Bashkësitë
Bashkësia është koncepti themelor i matematikës bashkohore. Bashkësia përbëhet nga objektet të cilat kanë së paku një veti të përbashkët. Objektet e bashkësisë i quajmë elemente të bashkësisë. Emërtimi dhe shënimi i bashkësive zakonisht bëhet me shkronja të mëdha të alfabetit latin. Caktimi i bashkësive bëhet në dy mënyra :
- Duke i numëruar elementet e bashkësisë nëse numri i elementeve është i vogël si p.sh.:
- Duke i përshkruar vetit e përbashkëta të elementeve si p.sh.:
Bashkësitë numerike
[Redakto | Redakto nëpërmjet kodit]Bashkësia e numrave natyral:
Bashkësia e numrave të plotë:
Bashkësia e numrave racional:
Bashkësia e numrave real:
Bashkësia e numrave kompleks:
Bashkësia e numrave çift: ={2,4,6,8,...}
Bashkësia e numrave tek: ={1,3,5,7,9,...}
Veprimet me bashkësi
[Redakto | Redakto nëpërmjet kodit]- Prerja e bashkësive
Prerja e bashkësive dhe quhet bashkësia e cila i përmban elementet e dhe figura.
- Unioni (apo bashkimi) i bashkësive
Unioni i bashkësive dhe quhet bashkësia e cila ka të gjitha elementet e bashkësive dhe figura. Për unionin e bashkësive vlejnë këto ligje :
- Ligji i indempotencës
- Ligji i kumutativ
- Ligji asociativ
- Ligji distribtiv
- Ligji distribtiv
- Diferenca e bashkësive
Diferenca e bashkësive dhe quhet bashkësia e cila ka vetëm elementet e bashkësisë që nuk i takojnë bashkësisë figura.
- Diferenca simetrike e bashkësive
Diferenca simetrike e bashkësive dhe quhet bashkësia e cila ka vetëm elementet jo të përbashkëta të bashkësive dhe figura.
Relacionet
[Redakto | Redakto nëpërmjet kodit]Nëse me shënojmë bashkësinë jo të zbrazët dhe me relacionin (raportin, marëdhëniet ) mes elemteve të -së, atëherë për themi se është relacion binar.
Relacion binar quhet çdo nënbashkësi e katrorit kartezian :
Vetit e relacionit binar janë:
Refleksiviteti
Nëse në bashkësinë jo të zbrazët vlenë relacioni i cili ka vetitë dhe atëherë themi se kemi të bëjmë me relacionin binarë.
Në të kundërtën nëse vlen:
themi se kemi të bëjmë me relacion jorefleksiv.
Simetria
Nëse në bashkësinë jo të zbrazët nga relacioni binar rrjedhë atëherë themi se kemi të bëjmë me relacion binarë simetrikë
Në të kundërtën nëse vlen:
themi se kemi të bëjmë me relacion asimetrikë.
Transitiviteti
Nëse në bashkësinë jo të zbrazët nga relacionet binare dhe rrjedhë atëherë themi se kemi të bëjmë me relacion binar transitiv
Në të kundërtën nëse vlen:
themi se kemi të bëjmë me relacion intransitiv.
Relacioni i ekuivalencës është relacioni binarë i cili në bashkësinë është refleksiv, simetrik dhe transitiv. Simboli i relacionit të ekuivalencës është " " .
Relacionet më të rëndësishme të ekuivalencës janë barazia, paralelshmëria, kongruenca dhe ngjashmëria. Po ashtu ekuacioni i ekuivalencës mundë të zbërthehet në klasa të ekuivalencës.
Relacioni i renditjes është relacioni binarë i cili në bashkësinë është refleksiv, antisimetrik dhe transitiv.
Nëse relacioni i binarë në bashkësinë është irefleksivë, asimetrik dhe transitiv, atëherë themi se kemi të bëjmë me relacionin rigoroz ( të renditjes).
Relacion ndërmjet dy bashkësive është prodhimi kartezian i bashkësive jo të zbrazëta dhe . Prodhimi kartezian është ç´do nënëbashkësi për të cilën vlen :
Pasqyrimet
[Redakto | Redakto nëpërmjet kodit]Pasqyrim (funksion, rifigurim ) i bashkësisë në quhet relacioni ndërmjet dy bashkësive dhe , i cili ka këtë veti :
Elementet e bashkësisë që pasqyrohen në bashkësinë janë origjinal (zanafilla, fytyra) e pasqyrimi, ndërsa elementet përkatëse të bashkësisë që i shoqërohen origjinaleve quhen transformati (figura, përfytyrimi) i pasqyrimit. Pasqyrimet zakonisht nuk shënohen me por me etj. Shënimi i pasqyrimeve bëhet në disa mënyra varësisht nga lëmit në të cilën përdoret. Disa shembuj të shënimit të pasqyrimeve po i prezantojmë më poshtë.
- Shënimi simbolik i pasqyrimit
ose
- Shënimi i pasqyrimeve te bashkësitë e fundme (me simbole te Wik-it ende nuk mundem)
- Shënimi i pasqyrimeve në formë tabelore (me simbole te Wik-it ende nuk mundem)
- Shënimi i pasqyrimit si formulë matematikore
- Funksioni invers
Nëse për pasqyrimin vlen që ç´do element i dhe ekziston një elementë i tillë që :
atëherë themi se kemi të bëjmë me pasqyrimin invers të pasqyrimit .
Pasqyrimi invers ekziston vetëm për pasqyrimet bijektive.
Shënimi i pasqyrimit invers zakonisht shënohet si :
Për pasqyrimin themi se është kodomen i domenit dhe në të njëjtën kohë domeni është kodomen i .
Figura:
- Shumëzimi i funksioneve
Me shumëzimin e pasqyrimeve nënkuptojmë, shumëzimin e dy e më tepër pasqyrimeve (funksioneve), ku elementit të bashkësisë i përgjigjet (ekziston së paku një) element i bashkësisë , i tillë që në bashkësinë ekziston së paku një element i cili i përgjigjet .Në gjuhen matematikore kjo duket si :
Veprimet binare
[Redakto | Redakto nëpërmjet kodit]Veprim binarë në matematik quhet pasqyrimi f në bashkësinë jo të zbrazët, i tillë që:
Ligjet e veprimeve binare
[Redakto | Redakto nëpërmjet kodit]- ligji komutativ është nëse vlen:
- ligji asociativ është nëse vlen:
- ligji distributiv është nëse vlen:
- Nëse në bashkësinë jo të zbrazët është i përkufizuar veprimi binar atëherë për themi se është grupoid.
- Po që se veprimi binarë grupoidit është asociativ, atëherë për të themi se është semigrup
- Nëse në bashkësinë jo të zbrazët ekziston një element me vetinë:
,atëherë për themi se është element neutral.
Grupet dhe nëngrupet
[Redakto | Redakto nëpërmjet kodit]- Arikulli kryesor: Teoria e grupeve
Teoria e grupeve, e lindur ne shekullin 19 si disipline matematike, është nje paraprires i matematikes moderne, sepse ndane perfaqesuesin (p.sh. numrat reale) nga struktura e brendeshme (ligjet e llogaritjes ne grupe).
Punime te medha për teoriene e grupeve vijne nder te tjere nga Evariste Galois, Niels Henrik Abel, Sophus Lie.
Unaza,Trupi dhe Fusha
[Redakto | Redakto nëpërmjet kodit]- Unaza
Unazë është bashkësia jo e zbrazët që ka të përkufizua veprimet binare të mbledhjes dhe shumëzimit, ku
- është grup abelian,
- është grupoid dhe
- shumëzimi është distributiv ndaj mbledhjes.
- Trupi
Trup quhet unaza asociative nëse është grup, ku .
- Fusha
Fushë quhet trupi nëse shumëzimi është kumutativ.
- P