code more readable. In the C++ implementation that make use of
bitstring calculations for support-set, we have also used log-values throughout
to further increase the computational efficiency.

Expected binding site motifs
In the TransCompel data set the following pairs of transcription factor binding
site motifs are represented (as individual composite motif data sets): API-
Ets, AP1-NFkappaB, Ebox-Ets, IRF-NFkappaB, PUI-IRF, AP1-NFAT, CEBP-
NFkappaB, Ets-AML, NFkappaB-HMGIY, Spl-Ets

The muscle data set contain the following motifs: Mef2, Myf, Sp1l, SRF and
TEF

The liver data set contain the following motifs: HNF-1, HNF-3, HNF-4 and
CEBP

Detailed locations of annotated binding sites are available for download at:
http://tare.medisin.ntnu.no/composite/composite.php

Experimental details

For the main TransCompel-based benchmark, Compo was run in default mode
with automatic selection of parameter values from a list of discrete possibilities.
To avoid very long running times when large lists of single motifs were supplied,
the search space of Compo was limited to ten million candidate composite mo-
tifs. Compo then for each data set automatically set the maximum number of
composite motif components that would not lead to exceeding the search space
limit based on the number of supplied input motifs. The distance window re-
striction were allowed to range from 50 to 200 base pairs long in three discrete
steps, and the hit factor used in determining single motif hits were allowed to
range from 1 to 2 in three steps. A randomly selected set of upstream regions
from the human genome were used as background. Motifs across all parameter
settings were ranked according to their computed p-value, and the composite
motif with lowest p-value returned.

As the muscle and liver data sets have more heterogeneous TF regulation,
we there had each sequence considered in isolation as the main run. We also
provided results when considering support across sequences, and then for one
variant where all component motifs were required to hit and one variant where
we allowed hits for up to two components to be missing from a composite motif
occurrence. In all muscle and liver runs we allowed a composite motif to contain
up to 8 components, we allowed a composite motif to contain several instances
of the same single motif, and allowed Compo to make several predictions per
sequence as long as each predicted composite motif had a significance value
(p-value) below 0.05.

For the Drosophila benchmark, Compo was run with TP-factor ranging from
1 to 4 in three steps, with a maximum of 6 components of composite motifs,
with up to 2 components missing in each composite motif instance, and with
a distance window ranging from 400 to 1000. Composite motifs predicted by
Compo will not always have instances in all input sequences. The evaluation
scripts accompanying the benchmark required predictions to be made for every
sequence in order to work correctly, and we did not want to change these external
scripts. To solve this problem, we therefore had Compo fill in a fixed predicted

location at position 1000 in the sequences where its predicted composite motifs
did not have any instances.

Detailed predictions

The following tables shows the predicted motifs in the TransCompel, muscle
and liver benchmark suites. In the TransCompel suite, each sequence in a data
set have binding sites for the same two motifs, and predictions are therefore
given for each data set. Also, results are given at different levels of added noise
motifs. For the muscle and liver data sets, the individual sequences has binding
sites for different sets of motifs, and predictions are therefore given for each
sequence of these data sets. For all sequences of the liver data set the motifs
CEBP,HNF-1,HNF-3 and HNF-4 are given as input. For all sequences of the
muscle data set Mef2, Myf, Sp1l, SRF and TEF are given as input.

TransCompel benchmark suite, noise level 0%

Dataset Motif IDs
AP1-Ets AP1
AP1-NFAT AP1,NFAT
AP1-NFkappaB NFkappaB
CEBP-NFkappaB NFkappaB,CEBP
Ebox-Ets Ets,Ebox
Ets-AML Ets,AML
IRF-NFkappaB NFkappaB,IRF
NFkappaB-HMGIY NFkappaB
PU1-IRF IRF

Spl-Ets Spl

TransCompel benchmark suite, noise level 50%

Dataset Motif IDs
AP1-Ets AP1
AP1-NFAT AP1,NFAT
AP1-NFkappaB NFkappaB
CEBP-NFkappaB NFkappaB,CEBP
Ebox-Ets Ets,Ebox
Ets-AML Ets,AML
IRF-NFkappaB NFkappaB,IRF
NFkappaB-HMGIY NFkappaB
PU1-IRF IRF

Spl-Ets Spl

TransCompel benchmark suite, noise level 90%

Dataset Motif IDs
AP1-Ets AP1
AP1-NFAT MO00194,NFAT

AP1-NFkappaB
CEBP-NFkappaB
Ebox-Ets

Ets-AML
IRF-NFkappaB
NFkappaB-HMGIY
PUI-IRF

Spl-Ets

NFkappaB,M00633
NFkappaB,CEBP
MO00799,M00967
Ets,AML
NFkappaB,IRF
NFkappaB

IRF

MO00660,Ets

TransCompel benchmark suite, noise level 95%

Dataset Motif IDs
AP1-Ets AP1

AP1-NFAT MO00933,NFAT
AP1-NFkappaB NFkappaB
CEBP-NFkappaB NFkappaB,CEBP
Ebox-Ets Ebox,M00644
Ets-AML Ets,M00929

IRF-NFkappaB
NFkappaB-HMGIY
PU1-IRF

Spl-Ets

NFkappaB,IRF
NFkappaB,M00396
MO00648,IRF
Ets,M00945

TransCompel benchmark suite, noise level 99%

Dataset Motif IDs
AP1-Ets MO00117,AP1
AP1-NFAT M00144,M00208

AP1-NFkappaB
CEBP-NFkappaB
Ebox-Ets

Ets-AML
IRF-NFkappaB
NFkappaB-HMGIY
PU1-IRF

Spl-Ets

MO00821,NFkappaB
NFkappaB,CEBP
M00344,M00967
M01080,M01030
NFkappaB,IRF
MO00252,NFkappaB
MO00687,IRF
MO00803,M00428

Muscle benchmark suite

Sequence Motif IDs

J04699 spl,mef2, tef myf
J04971 spl,srf tef, mef2 myf
K01464 srf,myf

L21905 spl,srf,tef,mef2, myf
M13483 spl,srf tef

M13631 spl,srf

M20543 spl,srf

M21390 spl,srf,mef2, myf
M22381 spl,srf,myf
M57905 spl,srf tef, myf
M62404 spl,srfmef2, tef myf
M63391 spl,srf tef, myf
M95800 spl,srfmef2,tef myf
U02285 spl,srf

U18131 spl

V01218 srf,myf

X05632 spl,srf,mef2, tef myf
X12971 spl,srf tef, myf
X14726 srf,tef, mef2, myf
X62155 spl,srf,mef2 myf
X67686 spl,srf

XT73887 spl,srf,mef2, tef myf

Liver benchmark suite

Sequence Motif IDs
AF033857 HNF-4,HNF-3,CEBP,HNF-1
AF051355 HNF-4,HNF-3,CEBP,HNF-1
AF236668 HNF-3,CEBP,HNF-1
L09674 HNF-4,CEBP,HNF-1
L13460 HNF-4,HNF-3,HNF-1
M15657 HNF-4,HNF-3,HNF-1
M19524 HNF-4,HNF-3 HNF-1
M29301 HNF-4,HNF-3,CEBP,HNF-1
M60197 HNF-3,CEBP,HNF-1
S85346 HNF-3,CEBP,HNF-1
U47685 HNF-3,HNF-1
X16152 CEBP

References

1. Sandve GK, Drablgs F: Generalized Composite Motif Discovery. In
7th Int. Conf. on Knowledge-Based Intelligent Information and Engineering
Systems, KES, Volume 3683 of LNCS/LNAI, Springer-Verlag 2005:763-769.

