
Supplement: Gene Set Enrichment Analysis for
non-monotone association and multiple experimental

categories

1 Method

1.1 Exploration on distribution of R2 under permutation

We explore the distribution of R2 under permutation to find a potentially less computationally
intensive approach to generate the null distribution of R2.

When outcome variable vector Y with length n comes from a spherical distribution with Pr(Y =

0) = 0, the asymptotic distribution of R2 is a beta distribution with parameters m
2 and n−m−1

2 ,
where m is the rank of the predictor matrix (Muirhead, 1982, Theorem 5.2.2). In reality, outcome
variable Y can be very skewed due to the heterogeneous experimental conditions, and the spherical
distribution assumption of (Muirhead, 1982, Theorem 5.2.2) would be severely violated.

For illustration, NCT compendium data are used. we compare permutation based null distribution
of R2 with Beta(5/2, (n − 5 − 1)/2) , where 5 is the degrees of freedom for the splines. Figure 1
shows the deviation of the observed permutation based null distribution of R2 from the Beta
distribution. Each point in the figure represents one gene. When Y comes from a spherical
distribution, R2 follows Beta distribution and all clouds should stay around (1, 1). Outcome
variable Y is fixed in each panel of Figure 1 and the variation between genes indicates that when
Y does not follow spherical distribution, the distribution shapes of gene expression levels also
play a role in deciding the distribution of gene specific R2, considering R2 itself is a scale free
measurement. Visually we can classify the shapes of clouds in Figure 1(a) and 1(b) into four
categories indicated by four colors in figures. Figure 2 shows that density curves of ALT levels
standardized to mean 0 and variance 1. The panels can again be visually classified into four
categories, which are consistent with the classification in Figure 1(a) and 1(b). This indicates
that the distribution of ALT also has an impact on the distribution of permutation based R2.
Generally, the mean of permutation based R2 is close to that of the respective Beta distribution
with ratio between 0.9 to 1.1 while the range of variance ratio is relatively large from 0.3 to 3.
We thus conclude that the null distribution of R2 depends on both gene expression levels and
ALT levels and for our analysis, the Beta approximation is not adequate.

GSEA and SAFE procedure permutes arrays to generate null distributions of R2 while keeping the
correlations between genes. For each permutation, a vector of gene specific R2 is sampled from
the joint distribution of R2s. Had non-resampling approach to gene specific R2 been feasible, we
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(a) Liver (b) Blood

Figure 1: Distribution of permutation-based R2 vs Beta. Each point is for one gene. X-axis is
the ratio of observed mean of permutation based R2 to the mean of Beta. Y-axis is the ratio of
the observed variance of permutation based R2 to the variance of Beta.

need to further investigate how correlations between genes will impact the joint distributions of
R2, which will be used to calculate the global statistics.

2 Gene set preparation

We evaluated the association between ALT and the pre-established gene sets provided on GSEA’s
web site (http://www.broad.mit.edu/gsea/). Those gene sets were originally compiled from
various sources including cytogenetic information, microarray studies, Gene Ontology, BioCarta
and GenMAPP, etc., with presumable emphasis on cancer. Since the GSEA gene sets are for
human genes, we first mapped the rat genes on the Agilent rat chip to the human genes in the
GSEA sets. Here we focus on the functional category C2 which has 1137 functional sets. Among
these 1137 sets, more than half are computationally predicted functional sets with hundreds of
genes assumed based on previous microarray experiments. These computationally predicted sets
are usually large and hard to interpret. Thus our subsequent analyses considered only sets from:
BioCarta, GenMAPP, GO, SigmaAldrich, Signalling Alliance and Signalling Transduction KE,
all of which are considered biological pathways/processes. A total of 466 gene sets (pathways)
remain.

2.1 Data sets

(1) NCBI LocusLink database (LL tmpl) ftp://ftp.ncbi.nih.gov/refseq/LocusLink/ARCHIVE/
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Figure 2: Density of standardized log10(ALT ratio) with mean 0 and variance 1. Red dashed line is
the density function of Normal(0,1). All panels are in the same scale for comparison convenience.
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This database contains 28,179 and 18,254 LocusIDs for human and rat, respectively. It serves as
a reference database in the mapping process as it contains information about reference genes in-
cluding refGene accession number(s), GeneBank accession number(s), protein accession number,
official gene symbol and alias symbols.

(2) NCBI homologene database (build 46.1) ftp://ftp.ncbi.nih.gov/pub/HomoloGene

This database contains homologous genes in several species identified by protein accession num-
bers.

(3) UCSC hgTable (build 17) http://genome.ucsc.edu/cgi-bin/hgTables

This data set contains pair-wise reciprocal blastp results between human and rat protein se-
quences. We only considered pairs that have e-value as putative orthologous.

(4) Orthologous pairs from TIGR http://www.tigr.org/tigr-scripts/magic/r1.pl

TIGR has mapped probes among several commercial chips through reciprocal blastp search. The
orthologous pairs we used are the Agilent rat/Affymetrix human and Agilent rat/Agilent human.

2.2 Construct human/rat orthologous pairs

We used the LocusLink database as a connection among other data sources using different
identifiers so that they can be cross-referenced. On the other hand, the homologene database
will be considered de facto gold standard and a starting point for identifying true ortholog pairs
and resolving conflicts/inconsistency among other ortholog pair data sources.

We started with the NCBI homologene database and extracted all 14,337 human-rat orthologous
pairs identified by protein accessions. Using the accessions, we extracted all corresponding refSeq
and GenBank accessions and official/preferred and alias gene symbols.

Next we sequentially examined the putative orthologous pairs from the other two data sources
(UCSC and TIGR). Orthologous pairs in these two sources but not identified in the NCBI ho-
mologene database were added to our human/rat homologous table. This added another 5,285
human/rat ortholog pairs (identified by accessions, not necessarily unique). The final number
of human/rat ortholog pairs is 19,622 which will be used for the next stage (available upon re-
quest). Each pair contains all known GenBank and refGene accessions and official/preferred/alias
symbols for the gene.

2.3 Map rat genes to human gene sets

The human gene sets were downloaded from the MIT Broad Institute’s web site:
http://www.broad.mit.edu/cancer/software/gsea beta.
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Table 1: The identified 5 sets “significant” in both liver and blood (ABL(0.1)).
Set Name Set Size

1 PYRUVATE METABOLISM 42
2 GLYCOLYSIS AND GLUCONEOGENESIS 42
3 PROPANOATE METABOLISM 36
4 EIF2PATHWAY 7
5 TRANSLATION FACTORS 36

Here were the steps used in the mapping process:

Step 1: Take one human official gene symbol from the GSEA gene set and find the entry or
entries in the homologous pair table that contains the human official gene symbol. Typically one
entry is matched.

Step 2: For each matched entry, check to see if the corresponding rat identifiers (accessions and
official/preferred symbols) match the symbols/ accessions on the Agilent rat chip. Accession(s)
are first checked and if there is a match, the gene on the Agilent rat chip was then mapped to
the human gene in the set. If not, the symbol(s) are then manually checked to make sure no
ambiguity.

3 Identified sets and biological interpretation

Table 1 lists all 5 sets in ALB(0.1), which is also a subset of AL(0.1) and AB(0.1). Gene sets 1,2
and 3 are comprised primarily of enzymes that catalyze many of the basic steps in glycolysis and
gluconeogenesis. In general these gene sets show an overall down regulation of gluconeogenesis
and up regulation of glycolysis in the liver, especially for compounds such as bromobenzene,
monocrotaline, and thioacetamide that produce a high level of injury by 24 to 48 hours. Sets 4
and 5 are comprised of genes involved with the initiation of protein synthesis and show a strong
up-regulation at the 24 and 48 hour time points for most of the compounds. Overall, this pattern
suggests that by 24 hours after initial compound insult the liver is up-regulating energy producing
pathways such as glycolysis, to support subsequent repair processes that begin between 24 and
48 hours after exposure.

The sets in AL(0.05) are biological process/pathways in cellular metabolism (beta-alanine metabolism,
fatty acid metabolism, glutathione metabolism, glycine/serine/threonine metabolism, hexose
metabolism, purine/pyrimidine metabolism, propanoate metabolism, pyruvate metabolism and
tryptophan metabolism), cell cycle regulation, DNA replication and repair, protein synthesis,
fatty acid synthesis, and stress response. The transcriptional activity in those pathways points to
a general stress response, in particular oxidative stress as indicated by an activation of glutathione
synthesis. While the cells try to conserve energy by down-regulation of energy demanding pro-
cesses they are also preparing for repair processes by boosting amino acid metabolism and DNA
replication. This overall picture is very similar to the more specific response indicated by the top
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five sets discussed above.

All eight hepatotoxic compounds caused liver injury. However, the mechanisms of acute hepato-
toxicity might be different, as different compounds may target different populations of cells in the
liver. To see how the compounds might relate to each other, we carried out the following analysis.
Let Zl

c,s = Φ−1(Pl
c,s), where l = L, B and Φ(·) is the cumulative distribution function of a normal

distribution with mean 0 and variance 1. For computations, we used
1000Pl

c,s+1
1002 instead of Pl

c,s such
that transformation Φ−1(·) can be applied to the sets with Pl

c,s equal to 0 or 1. We computed the
pair-wise Pearson correlation coefficient of the z-scores of the 466 gene sets between compounds
for both liver and blood. In general, the compounds in liver (Figure 3) show more similarity
and pattern than in blood. In Figure 3, as expected, 1,2- and 1,4-dichlorobenzene are relatively
highly correlated as these two compounds are positional isomers. Since 1,4-dichlorobenzene is
the least toxic compound, it is not surprising that its correlations with the other six compounds
are low. Diquat shows the least correlation with any other compound. The pathology results
indicate that diquat primarily affects endothelial cells Atkinson et al. (2001) with hepatocyte
damage secondary to the anoxia. Although monocrotaline also targets endothelial cells, they act
by different mechanisms with diquat causing lipid peroxidation of cell membranes Atkinson et al.
(2001). The precise mechanism of monocrotaline toxicity is unknown but may in part be due to
oxidation Baybutt and Molteni (1999). No strong correlation between monocrotaline and diquat
was found in a similar microarray study Waring et al. (2001).
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Figure 3: Pairwise scatter plot of Z-values of 466 sets in 8 compounds with simplified compound
names listed in diagonal panels. In upper panels, the correlation coefficients between Z-values
are shown. In each panel, a rectangle is drawn in height proportional to the absolute value of
the correlation coefficient. Rectangles of relatively lower correlation coefficients comparing to the
others are shadowed in slanting lines.
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