
Computational Detail

April 2, 2018

1. ADDITIONAL IMPLEMENTATION DETAILS

1.1 Fixed Rank Kriging

In order to cater easily for datasets of differing support, FRK discretizes the spatial domain D

into M small basic areal units (BAUs, e.g., Nguyen et al. 2012) where M is large, typically much

greater than N . Every data point is ‘binned’ into one of these BAUs such that the process Y (·) is

discretized on this grid into the vector Y = (Y1, . . . , YM)′. A similar discretization of X(·), w(·)

and ε(·) on the grid yields the finite-dimensional system

Y =Xβ +w + ε,

Z = CY + ξ,

where C is an incidence matrix that maps the process Y to Z, ε is white noise with diagonal

variance σ2
εV where the diagonal elements Vξ are specified by the user and ξ is measurement error

with variance σ2
ξI .

In FRK, the small-scale effectw =Hθ,whereH = {hk(si)}i,k is theM×(
∑R

r=1Kr) matrix

of spatial basis functions (Kr basis functions at the rth resolution) and Var(θ) = S(φ) with covari-

ance parameters φ that need to be estimated. By default in FRK, S(φ) is a block-diagonal matrix

1

of R matrices where the rth block has i, jth element exp(−dr(i, j)/φr) and dr(i, j) is the distance

between the centroids of the ith and jth basis function at the rth resolution, and φ = (φ1, . . . , φR)
′

are the spatial correlation parameters of the exponential correlation function. Alternatively, S(φ)

can be unstructured in which case K(K + 1)/2 parameters need to be estimated.

Parameter estimation of {σ2
ε , σ

2
ξ ,β,θ,φ} in FRK proceeds as follows. First, since the mea-

surement error variance and fine-scale variance are confounded, σ2
ξ is initially estimated from

the data using variogram techniques as described in Kang et al. (2009). Second, an expectation

maximization algorithm is used, which infers θ in the E-step, and estimates {σ2
ε ,β,φ} in the

M-step. Following estimation, prediction proceeds by finding the distribution of Y | Z. Com-

putations are facilitated throughout via the Sherman–Morrison–Woodbury matrix identity and a

matrix-determinant lemma.

In FRK the user may specify several options, such as the number of basis functions, the basis-

function type, the specific BAUs to use, etc. In this competition, the data was supplied as an R data

frame containing grid points. These grid points can be used to construct a SpatialPixelsDataFrame

object which can then be used as BAUs. The diagonal elements of Vε are assigned to the BAUs

using the field fs. Since in this example we do not have any prior knowledge as to what could

affect the fine-scale variation, we set this field to one.

library(sp)

BAUs <- sat.temps # set as BAUs

BAUs$Temp <- NULL # remove temperature data from BAUs

coordinates(BAUs) <- ˜Lon+Lat # make SpatialPointsDataFrame

gridded(BAUs) <- TRUE # make SpatialPixelsDataFrame

The data supplied to FRK must not contain any missing values and must be a Spatial object,

in this case a SpatialPointsDataFrame:

dat <- subset(sat.temps,!is.na(Temp)) # remove missing data

2

coordinates(dat) <- ˜Lon+Lat # make SpatialPointsDataFrame

The basis functions are constructed using the function auto basis. This function is supplied

with the manifold (in this case plane()), the data, the number of basis-function resolutions

(nres=3) and a flag indicating that we wish to have the basis functions irregularly spaced in the

domain (regular=0). By default, the basis functions are bisquare functions.

FRK is run using the function FRK. It is supplied with a formula f relating the response variable

to covariates (the intercept is included by default), the data, the basis functions, and the BAUs,

There are several other options one can use, see help(FRK) for details. The function FRK

returns an object of class SRE.

S <- FRK(f = Temp ˜ Lon + Lat, # R formula

data = dat, # data

BAUs = BAUs, # BAUs

basis = basis, # 3 resolutions

regular = 0) # irregular basis functions

Prediction on all BAUs (which includes all missing-data locations) proceeds using the function

SRE.predict on the SRE object. In this case the returned BAUs are of class SpatialPixelsDataFrame

which can be converted to a normal data frame using the data.frame command. The resulting

data frame has both the coordinate locations as well as the prediction mean, prediction error, and

prediction variance.

BAUs_pred <- SRE.predict(S) # predict over all BAUs

BAUs_pred_df <- data.frame(BAUs_pred) # convert to data frame

1.2 Lattice Kriging

The rectangular grid of node points {urk} are described by the LatticeKrig parameters

NC, overlap, nbuffer,and nlevel. NC specifies the number of grid points in the spatial

3

domain for the coarsest level and along the longest dimension. overlap is the scaling of the

basis functions relative to the node spacing with a default value of 2.5. nbuffer is the number

of extra grid points, also equally spaced, added at the four margins and at each level (default is

5 for all levels). Finally, nlevel is the number of multi-resolution levels. Since these are the

variables used in the LatticeKrig R package we will use R formatted equations to show their

relationships.

To simplify assume the spatial domain is square. The grid at the coarsest level will be (NC

+ 2*nbuffer)*(NC + 2*nbuffer) node points For the domain [0, 1] × [0, 1] the spacing

of node points will be 1/(NC -1) and in general we refer to the spacing of the nodes at the

coarsest level by the variable delta.

The next level will subdivide the delta spacing by a factor of 2 and result in 2*NC -1 node

points along each dimension with again 2*nbuffer points added on each margin. Subsequent

grids are defined by spacings delta[r] = delta*2ˆ(-r+1) and yield a sequence of

grids {urk} that increase roughly by a factor of four in size from level r to level r + 1.

To define the basis functions for the rth level we take

θr = overlap*delta[r]

and define the radial basis functions as in Equation (2.5) of the paper.

The SAR model for Q−1r is defined as follows. Let B be the SAR matrix that is square with

the same dimension as θr. The diagonal elements of B are parametrized by 4 + 1/φ2
r . In the

LatticeKrig R package the parameter a.wght is defined as this diagonal value and is used

instead of φr). For the kth row ofB the entries corresponding to the four nearest neighbors of urk

are set to −1 and the remaining elements are set to zero. With this matrix set Qr = B
TB and we

assume that θr is distributed multivariate normal with mean 0 and covariance matrixQ−1r .

The LatticeKrig model has a varied set of parameters and determining values for these

4

based on the data were handled in several stages. Given the covariance and basis parameters NC,

nlevel, nu and a.wght, the variance parameters, σ2
ε and σ2

w and the fixed effects β are found

by maximum likelihood. The choice of NC, nlevel, nu and a.wght was based on the criteria:

• Choosing NC and nlevel so that the number of basis functions is comparable to the number

of spatial observations.

• Refining the subset of NC, nlevel, nu and a.wght values based on least squares fitting

of the model variogram to the empirical variogram of the data.

• Using cross-validation to evaluate the out-of-sample prediction error for each model. To do

so, two kinds of cross-validation were entertained: (i) omitting a random sample of 10% of

the training data set and predicting these based on the remaining 90% and (ii) omitting a

larger contiguous patch of data comparable to the missingness pattern in the actual data set

and predicting these omitted data points.

Based on the analysis the models used for prediction were: NC=30, nlevel=4,nu=.1,

a.wght=4.4 for the simulated data and NC=40, nlevel=4, nu=.1, a.wght=10.25

for the satellite data.

1.3 Local Approximate Gaussian Processes

One challenge to deploying laGP in the setting of this competition is that the training data

are not uniformly spaced relative to the testing locations (see Figure 2 of the main article), and

therefore a predictive location s could be far from its nearest neighbors. To address this, the laGP

code used for this study trained the local predictor not on the raw data but on residuals from a

global GP fit. Of course, the large N thwarts a full GP being deployed in this manner, and in

any case using a full GP may not be ideal for other reasons. We found it most useful to focus the

“global GP” on the task of capturing large-scale effects when the goal is extrapolating training-

data-poor parts of the testing space. Therefore we trained the global GP with a n = 100-sized

5

maximum entropy sub-design (Chaloner and Verdinelli 1995) from the training set. In addition to

defining the residuals on which the laGP is trained, we used the estimated (square-root of) spatial

range parameters from the “global GP” to pre-scale the input space so that laGPs on the residuals

could be initialized with a range of 1. Subsequently, the laGPs were allowed to adapt to their

local designs in the usual way. The resulting predictor, combining global and local ranges with

local fitting on residuals, thereby takes on a multi-resolution effect that has been shown to yield

highly accurate predictors—better than ordinary laGP ones—in many settings (Gramacy 2016,

Section 3.2). Predictions from the global/local hybrid is facilitated by adding their respective point

predictions and combining the variances for the mean, in the case of the global model, and their

full variance from the laGP fits.

1.4 Gap Filling

The gapfill method is implemented in the programming languages R/C++ and is available as

open-source R package gapfill (Gerber 2017). Since the method predicts each missing value

separately by taking only a subset of the data into account, it is straightforward to parallelize the

algorithm. We use tools from the R package foreach (Analytics and Weston 2015) to parallelize

the prediction via OpenMP (OpenMP architecture review board 2016) or MPI (MPI Forum 2016)

back-ends. More information about the usage and implementation of gapfill is given in the

reference manual of the R package. The manual also highlights the flexible software design, which

allows the user to easily modify or replace large parts of the algorithm in order to optimize it for

specific datasets.

The following R code was used to predict the missing values of the satellite dataset:

library("gapfill")

library("doParallel")

registerDoParallel(40) # run 40 tasks in parallel

library("abind")

load data

6

load("data/SatelliteTemps.RData")

rearrange data as matrix

data <- with(sat.temps,

array(Temp,

c(length(unique(Lon)), length(unique(Lat)))))

dim <- dim(data)

nx <- dim[1]; ny <- dim[2]

display data

Image(data)

augment data: since the gapfill method is designed for

spatio-temporal data, we artificially create 9 additional

and similar images by shifting the given image

data_augmented <- abind(data,

data[c(1,1:(nx-1)),],

data[,c(1,1:(ny-1))],

data[c(2:nx,nx),],

data[,c(2:ny,ny)],

data[c(2:nx,nx),c(2:ny,ny)],

data[c(2:nx,nx),c(1,1:(ny-1))],

data[c(1,1:(nx-1)),c(2:ny,ny)],

data[c(1,1:(nx-1)),c(1,1:(ny-1))],

data[c(3:nx,nx,nx),],

data[,c(3:ny,ny,ny)],

data[c(1,1,1:(nx-2)),],

data[,c(1,1,1:(ny-2))],

along = 3)

dim(data_augmented) <- c(nx, ny, dim(data_augmented)[3], 1)

predict missing values

out <- Gapfill(data_augmented,

only predict missing values in first image

subset = which(is.na(data_augmented[,,1,1])),

use parallel processing via R package foreach

dopar = TRUE,

tuning parameters of the algorithm

initialSize = c(2L, 2L, 100L, 100L),

7

nTargetImage = 2,

nQuant = 3,

restrict values to the following range

clipRange = range(data_augmented[,,1,1], na.rm=TRUE),

return prediction interval

nPredict = 3, predictionInterval = TRUE)

extract prediction and prediction interval

prediction <- out$fill[,,1,1,1]

ciLo <- out$fill[,,1,1,2]

ciUp <- out$fill[,,1,1,3]

REFERENCES

Analytics, R. and Weston, S. (2015), foreach: Provides Foreach Looping Construct for R, R pack-

age version 1.4.3.

Chaloner, K. and Verdinelli, I. (1995), “Bayesian Experimental Design: A Review,” Statistical

Science, 10, 273–304.

Gerber, F. (2017), gapfill: Fill Missing Values in Satellite Data, r package version 0.9.5.

Gramacy, R. B. (2016), “laGP: Large-Scale Spatial Modeling via Local Approximate Gaussian

Processes in R,” Journal of Statistical Software, 72, 1–46.

Kang, E., Liu, D., and Cressie, N. (2009), “Statistical analysis of small-area data based on inde-

pendence, spatial, non-hierarchical, and hierarchical models,” Computational Statistics & Data

Analysis, 53, 3016–3032.

MPI Forum (2016), “Message Passing Interface (MPI) forum,” .

Nguyen, H., Cressie, N., and Braverman, A. (2012), “Spatial statistical data fusion for remote

sensing applications,” Journal of the American Statistical Association, 107, 1004–1018.

8

OpenMP architecture review board (2016), “OpenMP application program interface, version 4.5,”

.

9

