Additional file 1
for manuscript
Readjoiner: a fast and memory
efficient string graph-based
seguence assembler

Giorgio Gonnella Sefan Kurtz
Center for Bioinformatics
University of Hamburg

March 1, 2012

This document describes implementation techniques fontethods and algorithms de-
scribed in the main document. Moreover, it gives a lemma atiea@arem (including proofs)
characterizing transitive SPMs, and an algorithm to enaitedrreducible and non-redundant
suffix-prefix matches. Furthermore, a method to recogniegnially contained reads is given,
as well as results for a benchmark set with reads of varialgth. Finally, an example of
SPM-relevant suffixes and their corresponding lcp-intes/aresented.

1 Implementation of counts

In this section we describe how to efficiently implement tberders. Recall that we have
d counters, one for each initiakmer. The sum of all counts is exactly the numbeof all
SPM-relevant suffixes. This implies that the expected vafue counter is?. As g < n and

d > m, we haveg < Z < . As the average read length is assumed to be a constant,
the expected value of a counter is a constant as well and smplement the count table

by a byte array of sized. The counts stored in this array are in the range fiiota 255, as
each count refers to an integer code that occurs at least @m8 is a special value. If the
ith integer code occurs more than5 times, we set théth entry of the byte array to 0, to
signify an overflow and store the correct count with key a hash table. Because we use

sorted buffers in the counting phase, the array-indicesetounters to be incremented come

in sorted order. So in each rougdconsecutive increments by 1 (and this many accesses to
the byte array and possibly to the hash table) can be combitedne increment by. Thus,

for each round, each counter is incremented at most once. siifaitegy reduces the number
of accesses to the hash table. For the datasets of the resalisn only about 0.2% of all
counters have to be stored in the hash table and less than alrafrements affect the hash
table. Thus the effect of the hash table on the space andiihengitime is negligible.

2 Implementation of partial sums

The partial sums in table are bounded by, the number of SPM-relevant suffixes. For large
read setsy can be larger tha?®? — 1. However, as the partial sum are strictly increasing, one
can implement by a32 bit integer tablePS of sized + 1, such thaPS[i] = 7[i] mod 232 for
anyi, 0 < i < d and an additional integer table of sizg{0.l0s291-32} " | et B8 = [log, ¢]
andd be some small constant such that each count value in alidesmaller thar2’. Each
valuer[i] is in the range fronf) to g and it can be written as

B—5
7[i] = 7[i] mod 2° + Z b;2°~3 1)

j=1

whereb; € {0,1} forall j,1 < j < 8—4. Soin particular, ifr[i] < 2° thenr[i] = «[i] mod 2°
and so the bit$,,...,bs_s are all 0. As the sequence of partial sums is strictly inanggs
we store for each possible combination of Bits. . ., bs_s the largest, 0 < i < d satisfying
(1). This valuei is stored at inde¥, . .. bs_s of a tablef of size2°~?, where the bit sequence
by ...bs_s is interpreted as a decimal number. In other words, we sharéetast significant
bits of 7[:] in PS[i] and the most significarit — ¢ bits are interpreted as an index into talfle

As the partial sums are computed sequentially in one pasdloweount table”, it is easy
to fill table f. When retrievingr[i] one first determines the smallessuch that < f|q| for
someg, 0 < ¢ < 2°7% — 1 and return®S[i] + ¢ - 2°. As 3 — § is a very small constang,and
this7[:] can be determined in constant timdecan be chose such that that the sum of the sizes
of tablePS and f is minimized. However, in our implementation we have chasen32.

3 Implementation of the partitioning strategy

In our implementation of the partitioning strategy we exjtloe fact that the size and content
of the tables< and P do not change during the insertion phase, so that they caren@ntly
be stored on temporary files after the partial sums have lmaputed and before the insertion
phase begins. As we do not want to afford the space for theedablePS, we directly output
the sequence of partial sums to a temporary file when theyemergted. We only store a
small sample of the partial sums in memory, allowing to datee the boundaries at which the
different parts of the tables are partitioned. Using a ssathple ofr instead ofr completely
leads to a more granular partitioning and thus to a largaanee of the size of the different
parts. However, our experiments show that the variancdligesty small.

When processing thgparts, one after the other, the range of values of tAbsnd P (only
read access) anelS (read and write access) in the predefined boundaries areeddppnm
the temporary files into main memory in units of the machimpelge size. The access to the
temporary files is strictly sequential and only the valuepages at the boundaries of the parts
may be mapped more than once. As a consequence, our panttismategy only creates a
minimal overhead in the 10 subsystem of the computer.

4 Computation of leaf edges in Algorithm 1

The additional computations in lines 6—-12 and line 32 of Alligpon 1 (see main document)
deliver the leaf edges. These were omitted in the origirgdréhm of [1, Algorithm 4.4].
To understand how the computation works, first note thateetid of each iteration of the
for-loop, stack.top.lcp equalsL.; andlastitv is undefined. The singleton-interval repre-
sentingH. has a parent with Icp-value= max{L., L.,1}. So at the start of theth iteration
we havestack.top.lcp = L.. Hence, ifL., < stack.top.lcp, then the parent d] has Icp-
valuel = stack.top.lcp. Sincestack.top.lb < e andstack.top.rb will get a value> e in later
iterations,stack.top represents the parentfef. This case is implemented in lines 6-12.

Now suppose that.,; > stack.top.lcp. Then the while-loop is not executed ahdtitv
remains undefined. So the next statement executed is in1ink.3; > stack.top.lcp implies
Ley1 > L. and so the parent ¢¢] has the Icp-valud... ;. This paren{L..1,e, L) is pushed
on the stack in line 31 and the implicit outgoing leaf edgerecpssed in line 32.

What remains is an explanation on how to determine if an eslgiee first outgoing from
an Icp-interval. As the edges processed in line 28 or liner82ram Icp-intervals which have
just been generated (in the line before), these edges areushy the first edges from the
Icp-interval (with undefined right bound). Now look at therdical code fragment in lines 7—
11 and 18-22. If the current Icp-interval is not the rooemal (of Icp-value 0), then there
was a previous edge outgoing from this Icp-interval (preedseither in line 28 or 32) and so
firstedge is false. Otherwise, if the current Icp-interval is the root-intakvthenfirstedge is
true if and only if firstedgefromroot is true. The latter boolean variabletisie if and only if
there was some previously processed edge from the roatshtgirstedgefromroot is set to
false whenever an edge from the root-interval is processed.

5 Computation of integer codes for reverse
complemented reads

The three steps which involve scanning the reads are exdéondaocess both strands of all
reads. This does not require to double the size of the readgeptation, as all information
for the reverse complemented reads can efficiently be égttdrom the forward reads. Here
we show how to compute the integer codes for the reversed feaith the integer codes of
the forward reads in constant time. More precisely, the agaton ofc,., := px(s[k]|s[k —
1]...s[1]) from ¢ := ¢ (s[1...k]) can be done witl3k — 1 bit operations ift is even and
3k — 2 bit operations ift is odd. These bit operations reverse the order pairs of bits. For

computing the complement ofiamer, first note that the following equations hold (wheoe
denotes bitwise exclusive or):

p(A)=0x0r3=3=¢(T)
o(C)=1x0r3=2=yp(G)
o(G)=2x0r3=1=¢(C)

e(T)=3x0r3=0=¢(A)

That is,(xor 3) applied to the code of a base delivers the code of the complenfi¢he base.
Of course, this works for a bit string with an even number @$,bs0 that for &-mer v of
2k bits, ¢ (u) xor 3 delivers the integer code of the complement.of Thus applying this
operation toc,., gives the integer code of the reverse complemerd[bf. . k] in constant
time. The window-based approach described in the implestientsection can be extended
to simultaneously compute the integer code for the revevsgtement of theé:--mer in the
window.

6 Characterization of transitive suffix-prefix matches

The following lemma characterizes &M by a read and a singl&PM satisfying a length
constraint and a match constraint.

Lemmal Let(r, ¢, ¢") be anSPM. Then(r, t, (") is transitive, if and only if there is ane R
and anSPM (s, t, ¢') such that’ > r|—¢" > |s| = ¢ ands[l...|s| =] =r[r| - 0" —
(Is| =€)+ 1...]r| =2"].

Pr oof:

“=". Suppose thatr, ¢, (") is transitive. Then, by definition, there is are R and twoSPMs
(r,s,0) and(s, t, (') such that+¢ > |s|. We have to show that =" > |s|—=t
ands[l...|s| =] =r[lr| = 0" = (|s| = ¢') + 1...|r| — ¢"]. Because is not a prefix
of t, ¢ < |s|. By definition, there are sequencesv, w, x, andy such that- = uvw,
s = vwz, t = wry, { = |vw|, and?’ = |wx|. This implies

lw| = o]+ |w|+ |w| + || = (Jv] + |w|+ |z|) = Jvw| + |wz| — |vwz| = £+ —]|s| > 0.

Hencew is a non-empty suffix of- and a non-empty prefix aof which implies that
(r,t,0") isanSPM of length?” = (+ ¢’ — |s|. As ¢’ = |wzx| and{” = |w|, we conclude

¢ > (". Assume that’ = ¢”. Thenz = which implies thats = vw is a suffix ofr.
This contradicts the fact th& is suffix-free. Thus our assumption was wrong, which
implies?’ > (. Sinces = vwz, we obtainjv| = |s|—¢ and|r| > |v|+|w| = |s| €' +¢"
from which we concluder| — ¢” > |s| — ¢'. Moreover, froms = vwz andr = wovw,
we derives[l...|s| =] =v=rr| =" = (|s| =)+ 1...]r| = ¢"].

“«<" Suppose there is anc R and anSPM (s, ¢, ¢') such that’ > ¢, |r| —¢" > |s| — ¢ and
slL...|s| =] =rlr|—0"—(|s| =¢')+1...|r| —¢"]. We have to show thdt, ¢, (") is

|

transitive. Letw, x be strings such thatx of length?’ > 0 is a suffix ofs and a prefix
of t andw of length¢” > 0 is a suffix ofr and a prefix of. Letv = s[1...|s| — ¢].
Then, by assumptiony = r[jr| — ¢" — (|s| = ¢) + 1...|r| — ¢"] and thusvw is a
suffix of r and a prefix ofs. We havelvw| = |s| — ¢/ + ¢” > 0 and thus there is an
SPM (r, s,) wherel = |s| — ¢’ + ¢". Sincel’ = |wz| and! = |vw|, we conclude
C+ 0 = w|+ |z|+ [v]| + |w| = |w| + [vwz| = |w| + |s| > |s|. So(r,t, ") is transitive.

There is an even more stringent characterization of tiaessPMs based on a single irre-

ducibleSPM, as stated in the following theorem.

Theorem 1 Let (r, ¢, (") be anSPM. Then(r, t, ¢") is transitive if and only if there isane R

and an irreducibl&PM (s, t, ¢') such that’ > ¢”,

r|—0" > |s| — ¢ ands[l...|s| —] =

rllr| =" = (|s| =)+ 1...|r| = £"].

Pr oof:

“=" Let (r,t,¢") be transitive. Then, by Lemma 1, there isag R and anSPM (s, ¢, (')

such thatt’ > ¢, |r| — 0" > |s| — ¢ ands[l...|s| = ¢'] = r[|r| =" = (|s| = ') +
1...|r| — ¢"]. Without loss of generality we assume thfais maximal, i.e. for any
s € Rand anySPM (s, t, ¢) such thay > ¢”, |r| —¢" > || —gands’[1...|s'| —q] =
rl|r|—=¢"—(|s'| —q)+1...|r| —¢"] holds, we have < ¢'. Now assume thdf, ¢, (') is
transitive. Then by Lemma 1, there is &ne R and anSPM (s, ¢, ¢) such thay > ¢/,
|s|] =€ > || —qands'[1...|s'| —q] = s[|s| = ¢ — (|| —q) +1...|s| = ¢]. First
note thaty > ¢ and?’ > (" impliesq > ¢". Moreover,|r| — (" > |s| = ¢ > |s'| — q.
This implies|r| — ¢" — (|s'| —q) + 1 > 1,i.e.r[r| =" = (|s'| —q) + 1...|r| = ("] is
defined. From the two applications of Lemma 1 we conclude

S 08| —q = slls| =0 —=(s|—q)+1...]s| = /]

(7| =" = (s| =)+ 1+ [s| = = (|s'| =q) ... 7| =]
[

[

<

P = 0" —|s|+ 0 +1+s| =0 = (|| —q)...|r] =]
lr| = 0" —(|s'| —q)+1...]r| = £"].

= r
= r

This impliesq < ¢, which is a contradiction. Hence our assumption tfzat, ¢') is
transitive was wrong. In other word§;, ¢, ¢') is irreducible, which was to be shown.

<" Suppose there is ane R and an irreducibl&M (s, ¢, ¢') such that’ > ¢", |r| — " >

|s| = ¢ ands[l...|s| =] =r[|r|—¢"—(|s| =€)+ 1...|r| = ¢"]. Then by Lemma 1,
(r,t, ") is transitive.

7 Computation of non-redundant irreducible
suffix-prefix matches

Algorithm 3 is a modification of Algorithm 2 (see main docurtjei® output non-redundant
irreducibleSPMs only. The set/’ now contains pair$j, D;), wherej refers to the read with
number;j andD; is the dictionary of left contexts of suffixes correspondiagerminal edges
on the whole-read path for;. Whenever, on the whole-path for read a terminal edge out-
going from an Icp-intervailtv and starting witt$, is detected Csearch(D;, LC(r,, itv.lcp))
is called. TheSPM (r,,, r;, itv.lcp) is output if and only if the function call returrisise.
A dictionary is removed once an Icp-inteni&d with itv.lcp < £, IS visited. This makes
sense, as in this case no m&&Ms (_, r,,, ¢) satisfyingl > ¢,,;, will be found.
LCsearch(D, s) requiresO(|s|) time. As the length of is bounded by a constant, the
running time ofL Csearch(D, s) is constant. Hence, the total length of Algorithm 8§+ z)
wherez is the number of process&PMs.

8 Recognition of internally contained reads

The following lemma characterizes internally containeatisein terms of an Icp-interval tree.

Lemma2 LetR be a suffix- and prefix-free read set with reads of length atleg,. LetT
be the Icp-interval tree of the SPM-relevant suffixes of @lds inR. For any read € R, r

is internally contained if and only i’ contains an--interval with exactly one terminal edge
to a singleton whole-read interval representing

Pr oof:

“=": Suppose that is internally contained. Then there is some readuch that’ = urv
for some non-empty stringsandwv. As the first base of is different from the sentinel
with which r is padded, there is aninterval [e.. f] with an outgoing terminal edge to
a singleton whole-read interval (representit)g Supposee..f| has another outgoing
terminal edge to a singleton whole-read interval (repriésgrsome read””). Then
r = r”, which contradicts the assumption tiatis prefix- and suffix-free. Hence in
T there is exactly one terminal edge outgoing frém/f] and leading to a singleton
whole-read interval.

“«<" Suppose that i’ there is arr-interval[e.. f], with exactly one terminal edge to a single-
ton whole-read interval representing readBy constructiorje.. f| has another outgoing
edge whose label does not start with a sentinel. Suppose thas a prefix of some
read. Then the path frofa.. f] via the edge label must lead to a singleton whole-read
interval. Hencervv' is a read for some string. Hencer is a prefix of a longer read,
which contradicts the fact th& is prefix-free. Hencewv is not a prefix of some read,
butrvv’ is a proper suffix of some read. Hence there is some non-ertypig & such
thaturvv' is a read. Hence is internally contained imrvv’.

Algorithm 3 Bottom-up computation of all non-redundant irreducibléistprefix matches
inR.
Input: tableL and sorted arrayl of SPM-relevant suffixes gR
with common prefix: of lengthk
Output: Non-redundantirreducible suffix-prefix matckes, ¢)
suchthat > ,,in, 7,5 € R, u is a prefix ofs

1:T:=]] > empty list
2: W=]] > empty list of pairgi, D;), 1 < i < m, D; is a left-context dictionary
3: with each Icp-intervaltv associate an integétv. firstinWW

4: run Algorithm 1 with the following functions:

5: function process_leafedge(firstedge, itv, (p, q)) > p is read number anglis offset
6: if itv.lep > £ then

7 if firstedge then

8: itv. firstinW .= [W| + 1

9: if ¢ = 0then > (p, q) refers to whole read
10: create a new empty dictionaly,
11: appendp, D,,) to W
12: if ¢ + itv.lep = |rp| then > (p,) refers to terminal edge
13: appeng to T’
14: else
15: W =]

16: function process_branchedge(firstedge,itv,itv’)
17: if itv.lep > £ then

18: if firstedge then

19: itv. firstinW = itv’ . firstinW
20: else

21: W:=T]

22: function process_lcpinterval(itv)
23: if itv.lep > £y, then

24: for all p € T do

25: for all (j,D;) € Wlitv.firstinW ...|W|] do

26: if LCsearch(D;,LC(rp, itv.lcp)) = false then

27: (dp,p') :=if p < mthen (fwd, p) else (rev,p — m)

28: (d;,7") :==if j < mthen (fwd, j) else (rev, j — m)

29: if d, =fwd and p’ < j' or (dp,d;) = (rev,fwd) and p’ > j" then > non-redundant?
30: output(ry, r;, itv.lcp)

31: T:=1]

Algorithm 4 exploits Lemma 2 to detect internally contairredds. After applying the al-
gorithm to all buckets of SPM-relevant suffixéG,is the set of reads iR which are internally
contained.

Algorithm 4 Bottom-up determination of internally contained reads

Input: tableL and sorted array/ of SPM-relevant suffixes in thegh bucket
with common prefixu of lengthk

Output: SetC of readsr; which have prefix: and are internally contained.

1: 1IC:=0

2: run Algorithm 1 of main document with the following functidprocess_branchedge and

process_lcpinterval are not needed):
. function process_leafedge(firstedge, itv, (p,q)) > pis read number anglis read offset
if ¢ + itv.lep = |r,| and ¢ = 0 then

IC:=ICU{r,}

akw

Note that the conditions checked in line 4 of Algorithm 4 are same as in line 9 and
11 of Algorithm 2 given in the main document. This allows taeeniently merge the two
algorithms, in order to compute suffix-prefix matches andgedze internally contained reads
by scanning the index structure only once.

9 Performance on variable length datasets

The results presented in the main document refer to readhsetsch each read has the same
length (100 bp). This situation is common for datasets abtaby the lllumina sequencing
platforms. Read in datasets from asynchronous sequerethgalogies, such as Roche 454,
vary in their lengths. Here we present a benchmark on a reéadthereads of variable length.

Dataset c22154 was generated taking human chromosome 22 as a templ#te20w
coverage and read lengths randomly sampled from the difiibof read lengths of a real-
world 454 dataset (obtained from the Short Read Archivegsgion DRR000841).

The reads were assembled usiReadjoiner, LEAP and SGA. Results are shown Table 6.
Edena was excluded from this benchmark as is requires réadgial length.

Table 6: Results of applyingeadjoiner (RJ), SGA and LEAP to the dataset c234. (.., =
45). The readset consists of 2.0 million reads with a total g 697.9 Mbp. Read

length is variable, between 26 bp and 637 bp.

Benchmark results

RJ SGA LEAP
Running time (s) 477 6324 1000
Space peak (Mb) 245 343 550
Assemblathon metrics

RJ SGA LEAP
Number of contigs 16572 26158 26204
Genome size (bp.) 34894545 34894545 34894545
Total contigs length 42073401 45137152 42348355

- as % of genome 120.57 129.35 121.36

Mean contig size 2538.82 1725.56 1616.10
Median contig size 907 588 781
Longest contig 73334 73334 47718
Shortest contig 395 92 250
Contigs> 500 bp 16243 (98.01 %) 18438(70.49%) 22720 (86.70 %)

7353 (44.37 %)
830 (5.01 %)

Contigs> 1K bp
Contigs> 10K bp

6947 (26.56 %)
793 (3.03 %)

10730 (40.95 %)
343 (1.31 %)

N50 6155 5089 2786
L50 1694 2037 3644
NG50 8085 7674 3735
LG50 1182 1219 2471
Plantagora metrics
RJ SGA LEAP
Covered Bases 34789523 34781707 24513730
Ambiguous Bases 84743 81574 430827
Misassemblies 2 0 11551
Misassembled Contigs 1 0 6986
Misassembled Contigs Bases 836 0 15569182
SNPs 18 7 50856
Insertions 0 0 2584
Deletions 0 0 4842
Positive Gaps 203 231 3490
Internal Gaps 0 0 3
External Gaps 203 231 3487
- total length 109027 117608 5159684
- average length 537 509 1480
Negative Gaps 15936 24987 11853
Internal Overlaps 0 0 18
External Overlaps 15936 24987 11835
- total length -6988125 -9831815 -6982471
- average length -439 -393 -590
Redundant Contigs 74 160 12388
Unaligned Contigs 30 77 19
- partial 0 4 20
- total length 25141 52808 11833
Ambiguous Contigs 297 638 318
- total length 206437 350265 188769

10 An example of a set of SPM-relevant suffixes and
the correspinding Icp-interval tree

Consider the reads® = {aact, actt, ataa, aaca}. We have the following non-empty suf-
fixes, of which thg?,,;,, k)-SPM-relevant suffixes faf,,;, = 2 andk = 1 are underlined.

aact actt ataa aaca
act ctt taa aca
ct tt aa ca

t t a a

As all reads begin with, there is only one bucket with all SPM-relevant suffixes. The
following table shows the SPM-relevant suffixes in lexiagtic order, including the Icp-
values. Note that the sentinels are explicitly shown as #reyrelevant for the lexicographic
order.

J | Hj as pair | H; as string | L;
01](4,1) aacaly

1] (1,1) aact$; 3
2 (3, 3) CLCL$3 2
31 (4,2) aca$, 1
41(2,1) actt$y 2
) (1, 2) (lCt$1 3
61 (3,1) ataa$s 1

Here is the Icp-interval tree, represented by tablend L. The leaves are marked by the
suffixes (in form of read number and read offset) they refeftee notatior/-[e.. f] refers to
the Icp-intervale.. f] of Icp-valuel.

10

This is the list of Icp-intervals and singleton intervals tihe order in which they are pro-
cessed:

(4,1),(1,1),3-[0..1],(3,3),2-[0..2], (4,2), (2, 1), (1,2), 3-[4..5], 2-[3..5], (3, 1), 1-[0..6], 0-[0..6]

References

[1] M.I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacinffistrees with enhanced suffix
arrays.Journal of Discrete Algorithms, 2:53-86, 2004.

11

