
Additional file 1
for manuscript

Readjoiner: a fast and memory
efficient string graph-based

sequence assembler

Giorgio Gonnella Stefan Kurtz
Center for Bioinformatics
University of Hamburg

March 1, 2012

This document describes implementation techniques for themethods and algorithms de-
scribed in the main document. Moreover, it gives a lemma and atheorem (including proofs)
characterizing transitive SPMs, and an algorithm to enumerate irreducible and non-redundant
suffix-prefix matches. Furthermore, a method to recognize internally contained reads is given,
as well as results for a benchmark set with reads of variable length. Finally, an example of
SPM-relevant suffixes and their corresponding lcp-interval is presented.

1 Implementation of counts

In this section we describe how to efficiently implement the counters. Recall that we have
d counters, one for each initialk-mer. The sum of all counts is exactly the numberg of all
SPM-relevant suffixes. This implies that the expected valueof a counter isg

d
. As g ≤ n and

d ≥ m, we haveg

d
≤ n

d
≤ n

m
. As the average read lengthn

m
is assumed to be a constant,

the expected value of a counter is a constant as well and so we implement the count tableC
by a byte array of sized. The counts stored in this array are in the range from1 to 255, as
each count refers to an integer code that occurs at least once. So 0 is a special value. If the
ith integer code occurs more than255 times, we set theith entry of the byte array to 0, to
signify an overflow and store the correct count with keyi in a hash table. Because we use
sorted buffers in the counting phase, the array-indices of the counters to be incremented come

1

in sorted order. So in each roundq consecutive increments by 1 (and this many accesses to
the byte array and possibly to the hash table) can be combinedinto one increment byq. Thus,
for each round, each counter is incremented at most once. This strategy reduces the number
of accesses to the hash table. For the datasets of the resultssection only about 0.2% of all
counters have to be stored in the hash table and less than 1% ofall increments affect the hash
table. Thus the effect of the hash table on the space and the running time is negligible.

2 Implementation of partial sums

The partial sums in tableπ are bounded byg, the number of SPM-relevant suffixes. For large
read sets,g can be larger than232 − 1. However, as the partial sum are strictly increasing, one
can implementπ by a32 bit integer tablePS of sized+ 1, such thatPS[i] = π[i] mod 232 for
any i, 0 ≤ i ≤ d and an additional integer table of size2max{0,⌈log

2
g⌉−32}. Let β = ⌈log2 g⌉

andδ be some small constant such that each count value in tableC is smaller than2δ. Each
valueπ[i] is in the range from0 to g and it can be written as

π[i] = π[i] mod 2δ +

β−δ∑

j=1

bj2
β−j (1)

wherebj ∈ {0, 1} for all j, 1 ≤ j ≤ β−δ. So in particular, ifπ[i] < 2δ thenπ[i] = π[i] mod 2δ

and so the bitsb1, . . . , bβ−δ are all 0. As the sequence of partial sums is strictly increasing,
we store for each possible combination of bitsb1, . . . , bβ−δ the largesti, 0 ≤ i ≤ d satisfying
(1). This valuei is stored at indexb1 . . . bβ−δ of a tablef of size2β−δ, where the bit sequence
b1 . . . bβ−δ is interpreted as a decimal number. In other words, we store the least significantδ
bits ofπ[i] in PS[i] and the most significantβ − δ bits are interpreted as an index into tablef .

As the partial sums are computed sequentially in one pass over the count tableC, it is easy
to fill table f . When retrievingπ[i] one first determines the smallestq such thati ≤ f [q] for
someq, 0 ≤ q ≤ 2β−δ − 1 and returnsPS[i] + q · 2δ. Asβ − δ is a very small constant,q and
thisπ[i] can be determined in constant time.δ can be chose such that that the sum of the sizes
of tablePS andf is minimized. However, in our implementation we have chosenδ = 32.

3 Implementation of the partitioning strategy

In our implementation of the partitioning strategy we exploit the fact that the size and content
of the tablesK andP do not change during the insertion phase, so that they can conveniently
be stored on temporary files after the partial sums have been computed and before the insertion
phase begins. As we do not want to afford the space for the entire tablePS, we directly output
the sequence of partial sums to a temporary file when they are generated. We only store a
small sample of the partial sums in memory, allowing to determine the boundaries at which the
different parts of the tables are partitioned. Using a smallsample ofπ instead ofπ completely
leads to a more granular partitioning and thus to a larger variance of the size of the different
parts. However, our experiments show that the variance is still very small.

2

When processing theq parts, one after the other, the range of values of tableK andP (only
read access) andPS (read and write access) in the predefined boundaries are mapped from
the temporary files into main memory in units of the machine’spage size. The access to the
temporary files is strictly sequential and only the values onpages at the boundaries of the parts
may be mapped more than once. As a consequence, our partitioning strategy only creates a
minimal overhead in the IO subsystem of the computer.

4 Computation of leaf edges in Algorithm 1

The additional computations in lines 6–12 and line 32 of Algorithm 1 (see main document)
deliver the leaf edges. These were omitted in the original algorithm of [1, Algorithm 4.4].
To understand how the computation works, first note that at the end of each iteration of the
for-loop, stack .top.lcp equalsLe+1 andlastitv is undefined. The singleton-interval[e] repre-
sentingHe has a parent with lcp-valueℓ = max{Le, Le+1}. So at the start of theeth iteration
we havestack .top.lcp = Le. Hence, ifLe+1 ≤ stack .top.lcp, then the parent of[e] has lcp-
valueℓ = stack .top.lcp. Sincestack .top.lb ≤ e andstack .top.rb will get a value≥ e in later
iterations,stack .top represents the parent of[e]. This case is implemented in lines 6–12.

Now suppose thatLe+1 > stack .top.lcp. Then the while-loop is not executed andlastitv
remains undefined. So the next statement executed is in line 31. Le+1 > stack .top.lcp implies
Le+1 > Le and so the parent of[e] has the lcp-valueLe+1. This parent(Le+1, e,⊥) is pushed
on the stack in line 31 and the implicit outgoing leaf edge is processed in line 32.

What remains is an explanation on how to determine if an edge is the first outgoing from
an lcp-interval. As the edges processed in line 28 or line 32 are from lcp-intervals which have
just been generated (in the line before), these edges are obviously the first edges from the
lcp-interval (with undefined right bound). Now look at the identical code fragment in lines 7–
11 and 18–22. If the current lcp-interval is not the root-interval (of lcp-value 0), then there
was a previous edge outgoing from this lcp-interval (processed either in line 28 or 32) and so
firstedge is false. Otherwise, if the current lcp-interval is the root-interval, thenfirstedge is
true if and only iffirstedgefromroot is true. The latter boolean variable istrue if and only if
there was some previously processed edge from the root-interval. firstedgefromroot is set to
false whenever an edge from the root-interval is processed.

5 Computation of integer codes for reverse
complemented reads

The three steps which involve scanning the reads are extended to process both strands of all
reads. This does not require to double the size of the read representation, as all information
for the reverse complemented reads can efficiently be extracted from the forward reads. Here
we show how to compute the integer codes for the reversed reads from the integer codes of
the forward reads in constant time. More precisely, the computation ofcrev := ϕk(s[k]s[k −
1] . . . s[1]) from c := ϕk(s[1 . . . k]) can be done with3k − 1 bit operations ifk is even and
3k − 2 bit operations ifk is odd. These bit operations reverse the order ofk pairs of bits. For

3

computing the complement of ak-mer, first note that the following equations hold (wherexor
denotes bitwise exclusive or):

ϕ(A) = 0 xor 3 = 3 = ϕ(T)
ϕ(C) = 1 xor 3 = 2 = ϕ(G)
ϕ(G) = 2 xor 3 = 1 = ϕ(C)
ϕ(T) = 3 xor 3 = 0 = ϕ(A)

That is,(xor 3) applied to the code of a base delivers the code of the complement of the base.
Of course, this works for a bit string with an even number of bits, so that for ak-meru of
2k bits, ϕk(u) xor 3 delivers the integer code of the complement ofu. Thus applying this
operation tocrev gives the integer code of the reverse complement ofs[1 . . . k] in constant
time. The window-based approach described in the implementation section can be extended
to simultaneously compute the integer code for the reverse complement of thek-mer in the
window.

6 Characterization of transitive suffix-prefix matches

The following lemma characterizes anSPM by a read and a singleSPM satisfying a length
constraint and a match constraint.

Lemma 1 Let 〈r, t, ℓ′′〉 be anSPM. Then〈r, t, ℓ′′〉 is transitive, if and only if there is ans ∈ R
and anSPM 〈s, t, ℓ′〉 such thatℓ′ > ℓ′′, |r| − ℓ′′ ≥ |s| − ℓ′ ands[1 . . . |s| − ℓ′] = r[|r| − ℓ′′ −
(|s| − ℓ′) + 1 . . . |r| − ℓ′′].

Proof:

“⇒”: Suppose that〈r, t, ℓ′′〉 is transitive. Then, by definition, there is ans ∈ R and twoSPMs
〈r, s, ℓ〉 and〈s, t, ℓ′〉 such thatℓ+ℓ′ > |s|. We have to show thatℓ′ > ℓ′′, |r|−ℓ′′ ≥ |s|−ℓ′

ands[1 . . . |s| − ℓ′] = r[|r| − ℓ′′ − (|s| − ℓ′) + 1 . . . |r| − ℓ′′]. Becauses is not a prefix
of t, ℓ′ < |s|. By definition, there are sequencesu, v, w, x, andy such thatr = uvw,
s = vwx, t = wxy, ℓ = |vw|, andℓ′ = |wx|. This implies

|w| = |v|+ |w|+ |w|+ |x|− (|v|+ |w|+ |x|) = |vw|+ |wx|− |vwx| = ℓ+ ℓ′−|s| > 0.

Hencew is a non-empty suffix ofr and a non-empty prefix oft which implies that
〈r, t, ℓ′′〉 is anSPM of lengthℓ′′ = ℓ+ ℓ′ − |s|. As ℓ′ = |wx| andℓ′′ = |w|, we conclude
ℓ′ ≥ ℓ′′. Assume thatℓ′ = ℓ′′. Thenx = ε which implies thats = vw is a suffix ofr.
This contradicts the fact thatR is suffix-free. Thus our assumption was wrong, which
impliesℓ′ > ℓ′′. Sinces = vwx, we obtain|v| = |s|−ℓ′ and|r| ≥ |v|+|w| = |s|−ℓ′+ℓ′′

from which we conclude|r| − ℓ′′ ≥ |s| − ℓ′. Moreover, froms = vwx andr = uvw,
we derives[1 . . . |s| − ℓ′] = v = r[|r| − ℓ′′ − (|s| − ℓ′) + 1 . . . |r| − ℓ′′].

“⇐”: Suppose there is ans ∈ R and anSPM 〈s, t, ℓ′〉 such thatℓ′ > ℓ′′, |r| − ℓ′′ ≥ |s| − ℓ′ and
s[1 . . . |s|− ℓ′] = r[|r|− ℓ′′− (|s|− ℓ′)+1 . . . |r|− ℓ′′]. We have to show that〈r, t, ℓ′′〉 is

4

transitive. Letw, x be strings such thatwx of lengthℓ′ > 0 is a suffix ofs and a prefix
of t andw of lengthℓ′′ > 0 is a suffix ofr and a prefix oft. Let v = s[1 . . . |s| − ℓ′].
Then, by assumption,v = r[|r| − ℓ′′ − (|s| − ℓ′) + 1 . . . |r| − ℓ′′] and thusvw is a
suffix of r and a prefix ofs. We have|vw| = |s| − ℓ′ + ℓ′′ > 0 and thus there is an
SPM 〈r, s, ℓ〉 whereℓ = |s| − ℓ′ + ℓ′′. Sinceℓ′ = |wx| andℓ = |vw|, we conclude
ℓ+ ℓ′ = |w|+ |x|+ |v|+ |w| = |w|+ |vwx| = |w|+ |s| > |s|. So〈r, t, ℓ′′〉 is transitive.

2

There is an even more stringent characterization of transitive SPMs based on a single irre-
ducibleSPM, as stated in the following theorem.

Theorem 1 Let 〈r, t, ℓ′′〉 be anSPM. Then〈r, t, ℓ′′〉 is transitive if and only if there is ans ∈ R
and an irreducibleSPM 〈s, t, ℓ′〉 such thatℓ′ > ℓ′′, |r| − ℓ′′ ≥ |s| − ℓ′ ands[1 . . . |s| − ℓ′] =
r[|r| − ℓ′′ − (|s| − ℓ′) + 1 . . . |r| − ℓ′′].

Proof:

“⇒”: Let 〈r, t, ℓ′′〉 be transitive. Then, by Lemma 1, there is ans ∈ R and anSPM 〈s, t, ℓ′〉
such thatℓ′ > ℓ′′, |r| − ℓ′′ ≥ |s| − ℓ′ ands[1 . . . |s| − ℓ′] = r[|r| − ℓ′′ − (|s| − ℓ′) +
1 . . . |r| − ℓ′′]. Without loss of generality we assume thatℓ′ is maximal, i.e. for any
s′ ∈ R and anySPM 〈s′, t, q〉 such thatq > ℓ′′, |r|− ℓ′′ ≥ |s′|−q ands′[1 . . . |s′|−q] =
r[|r|− ℓ′′− (|s′|− q)+1 . . . |r|− ℓ′′] holds, we haveq ≤ ℓ′. Now assume that〈s, t, ℓ′〉 is
transitive. Then by Lemma 1, there is ans′ ∈ R and anSPM 〈s′, t, q〉 such thatq > ℓ′,
|s| − ℓ′ ≥ |s′| − q ands′[1 . . . |s′| − q] = s[|s| − ℓ′ − (|s′| − q) + 1 . . . |s| − ℓ′]. First
note thatq > ℓ′ andℓ′ > ℓ′′ impliesq > ℓ′′. Moreover,|r| − ℓ′′ ≥ |s| − ℓ′ ≥ |s′| − q.
This implies|r| − ℓ′′ − (|s′| − q) + 1 ≥ 1, i.e.r[|r| − ℓ′′ − (|s′| − q) + 1 . . . |r| − ℓ′′] is
defined. From the two applications of Lemma 1 we conclude

s′[1 . . . |s′| − q] = s[|s| − ℓ′ − (|s′| − q) + 1 . . . |s| − ℓ′]

= r[|r| − ℓ′′ − (|s| − ℓ′) + 1 + |s| − ℓ′ − (|s′| − q) . . . |r| − ℓ′′]

= r[|r| − ℓ′′ − |s|+ ℓ′ + 1 + |s| − ℓ′ − (|s′| − q) . . . |r| − ℓ′′]

= r[|r| − ℓ′′ − (|s′| − q) + 1 . . . |r| − ℓ′′].

This impliesq ≤ ℓ′, which is a contradiction. Hence our assumption that〈s, t, ℓ′〉 is
transitive was wrong. In other words,〈s, t, ℓ′〉 is irreducible, which was to be shown.

“⇐”: Suppose there is ans ∈ R and an irreducibleSPM 〈s, t, ℓ′〉 such thatℓ′ > ℓ′′, |r| − ℓ′′ ≥
|s| − ℓ′ ands[1 . . . |s| − ℓ′] = r[|r| − ℓ′′ − (|s| − ℓ′) + 1 . . . |r| − ℓ′′]. Then by Lemma 1,
〈r, t, ℓ′′〉 is transitive.

2

5

7 Computation of non-redundant irreducible
suffix-prefix matches

Algorithm 3 is a modification of Algorithm 2 (see main document) to output non-redundant
irreducibleSPMs only. The setW now contains pairs(j,Dj), wherej refers to the read with
numberj andDj is the dictionary of left contexts of suffixes correspondingto terminal edges
on the whole-read path forrj. Whenever, on the whole-path for readrj, a terminal edge out-
going from an lcp-intervalitv and starting with$p is detected,LCsearch(Dj , LC(rp, itv .lcp))
is called. TheSPM 〈rp, rj, itv .lcp〉 is output if and only if the function call returnsfalse.

A dictionary is removed once an lcp-intervalitv with itv .lcp < ℓmin is visited. This makes
sense, as in this case no moreSPMs 〈 , rp, ℓ〉 satisfyingℓ ≥ ℓmin will be found.

LCsearch(D, s) requiresO(|s|) time. As the length ofs is bounded by a constant, the
running time ofLCsearch(D, s) is constant. Hence, the total length of Algorithm 3 isO(n+z)
wherez is the number of processedSPMs.

8 Recognition of internally contained reads

The following lemma characterizes internally contained reads in terms of an lcp-interval tree.

Lemma 2 Let R be a suffix- and prefix-free read set with reads of length at least ℓmin . LetT
be the lcp-interval tree of the SPM-relevant suffixes of all reads inR. For any readr ∈ R, r
is internally contained if and only ifT contains anr-interval with exactly one terminal edge
to a singleton whole-read interval representingr.

Proof:

“⇒”: Suppose thatr is internally contained. Then there is some readr′ such thatr′ = urv

for some non-empty stringsu andv. As the first base ofv is different from the sentinel
with which r is padded, there is anr-interval [e..f] with an outgoing terminal edge to
a singleton whole-read interval (representingr). Suppose[e..f] has another outgoing
terminal edge to a singleton whole-read interval (representing some readr′′). Then
r = r′′, which contradicts the assumption thatR is prefix- and suffix-free. Hence in
T there is exactly one terminal edge outgoing from[e..f] and leading to a singleton
whole-read interval.

“⇐”: Suppose that inT there is anr-interval[e..f], with exactly one terminal edge to a single-
ton whole-read interval representing readr. By construction[e..f] has another outgoing
edge whose labelv does not start with a sentinel. Suppose therv is a prefix of some
read. Then the path from[e..f] via the edge labelv must lead to a singleton whole-read
interval. Hencervv′ is a read for some stringv′. Hencer is a prefix of a longer read,
which contradicts the fact thatR is prefix-free. Hencerv is not a prefix of some read,
but rvv′ is a proper suffix of some read. Hence there is some non-empty string u such
thaturvv′ is a read. Hencer is internally contained inurvv′.

2

6

Algorithm 3 Bottom-up computation of all non-redundant irreducible suffix-prefix matches
in R.

Input: tableL and sorted arrayH of SPM-relevant suffixes ofR
with common prefixu of lengthk

Output: Non-redundant irreducible suffix-prefix matches〈r, s, ℓ〉
such thatℓ ≥ ℓmin , r, s ∈ R, u is a prefix ofs

1: T := [] ⊲ empty list
2: W := [] ⊲ empty list of pairs(i,Di), 1 ≤ i ≤ m, Di is a left-context dictionary
3: with each lcp-intervalitv associate an integeritv .firstinW
4: run Algorithm 1 with the following functions:
5: function process leafedge(firstedge, itv , (p, q)) ⊲ p is read number andq is offset
6: if itv .lcp ≥ ℓmin then
7: if firstedge then
8: itv .firstinW := |W |+ 1

9: if q = 0 then ⊲ (p, q) refers to whole read
10: create a new empty dictionaryDp

11: append(p,Dp) toW

12: if q + itv .lcp = |rp| then ⊲ (p, q) refers to terminal edge
13: appendp to T

14: else
15: W := []

16: function process branchedge(firstedge,itv ,itv ′)
17: if itv .lcp ≥ ℓmin then
18: if firstedge then
19: itv .firstinW := itv ′.firstinW

20: else
21: W := []
22: function process lcpinterval (itv)
23: if itv .lcp ≥ ℓmin then
24: for all p ∈ T do
25: for all (j,Dj) ∈ W [itv .firstinW . . . |W |] do
26: if LCsearch(Dj , LC(rp, itv .lcp)) = false then
27: (dp, p

′) := if p ≤ m then (fwd, p) else (rev, p−m)
28: (dj , j

′) := if j ≤ m then (fwd, j) else (rev, j −m)
29: if dp = fwd and p′ ≤ j′ or (dp, dj) = (rev, fwd) and p′ ≥ j′ then ⊲ non-redundant?
30: output〈rp, rj , itv .lcp〉

31: T := []

7

Algorithm 4 exploits Lemma 2 to detect internally containedreads. After applying the al-
gorithm to all buckets of SPM-relevant suffixes,IC is the set of reads inR which are internally
contained.

Algorithm 4 Bottom-up determination of internally contained reads

Input: tableL and sorted arrayH of SPM-relevant suffixes in theith bucket
with common prefixu of lengthk

Output: SetIC of readsri which have prefixu and are internally contained.

1: IC := ∅
2: run Algorithm 1 of main document with the following function(process branchedge and

process lcpinterval are not needed):
3: function process leafedge(firstedge, itv , (p, q)) ⊲ p is read number andq is read offset
4: if q + itv .lcp = |rp| and q = 0 then
5: IC := IC ∪ {rp}

Note that the conditions checked in line 4 of Algorithm 4 are the same as in line 9 and
11 of Algorithm 2 given in the main document. This allows to conveniently merge the two
algorithms, in order to compute suffix-prefix matches and recognize internally contained reads
by scanning the index structure only once.

9 Performance on variable length datasets

The results presented in the main document refer to read setsin which each read has the same
length (100 bp). This situation is common for datasets obtained by the Illumina sequencing
platforms. Read in datasets from asynchronous sequencing technologies, such as Roche 454,
vary in their lengths. Here we present a benchmark on a read set with reads of variable length.

Dataset c22454 was generated taking human chromosome 22 as a template, with 20×
coverage and read lengths randomly sampled from the distribution of read lengths of a real-
world 454 dataset (obtained from the Short Read Archive, accession DRR000841).

The reads were assembled usingReadjoiner, LEAP and SGA. Results are shown Table 6.
Edena was excluded from this benchmark as is requires reads of equal length.

8

Table 6: Results of applyingReadjoiner (RJ), SGA and LEAP to the dataset c22454. (ℓmin =
45). The readset consists of 2.0 million reads with a total length of 697.9 Mbp. Read
length is variable, between 26 bp and 637 bp.

Benchmark results
RJ SGA LEAP

Running time (s) 477 6324 1000
Space peak (Mb) 245 343 550

Assemblathon metrics
RJ SGA LEAP

Number of contigs 16572 26158 26204
Genome size (bp.) 34894545 34894545 34894545
Total contigs length 42073401 45137152 42348355

- as % of genome 120.57 129.35 121.36
Mean contig size 2538.82 1725.56 1616.10
Median contig size 907 588 781
Longest contig 73334 73334 47718
Shortest contig 395 92 250
Contigs> 500 bp 16243 (98.01 %) 18438 (70.49 %) 22720 (86.70 %)
Contigs> 1K bp 7353 (44.37 %) 6947 (26.56 %) 10730 (40.95 %)
Contigs> 10K bp 830 (5.01 %) 793 (3.03 %) 343 (1.31 %)
N50 6155 5089 2786
L50 1694 2037 3644
NG50 8085 7674 3735
LG50 1182 1219 2471

Plantagora metrics
RJ SGA LEAP

Covered Bases 34789523 34781707 24513730
Ambiguous Bases 84743 81574 430827
Misassemblies 2 0 11551

Misassembled Contigs 1 0 6986
Misassembled Contigs Bases 836 0 15569182

SNPs 18 7 50856
Insertions 0 0 2584
Deletions 0 0 4842
Positive Gaps 203 231 3490

Internal Gaps 0 0 3
External Gaps 203 231 3487

- total length 109027 117608 5159684
- average length 537 509 1480

Negative Gaps 15936 24987 11853
Internal Overlaps 0 0 18
External Overlaps 15936 24987 11835

- total length -6988125 -9831815 -6982471
- average length -439 -393 -590

Redundant Contigs 74 160 12388
Unaligned Contigs 30 77 19

- partial 0 4 20
- total length 25141 52808 11833

Ambiguous Contigs 297 638 318
- total length 206437 350265 188769

9

10 An example of a set of SPM-relevant suffixes and
the correspinding lcp-interval tree

Consider the readsetR = {aact, actt, ataa, aaca}. We have the following non-empty suf-
fixes, of which the(ℓmin , k)-SPM-relevant suffixes forℓmin = 2 andk = 1 are underlined.

aact actt ataa aaca

act ctt taa aca

ct tt aa ca

t t a a

As all reads begin witha, there is only one bucket with all SPM-relevant suffixes. The
following table shows the SPM-relevant suffixes in lexicographic order, including the lcp-
values. Note that the sentinels are explicitly shown as theyare relevant for the lexicographic
order.

j Hj as pair Hj as string Lj

0 (4, 1) aaca$4
1 (1, 1) aact$1 3
2 (3, 3) aa$3 2
3 (4, 2) aca$4 1
4 (2, 1) actt$2 2
5 (1, 2) act$1 3
6 (3, 1) ataa$3 1

Here is the lcp-interval tree, represented by tableS andL. The leaves are marked by the
suffixes (in form of read number and read offset) they refer to. The notationℓ-[e..f] refers to
the lcp-interval[e..f] of lcp-valueℓ.

10

0-[0..6]

1-[0..6]

2-[0..2]

3-[0..1]

(4,1) (1,1)

(3,3)

2-[3..5]

(4,2) 3-[4..5]

(2,1) (1,2)

(3,1)

a

a
c

taa$3

c $3

a$4 t$1

a$4 t

t$2 $1

This is the list of lcp-intervals and singleton intervals, in the order in which they are pro-
cessed:

(4, 1), (1, 1), 3-[0..1], (3, 3), 2-[0..2], (4, 2), (2, 1), (1, 2), 3-[4..5], 2-[3..5], (3, 1), 1-[0..6], 0-[0..6]

References

[1] M.I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacing suffix trees with enhanced suffix
arrays.Journal of Discrete Algorithms, 2:53–86, 2004.

11

