INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleedthrough, substandard margins, and improper alignment
can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9" black and white photographic
prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

Bell & Howell information and Leaming
300 North Zeeb Road, Ann Arbor, Mi 48106-1346 USA

®

800-521-0600

A State-oriented, Partial-order Model and Logic for Distributed Systems Verification

Vasumathi K. Narayanan

A Thesis
in
The Department

of

Computer Science

Presented in Partial Fulfilment of the Requirements
for the Degree of Doctor of Philosophy at
Concordia University
Montreal, Quebec, Canada

April 1997

© Vasumathi K. Narayanan, 1997

i+l

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliothéque nationale

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre réference

Our file Notre référence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autornisation.

0-612-40312-2

Canada

ABSTRACT

A State-oriented, Partial-order Model and Logic for Distributed Systems Verification

Vasumathi K. Narayanan, Ph. D
Concordia University, 1997

A theory of state-oriented, partially-ordered model named, Communicating Minimal pre-
Jfix machines (CMpms) that represent a fixed set of processes, is presented. Each of these
Mpms is a possibly infinite, State Transition System. Communication among a set of
Mpms is by synchronization. Enriched by a global, causal dependency relation among the
Mpm-states that is partial, the disjoint union of CMpms comprise a sum machine. It is
shown that the set of all global states of the product machine of CMpms is obtainable
dynamically from the local Mpm-states of the sum machine using the monotonicity prop-
erty, linking the product machine’s global states and the sum machine’s local ones. In this

sense, the product-machine is generated virtually, simulated by the sum-machine.

More interestingly, it is shown that from every given set of Communicating Finite state
machines (CFsms), a truncated (finite) version of a set of CMpms and so a sum machine
can be generated in a recursive functional manner. The set of global states of the product
machine of CMpms surjectively map onto that of CFsms. Consequently, it is possible to
generate all the global states of the latter using the local states of the sum machine com-
posed by a corresponding set of CMpms. The sum machine models true causality and
hence true sequence, true concurrency and true choice among local states, as exhibited by
the original input CFsms specification without enumerating all the runs of the system nor

all the nondeterministic interleavings of each run as opposed to the product machine.

A Spatial, temporal logic or space-time logic named CML (Computational Mpms Logic),
is proposed that combines the conventional branching time feature with what is proposed
as branching space feature: the latter corresponds to concurrency just as the former to
conflicts, as exhibited by the input specification. CML therefore introduces operators to

reason about properties of interleavings within each run, orthogonal to the branching time

operators, to reason about runs. The logic turns out to be more expressive than the ones in
vogue for specifying properties of concurrent systems. In addition, CML coupled with the
sum machine model, enables the implementation of a deterministic model checker algo-
rithm to verify the properties of a given CFsm system that is free of exponential complex-

ity caused by the enumeration of runs as well as that of all interleavings within each run.

iv

Acknowledgments

I thank both my parents who were my very first teachers in life. I thank them both, my
uncle, aunt and grand parents for all the education and support they had provided while
fostering me. I take this opportunity to think in gratitude, of all my teachers who influ-
enced my thinking, formally or informally, through out my life which led me to take up

this research.

It is said that, any accomplishment of work, however small, is ninety nine percent, inspira-
tion and one percent, perspiration. I attribute the entire credit of the former to my teacher,
mentor and supervisor, Prof. H.F.Li. I thank him for all his inspiring, deeply self-absorbed
flow of lectures during our discussions. I thank him for accepting the proposal of this
research despite the fact that it was contrary to his belief. I greatly appreciate his confi-
dence in still accepting and funding the project, supervising and refereeing the work at all
stages, providing me with very useful and challenging feedback and criticisms at every
stage, despite my non-resident status. They went a long way in raising my standard of
thinking, with a better grip of the subject and improving the presentation after every com-
munication with him. I thank him for all the useful pointers to the references. I am grateful
to him for his patient scrutiny and corrections of all iterations of the thesis draft. It makes

me very lucky indeed to have associated with him for a decade as his student.

I like to thank all my instructors at Concordia University, who enriched my knowledge: I
thank Dr. P.Grogono, my first teacher at Concordia, who apart from his lectures, gave me
a chance to work on a survey of Paradigms of Concurrent systems as a starting point of
this research. I thank Dr. B_Sarikaya for reinforcing my interest on synchronous communi-
cation systems, and throwing light on many related languages; the language LOTOS in
particular, in the context of protocol validation and concurrent system verification. I could
gather very useful survey material from his course. I thank Dr. W. Atwood for giving me a
chance to compare various orthogonal paradigms in concurrent systems and conclude that
the state-oriented one is as workable as event-oriented paradigm, which has been more

popular than the former in the last decade. This sowed the seed for this thesis.

I thank Dr. M.Okada for introducing me to formal and mathematical logic. I thank Prof.

V.S.Alagar for giving me a chance to work on a LOTOS based project in his course which

enriched my interest in distributed systems in the context of specifications and Abstract
data types. 1 thank Dr. D K. Probst for giving me a chance to explore Distributed Systems
in the context of Operating Systems Design. I thank Dr. C. Lam, Dr. T.D. Bui and Dr. J.
Opatrny for letting me audit their fundamental courses on Computer Science, which were
to my benefit. I thank Dr. Li again for directing me to all the above instructors and their

courses, relevant to my research work and its foundation.

I thank Dr. DK Probst again for hearing my preliminary presentation and for his encour-
aging comment that there is something positive in the work which with simplified presen-
tation would make a meaningful one. It gave me a lot of impetus in expediting matters,

and in revising the manuscript.

I take this opportunity to thank Dr. Alagar again. I thank him for his advice and useful
pointers to references on Temporal logic particularly while writing the thesis proposal. I
am grateful to him for his wise, compassionate and philosophical advice whenever we
met. I am grateful to him for patiently hearing and comprehending my presentations
despite their inadequate organization, for recognizing the positive aspects and making use-
ful suggestions, all of which contributed to the beginning of the thesis write-up. [am very
thankful to him for his patient reading and corrections that helped me refine the presenta-

tion of the final write-up.

I thank the authors of the prime references made through out this thesis and also the rest,
which provided me a great deal of motivation, guidance and as benchmarks for compari-
son in my research. Apart from the facilities and services of the libraries at my A/mamater,
Concordia University at Montreal, I thank also the library facilities and services of all the
following Institutions and Organizations: McGill University and University of Montreal at
Montreal, Bell Northern Research, Cariton University and National Research Council at
Ottawa and Stanford University at California. Though not all the information I accessed,
the reminiscences of my reading experience at each one of these elite facilities and their
picturesque surroundings are indelibly imprinted in my memory. I can never forget the
unfailing searches at NRC library, Ottawa, a sophisticated facility I have ever come

across.

vi

My sincere gratitude to the thesis examiners that gave me their comments and modifica-
tions after the defence, which were very useful to me in making this revision. I only wish,

I had a chance to respond to most if not all of them, during the defence.

I thank Dr. R.Jayakumar for his patient listening of my presentations. I thank Dr.
T.Radhakrishnan, Dr. P. Goyal and Dr. B. Desai for their wishes; the rest of the staff and
secretaries of Concordia University, in particular Ms. Stephanie Roberts, Ms. Halina
Monkiewicz, Ms. Angie De Benedictis and Ms. Terry Czernienko for their kind services,
and the entire management including the Dean’s office for all the support and facilities

provided to me as a student.

My sincere apologies for all the errors that may remain uncorrected in the manuscript,

typographical or otherwise.

I thank all my family for their support. I am thankful to my husband Hari, for all his sup-
port and incredible patience with me especially when I was adjusting to life in Canada. I
am thankful for his wise suggestions and advice whenever I needed them. I am grateful to
him for providing the resources, all the documentation facilities and help; for being very
tolerant to my domestic slips during this commitment. I thank both my children, Sumitra
and Spatika, both of whose births during the course of this work gave me more momentum
and energy towards this research, than ever before, despite my parenting occupation. I
apologize to them for being an absent-minded parent on innumerable occasions. I thank

them all for having thrived patiently through my illness.

I thank my older brother Rathnam, for all his clinical support during my critical illness in
the course of this work and my younger brother Sridhar, and sister Jayashree, for all their
continuous moral support and encouragement. I thank all those well-wishers who are not
specifically mentioned here, from the circle of extended family and friends, for their sup-
port and concern during this research and my sickness. I thank my parents again for going
through the anxiety with me, especially my mother for substituting me in my domestic
responsibilities for more than a year during the course of this research and its completion.
I thank her for teaching me great axioms of parenting, which is a more challenging profes-

sion than anything else in my conclusion after this research.

vii

I thank the Almighty for giving me the strength and perseverance to undertake and com-
plete this research in its current form amidst much of culture shock, climatic shock and ill-

health.

viii

Dedication

I dedicate this work to my dear grandmother, who reached the heavenly abode at the end
of the year “96, at the age of ninety six, who was ever a symbol of patience, hard work and

compassion.

LiSt Of FIGUIESoooiiiiiiii i et e e e e Xvii
List Of TADIES . ..ottt ettt e e Xviii
List of Special SYmbOIScoooiiiee e Xix
Chapter-1 INtrodUCONcceveneeeiice ettt e 1
1.1 Goals Of RESEAICHooiiitieiiiee et e e e e e e e 1
1.2 Verification of Finite Concurrent Systems. 1
1.2.1 Model-CheCKINg ..ot e 2

1.3 Computational Models of Concurrent SyStemSc..cocoiiiiiiiiiiiiiii e 2
1.3.1 State-Oriented Paradigm........c.cooooiiiiiiiie e 3

1.3.2 Event-Oriented Paradigmcccoooiiiiiiiiii e 3

1.3.2.1 Petrinet Modelscoooiiiie e 4

1.4 Logicin System VerifiCatiONcccoieuiiiiiiinii ettt s e e e s 5
1.4.1 Computational Model & Temporal Logic........cccccccermiriininiiniiiecieccene 6

1.4.1.1 Taxonomy of Computational Models and Temporal Logics.......... 7

1.4.1.2 Themeof QurResearch ... 8

1.4.2 Theorem Prover Versus Model-checker ... 9

1.5 Summary of the Desirable Needs of a Model-checking Method............................... 10
1.5.1 The Drawbacks of Currently Existing Popular Methodology 10

1.5.2 The Motivation and Proposed Workccocooimiiiiiiniiice e 11
Chapter-2 Communicating Minimal prefix machines (CMpms) 14
2.1 Formal Definition of Communicating Minimal prefix machines (CMpms) 14
2.1.1 Communication among Mpms, to define CMpms..................cccccooiiiinn. 15

2.1.1.1 Syncg,, /Simultaneity Relation is Equality 17

2.1.1.2 Initial Mpm-states are Simultaneouscoceeeiieiicinnnnnn. 17

2.1.1.3 Causality, the Global Dependency-order among Mpm-states....... 18

2.1.1.4 Significance of State Order Versus Event Order.......................... 19

2.2 Certain Theoretical Basics Of MPMSc.coooiiiiiiiiiiiic e 21
2.2.1 Primary versus Secondary MPMSccccooviiimiiiiiiiiniccccce e e 22

2.3 The Sum Machine, Mcooneoioeeeeeeeee ettt et 23
2.4 Sequence, Conflict and Concurrency in ZM. ... 24
2.4.1 Sequence in Mttt e e e 24

2.4.1.1 Sequentiality Versus Causality among Mpm-states 24

2.4.2 Conflicts in ZMot 25

2.4.2.1 Global Conflicts are propagated Local Conflicts 26

2422 Induced Local Conflicts............oocoomiimiiiiiiieie e 26
2423 Backward Conflicts in ZM ... 27
2.4.2.4 Uniqueness of (Synchronous) Partner Transitions 28
2.4.3 Concurrency in ZM ... 29
2.4.3.1 Concurrency is not ‘Unorder’ ... 30
2.4.3.2 The Paradox of Concurrency in ZM ... 31

2.4.3.3 Synchronization: the Controlling Medium of Concurrency and
CauSAlItY ..o 32
2.4.3.4 Concurrent tranSItiONS........ccueemeeerueme oo e cecceeeeceeemnaeeeesnees 34
2.5 The Product machine TIM e oo 34
2.5.1 Sequence and Choicein TIM. ... 36
2.5.1.1 Sequencein TTM 36
2.5.12 Choicein TIMt 36
2.6 Analysis of [IM withrespectto ZM ... 36
2.6.1 Global-state ThEOTemMcoooioiiiiiiieieieieeee et e ee e e 37
2.6.2 Choices & Conflicts in TIM ... 37
2.6.2.1 Conflictsin TIM ... e 37
2.6.2.2 Non-deterministic choices in ITM ... 38
2.7 Extended Sum machine, T M e e er et e ee s e e e e e se e e s e ea e anen s nnaseneenne 39
2.7.1 Minimal Prefix, MP ..o 39
2.7.2 Global-state COrollary..........coccocoeriimiimeiie e ee e 42
2.7.3 Minimal prefix and Synchronization ... 42
2.7.3.1 MpLEMMA....coiiiiiiiiii e 42
2.7.3.2 Minimal Prefix as a one-to-one Functioncccocociieinnn. 44
2.7.4 Minimal Prefixes and Labelled Partial Order...................ooiis 45
2.7.5 Local Configuration, C(Spi)--- -« -coereererrmrrermerimmmiecrsareneesses s 45
2.7.6 General Configuration C............oooiiiiiie e 47
2.7.6.1 Path oot e 48
2.7.6.2 Disjointness Theoremcccoociiiiiniiiiiniin e 48
2.7.6.3 Disjointness Theorem and Labelled PO 50
2.7.6.4 Final State Vector of a Configuration..............c..coooeoniiinieennn. 50
2.7.6.5 FSVLEMMAa ..o e 51
2.7.6.6 Minimal prefix and Concurrency..........ccocoovovvieieeccencnencees 53
2.7.6.7 Concurrency Lemma.. ..o 53
2.7.6.8 FSVTREOIEM ..o e e e 54
2.7.6.9 Continuations of Configurationsin EM. ... 55

Xi

2.7.6.10 Conflict between Configurationsccccooeemereeeiceeeieeneen. 55

2.7.7 Configurabilityo 55

2.7.7.1 Configurability Theoremcccooiieiiiiiiiiiiiecieiiee. 55

2.7.7.2 Configurability Corollarycoocooiiiiiiimiiiii 57

2.8 Equivalence Classes of Final-state-vectors of M ..., 57
2.8.1 Asynchrony with respect to an Mpm-statec..ccooceninnieeineceeeee. 57

2.8.2 Equivalence Relation, RIMP;coooiiiiiiiie e 57

2.9 Final-state-vectors of ZM and Global states of TIMc.ccccoiiiiiiiiiiie 59
2.9.1 Equivalenceof TMand TTM ... e 60

29.1.1 Equivalence Lemmaccooooimiiiiiieeieeeeee e 60

2.9.2 Minimal prefix and MonotoniCityo.oooooiiiiiiiiii e 60

2.9.2.1 Monotonicity Lemmaccooeiiiiiiiiiiiiie e 60

2.9.2.2 Equivalence Theorem ..., 61

2.9.2.3 The Non-equivalence of ZMand ITM............... 63

2924 Summation Lemma.................ooooiiiiiiiiiiee e 64

2.9.3 TIM Generator TheOTemM..........oc.ooiiiiiiiiii e 65

2.9.3.1 Causality Lemma..............ccoooiiiiii e 66

2.9.3.2 Causality Theoremoooooeiiiiieiiieeee e 67

2.10 Runs and Interleavings................ooooooimiiiiiieeeeeee et 68
2.10.1 Conflict-free Sum-machine and Product machine............................. 68

2.10.2 Definition of @ RUNc.ooiiieiiiiiieect et e 69

2.10.3 Non-enumeration of Runsand M ... 70

2.10.4 Interleavings of @ RUN...............c.oooi e 74
2.10.4.1 Interleaving Insensitivity/Independence of ZM........................ 75

2.11 CMpms with respect to a given CFsms Specificationcccoooeiiiiiiiniien 71
2.11.1 ZM Generator TheOremccoooiiiiiiiieii e 78

2.11.2 TIF Generator Corollaryccocoomiiiiioiiiice e 82

2.12 Finite Model Of CMPMS ..o e 83
2.12.1 Finiteness of CMpms with respect to CFSmScccccccoiinnieienencn. 84
2.12.1.1 Cut-off states, as viewed in ZMccooooiiiiiiiiiiiiiiieeanan. 84

2.12.2 Minimal prefixes, Equivalence relations and Cut-off.......................... 85
2.12.2.1 Cut-off Lemmacccooiiiiiiiee e 85

2.12.22 Cut-off Theoremccooiiiiiiiiieeeeeeee e 86

2.12.2.3 Cut-off with respect to Local statescccoccoeveeoniiiiiieeeeene 87

2.12.3 Equivalence between Finite CMpms and CFSmSc..cccceceveeiieieiennnnn.. 88
2.12.3.1 Equivalence Theorem IL..................oooiiiiiiiiiiiiieccceeeea 88

2.12.4 Induced Local Conflicts due to Non-deterministic Synchronization......... 88

2.13 Justice, Fairness among Runs/Processes of CMpPMScccocvivineneneeecieneee. 90

xii

2.13.0.1 Run, an Infinite entityoooioiiii e 90

2.13.1 Classical Definitions of Justice & Fairnesscooio. 92

2.13.2 Unfaimess In CMPMS ... et 92

2.13.3 Implementing Fairmess in ZM.........oooii e 93
2.13.3.1 Recording of asynchronous, non-local Cutoffs 94

2.13.4 Justice among Runs of CMPMS ..o e 95

2.14 Generation Algorithm of CMpms , XM with respectto CFsms 96
2.15 CMpms, CFsms and Formal Languages.................c..coooiiii e 98
2.16 Complexity Saving with Sum Machine of CMpms................ .. 100
2.16.1 Complexity Lemmacoommmiiii e e 100

2.17 Complexity Theorem ..o e 101
2.18 Summary Of CIMPIMIS. ... e e e e 103
2.19 Comparison and Contrast of ZM with TTF ..., 105
Chapter-3 Computational Mpms Logic (CML)coeuiiiiiiinnene. 106
3.1 Logic in the Context of System Verficationcocooeiiiieiieici i 106
3.2 The Perspective of CML, Abstract and Concreteccccceiiiieiiiieienienceee 108
3.3 Background Of CML ...t e et e e 109
3.4 CML, A Branching Space-time LOZICcccceeimiriiiiie e 109
3.4.1 Branching Time ASPECLoooiiiiiii et e et ee e e 109

3.4.2 Branching Space, A New Dimension of CMLcooiiinine 110

3.4.2.1 Duality of Conflict and Synchronization Points......................... 111

3.4.2.2 Branching Space Versus Branching Time 111

3.5 CML, A ‘Monadic Third-order’ Logic.........cccoccevemmnneerirnieeeens et enee 112
3.5.1 Third Order LOZIC.........omiiiiiieeeeeee e et 112

3.5.1.1 Break-up of a Monadic Third-order Formulaof CML.............. 112

3.5.2 Branching Space and Interleavings..........cccooeeoiieeeiiiciiricecee e 113

3.5.3 Branching-Time and Runsccoccciiiiiiiiiii i e 114

3.6 Building Blocks Of CML ..ottt et et 115
3.6.1 Propositional Operators of CMLccccoiiiiiiiiiin e 119

3.6.1.1 Atomic Proposition & Satisfiabilityccocoiiii . 119

3.6.1.2 Conjunction of Propositionsc.cccceeeeecoririciininnncne e 120

3.6.1.3 Disjunction of propositions..........c.cceooeieeeueeeeireeieerenceee e 120

3.6.1.4 Complement of @ propoSitionccceeceercoecriencccncnenceecnc 121

3.6.1.5 Proposition with Implicationc..cccocooiiins 121

3.6.1.6 Propositions versus Predicates of CML...............ccooiii. 122

3.7 Modal and Branching Operators of Propositionsccccoevecvrinintieeceee e 122

xiii

3.8 Formal Definition Of CML ..o e eee e e e e e e eae e emmnennen 123

3.8.1 CML SHTUCIUTES. ...t ce et eeeeeeee e ee e e eme e ane e e 123
3.8.1.1 From Partial to Total Order Structure...............cccccormrecienneicennne. 123
3.8.2 The Modal OPerators........cccooiiiiiiiie et 124
3.8.3 The Branching Operators -- Space & Timeccoeeeiiiiiiiiiiiiiiiiiennes 125
3.8.4 Syntax of CML g/ CMLjp Language ... 126
3.8.4.1 State, Interleaving (Path), Run Formulae 126
3.8.5 Syntax of CMLSM Language...........occooemeuiioiiieeiceeceeeeeeceeeeeee e 127
3.8.5.1 Global-state, Succession and Configuration Formulae............... 127
3.8.6 Models and Semantics Of CML ... 128
3.8.6.1 Total and Partial OrderModelscoocooiiiiiiiiis 128
3.8.6.2 Semantics of CML s, a Total-order Modelc..... 129
3.8.6.3 Semantics of CMLY), the Extended Partial-order Model 131
3.8.7 Equivalence of the Models CML pjp, CML jps and CMLgM ..ooocvevenvnnne 134
3.8.7.1 Equivalence Theorem Iccooiiiiiiioni e 135
3.8.8 Satisfiability of CML formulae and Global-state Reachability 135
3.8.8.1 Primitive Conjunctive Propositions and Global-states 136
3.8.8.2 Polynomial Versus Exponential size of Propositions................. 136
3.8.8.3 Formulae in ITF domain and Cut-off............................. 136
3.8.8.4 Reuvisiting the Role of Interleaving operator................ccccccceeee. 137
3.8.9 Non-monadic CML Formulae ... 139
3.9 CML with respect t0 M ... e e e 141
39.1 AXIomS OF CML ..o e 142
3.9.2 InferencCe RULESooovnviiieieicee et e 144
3.9.2.1 Interleaving Theorem...............ccooieimiiiiiieeiieee e 145
3.10 Summary of CML ..o et e e s 146
Chapter-4 System Verification with CMpms and CML................... 149
4.1 Minimal prefix and Orthogonal branching in Space & Time..............cccccocciiinn. 149
4.2 Monadic Third-Order CML Formulae handlied by the Model-checker.................... 150
4.2.1 Choice of Propositions handled by the Model-checker............................. 151
4.2.1.1 Polynomial Versus Exponential size of input CML
formulae Checked..............cooooiiiie e 151
4.2.2 Translation of CML g to CMLy)y Formulae.........ooceoiniiiiiiiicacnnn. 152
4.3 Definitions of Keywords used in Model-checking................oocooiiiioiiiiciiecis, 154
4.4 Outline of Model-CheCKINGoooviiiiiiiiiie e e 155
4 4.1 Distributed, Nested Depth First Search ... 155
4.4.2 Disjointness of the Search................ccoooooiiiiiiii e 156

4.4.2.1 Conservation of Visits in the Recursive Search.......................... 156

4.4.3 Localized Search implies Global -—- Non-enumeration of Runs 157
4.4 4 Secondary Mpms, Continuations and Configurabilityc..c.c.... 159
4.4.5 Cyclicity TREOTEM ...t ettt e 160
4.5 Fairmess among Mpms and Model-checking ... 162
4.5.1 Unfairness TheOT@Moviiiiiiiiieieeie e e e e e e e 162
4.5.2 Non-monadic, Nested CML formulae and Labeling Algorithms 164
4.6 System Invariants and Deadlocks Detectioncocooiiiiiini e 165
4.6.1 DEAALOCKS.ot eceee e e e eeeeee e e e e nne e ras e e e et 166
4.6.1.1 Deadlocks Detectionccoeiiimieeeeecciae et 166
4.7 Sum machine Generator & Model-checker Algorithms ... 167
4.7.1 M Generator Algorithm (i)ccoomiiiiiii e 168
4.7.2 Tools for Complexity Analysisccccooiriiiiiiiii e 172
4.7.2.1 Complexity of Generator Algorithm (1).........ccocooeeirenieneecns 174
4.73 An Efficient Alternative of Algorithm (1)..........c.ccoccoii 174
4.7.3.1 Description of Modification in Algorithm (i)c.ccocoooveenen. 175
4.7.4 IM Generator Algorithm (11)........ccooooeeeomiiiiie e 176
4.7.5 Steps of generation of Mpms from CEFsmsccoooimiiin 184
4.7.6 Complexity of Algorithm (ii)........ccoeomeeirioriieiciii i 185
4.7.6.1 Size of Sum machine as a Primary Parameter............................ 186
4.7.7 Size of sum machine in terms of Size of CFsmsccccoiiiiiiiiiiiiies 187

4.7.7.1 Non-determinism in Specification, Property Checked and the
Checking Procedure................ooooeiiieeieeiiiiiiieee e 188
4.7.8 The Easter-Egg Hunt Algorithm for Model-checkingccceecececcenncensn. 190
4.7.9 Analysis of the Model-checker Algorithmcooiiii 196
4.7.9.1 Upper bound of Complexityccooimiiminincee 196

4.7.9.2 Size of the parameter m and Non-deterministic

SYNCAIOMIZAtIONcoeviieiiiteeieie et et 200
4.7.9.3 Upper bound Complexity of chk_all_interleavings()................. 201
4.7.9.4 Total Upper bound Complexityc.ccccovimiimmmiiiiniieneee 201
4.7.9.5 Worst-case Complexity........cccooeeemuieioimiiimie e 202
4.7.10 EXAMPLES......oooieeeiieeeieee ettt e e s 202
4.7.11 Sketch of Proof of Correctness of Model-checker....................coccooo 205
4.8 Complexity Theorem IL ...t 207
4.9 Summary of Verification/Model checking..............ccoocooiii 209
Chapter-5 Summary and Conclusion.........cccccociemiiiinniiininennencnneen. 211
5.1 Whatis accomplished?o 211

Xv

T O TS N s V= 20 00) (=5 1 « DONRUU U U U UUORT 211

5.1.2 A SOIULOM coeneiieeeeeeceeeerecscneensenctnstensenenesesssrsssnresene s s reseras s ensnasaess sanssssnns 212

5.2 Comparison & Contrast with Related Work in a Pragmatic Perspective................. 213
5.2.1 CML Versus Partial order Reduction Methods.................... 213

5.2.1.1 Disadvantages of PO-reductionccoccoooiiiiiiniinnenenee 215

52.1.2 CML versus CTL-X.......ooo e e 216

5.2.2 Comparison with Net based Models..............ccccooi 216

5.2.2.1 Comparison with Petrinet based analysis tools like PEP Etc. ... 216

5.2.3 Linear Algebra based model-checkingccoooiiiis 217

5.2.4 Tableau Constructions in Model-checkingl 218

5.3 Comparison & Contrast with Peers in an Abstract, Modeling Perspective............... 219
5.3.1 CML Versus CTL @nd FUB) -e.eeemeeeeeeeeeeeeeeee et e 219

5.3.2 Comparison with Traditional Event-Oriented PO Structures 219

5.3.2.1 Comparison with Petri/Occurrence Net Models........................ 221

5.3.2.2 Lacunae of Net modelsoocooiiiiiiiiii e 221

5.3.2.3 Lacunae of Prime event structures with Conflicts..................... 222

5.3.2.4 Comparison with Reisig’s work ...l 223

5.3.2.5 Comparison with McMillan’s work................coiin, 223

5.4 Classical Framework Provided by Sum machineand CML.................ciine 225
5.4.1 Finite Automata Over Partial-orders................ccoooeeiiiiiiiiicie 225

54.1.1 Scope of Work in Automata/Language Theory......................... 226

5.5 CONCIUSION ... e e et e e e mee e et e e e e maesacesaesm e eananens e ean s 227
5.6 True COnCIUSIONooomieeiiee ettt e e e e emne e s e ns 227
5.7 Scope Of FULUTE WOTKooiiiieieiic et 228
REfEIrENCEScoieeieiiiee ettt s 230
PV o] 1= T [GO PUPOU R 235

Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.

W N

12
13
14
15
16
17
18

19
20

List of Figures

Taxonomy of models of Concurrent SyStemscc.ccooiiiiiiieeeeee 7
Taxonomy of different classes of Temporal Logics ..., 8
Pictorial representation of Role of CMpms in alleviating state explosion of
(0 7 1+ V- U OO 12
Example for induced local conflictscccccccooviiiiiiiimiiieeee 27
The product machine [IM of Mj, My and M3 of Fig. D ... 35
Minimal-prefix, A Representative Vector of Global-states.................................. 41
Local and General Configurations as sets of n conflict-free paths.................... 52
[Tr, Conflict-free Sum machine..........ccooooiiiiiiiii e 72
Mpms corresponding to a conflict-free sum-machine............................. 73
Run ITr, (infinite) corresponding to a conflict-free sum-machine Xr................ 74
Example of induced local conflicts due to Non-deterministic and Tight
SYNCRIONMIZAtONS...........ooiieie et 89
Branching time (conflict) and Branching space (synchronization) points........ 111
Partial product machine IIM corresponding to Mpms of Fig.C....................... 118
Partial product machine [TF corresponding to M above........................... 119
Configurability of Local ones to derive General Configurations...................... 160
A conflict-free sum-machine Xr correspondingto a run.ccccccooveeieennnne 161
Stages of Generation of Mpms according to Generator Algorithm (ii) 179
Variation of the size of sum-machine with degree of coupling for two different
SPeCification SLIUCLUIEScocceeerueeetiercenertceeneenresrme e em e e e esnae s e 187
Variation of complexity of chk_all _runs() with the degree of coupling 199
Non-deterministic Synchronization and Enumeration of Runs (induced local
COMPTICIS) ...t e e eas e e e 200

xvii

List of Tables

TABLE 1 Product Machine of CFsms Versus Sum Machine of CFsms...........

TABLE 2 The Logics CTL Versus CML

TABLE 3 Model-checking with CTL/Net logics Versus CML

xviii

List of ial Symbol

Symbols used in the Computational Model (CMPms and CFsms)

Notation Meaning

F; A Finite state machine, Fsm;

Sf A state of F;

St Set of states of F;

Rg Local reachability relation of F;

I1 Cross Product

ITF Product machine of F;, i =1..n

Sf A state of ITF
i.e, Global-state of {F;,i=1..n}

M; A Minimal prefix machine,
Mpm;

Smi A state of Mpm, M;

Smi Set of states of M;

R Local reachability relation of M;

R*; Transitive closure of Rp;

Rtni Kleene closure of Rpy;

SYNcC;, synchronous input partnership
relation

SYNCgyt synchronous output partnership
relation

< causality (dependency-order)

among Mpm-states/vectors

= Equality (identity or similtane-
ity) of Mpm-states or vectors

z Disjoint union of sets

U Set union

N Set intersection

M Sum machine of M;, i=1..n

seq Sequence relation among Mpm-
states

conf; Local conflict relation among

local Mpm-states of Sp;;

Xix

Notation
conf

CcO

Mp;(smi)
Ci(smi)

Fsv(C)

[IM

Meaning
Global conflict relation among
ZShi

Concurrency relation among
non-local Mpm-states of ZSp;

Minimal prefix of spy,;
Local configuration of sp;
General configuration

Final state vectorof C i.e., a
reachable Mpm-state vector

A path of state-tree of M;
Product machine of M;, 1 =1..n
A state of [IM

i.e., Global-state of {M;, 1 =1..n}

i.e, Reachable Mpm-state vector
of ZM

Reachability relation of [IM
A run of [IM

An interleaving of ITr

A run of [TF

An inierleaving of Ilr¢
Subset of

Member of

Not a member of

Not equals

Symbols used in the logic (CML)

Meaning
CML with respect to the product-
machine ITF.

CML with respect to the product-
machine ITF.

CML with respect to the .
extended sum-machine, £ M.

atomic proposition of sg, i.e.,
Peilss)

Notation

APmi

@O QI M X W

until h

g since h

g pos-wait-

forh

g must-co-

wait h

Meaning

atomic proposition of sg;, i.e.,
Pmi(Smi)

Logical Negation operator
Logical And operator

Logical or

implication operator
equivalence operator
Universal operator

Existential operator

Next state modal operator
Previous state modal operator
Future state modal operator
Past state modal operator
Operator for: Always in future
Operator for: Always in past

predicate g remains true until h
does

g is true ever since h was true
Universal run operator
Existential run operator
Universal interleaving operator
Existential interleaving operator
g possibly waits for h

g and h necessarily wait for each
other

Chapter 1
Introduction

1.1 Goals of Research

The goals of this research are to:

Develop a model of a finite distributed system of processes to express causality,
sequence, choice* and concurrency among the entities, states in particular, of the
component processes in their frue forms of occurrence, faithfully as represented by

the input specification.

Specify a wide range of safety and liveness properties of such a system formally
with the aid of /ogic, without foregoing the above characteristics of the system,
concurrency and choice in particular, represented by the model of the system;
thereby attempting to fill the void in the table cited by Reisig in his foundational
survey table of [2].

Develop the verification algorithms to verify the above properties as efficiently as
possible, in particular without the enumeration of all interleavings and the result-
ing state-space explosion and exponential complexity incurred by the traditional

state-transition systems.

We assume an input specification of a fixed set of n communicating sequential processes

represented as a set of n Communicating Finite state machines (CFsms).

1.2 Verification of Finite Concurrent Systems

Proof of correctness of concurrent/distributed systems is non-trivial unlike that of sequen-

tial systems since there is no master process or global clock controlling the system. The

component processes run according to their own local clocks.

Fortunately, the entire set of properties of a concurrent system can be grouped into two

categories, viz., safety and /iveness and proving the correctness of the system amounts to

! In this work, we tieat the phrases, distributed system and concurrent system, equivalently.
2 The terms, true choice and conflict are synonymous throughout the sequel.

verification of these properties. This is the relevance of properties in the verification of
concurrent systems.

A safety property is generally described as: negation of undesirable phenomena in a sys-
tem and a /iveness property as: assertion of desirable ones happening in the system. Dead-
lock freedom and system-invariance properties are the typical examples of safety proper-
ties; properties specified with inevitability and eventuality are among a variety of interest-

ing liveness properties.

1.2.1 Model-Checking

Model-checking is a popular methodology for verifying the properties of concurrent sys-
tems. It consists in determining if the safety and liveness properties of the system
expressed by a specification tool are indeed represented by the computational mode! of the
system. Since these properties stem from the basic characteristics of the system, it is
important that the underlying computational model represents these characteristics faith-
fully, as exhibited by the system.

A rich computational model of a system is one, which reflects the above mentioned prim-
itive characteristics of the system viz., sequence, choice, causality and concurrency
among its entities (states and events), in a faithful fashion as originally exhibited by the
system.

A rich or a powerful specification tool is one which should be able to express the above

characteristics by suitable means.

1.3 Computational Models of Concurrent Systems

We focus on finite, concurrent system verification and there are many ways to model
them. Depending on the primary entities modeled in the system, we have mainly two
classes of models, viz., state-oriented ones and event-oriented models. In the state-ori-
ented systems, many of the system entities are defined primarily with respect to the states
of the system often accompanied by explicit representation of states. In the latter models
on the other hand, they are defined with respect to the events that occur in the system.

State-transition systems come under the first category. Petrinets{7], can be put under this

category albeit indirectly, as will be elaborated. The event-structure based models [15],

[18] fall into the second. Each have their merits and demerits as described below.

1.3.1 State-Oriented Paradigm

The state-transition system is a classical model. Traditionally, the concurrent execution of
a given finite system of n communicating sequential processes, each of which is modeled
as a Finite state machine is represented as a single state-transition system, conventionally

referred to as the product machine.

The main advantage of a product machine is that all the possible szaftes of the system are
explicitly represented and since the properties (safety and liveness) of a system are associ-
ated with its states, it is always beneficial to ascertain all the states of a system in order to

verify its properties. But the two main drawbacks of this paradigm are:

(i) The product machine loses track of all the basic characteristic relations among the
local entities of component processes, in particular, concurrency and conflicts among them
(referred to as true concurrency and true choice respectively), as exhibited by the input
system of processes. It simulates concurrency among unrelated states and events by arbi-
trarily and artificially ordering them (and thus creating a fotal-order among them) in all
possible combinations of non-deterministic choices popularly referred to as non-determin-
istic interleaving of events and states. These artificial, nondeterministic choices are treated
as if they are the true choices of the system thus corrupting the purity of both (true) con-
currency and (true) choice, exhibited originally by the system. Models of the state-ori-
ented paradigm are therefore referred to as, totally-ordered models and synonymously,

interleaved models [1] as well as system models [53].

(ii) As a consequence of the above artificial representation of concurrency and consequent
artificial growth of sequence and choice, there is an exponential (in the number of compo-
nent processes) number of reachable global-states of the system in the product-machine,

which is commonly referred to as the state-space explosion problem.

1.3.2 Event-Oriented Paradigm

The models in this category consider events as their primary entities, as mentioned. While

relating the events according to their order of occurrences (often called causality or the

dependency-order), events that are unrelated (by causality) are represented as they are.
Since this is the case with almost all of the models in this paradigm[18], [15], these are

referred to as partially-ordered models and also known as behaviour models [53].

The main advantage of these models is that by capturing the causality among events, they
retain the frue concurrency of the given system as originally exhibited by it, without
ordering them artificially, as by their peers of state-oriented paradigm. As a result, there is
no state-space explosion in these models. But these models have their own draw-backs as

follows:

(i) The event-oriented models do not represent the global-states of the system explicitly
and so many characteristics or attributes of the system are defined with respect to the
events of the system. This is not conducive to the verification of the properties of a system
because, the properties are the attributes of the szates of the system, irrespective of the par-
adigm. Consequently, the checking of any reasonable property is not quite direct or
straightforward in these models. Not all interesting properties can be expressed without

global states.

(ii) The event-oriented models are not based on operational semantics or in other words,
there is no direct connection to automata theory in this paradigm. Consequently, there is
no finite acceptor for the prime event-structures [34]. So, implementing the model-

checker is hard, however rich the model and the corresponding specification tool may be.

1.3.2.1 Petrinet Models

Petrinet models, lie at the cusp of the state-based and event-oriented paradigms. With their
places and transitions (or alternatively, with their conditions and events) defined, global-
states are represented by the vector of places/conditions holding the tokens at any time. By
doing the reachability analysis, this model can be transformed to a global state-transition
system just like the product machine discussed in the last subsection. So, they come under
the category of system models. But with the places/conditions and transitions/events repre-
sented as they are, the causality among the events are captured and frue concurrency

expressed. In this sense, they also belong to the category of event-oriented models.

There is a modeling drawback of Petrinet models as explained below:

(i) There is a_flow relation defined in Petrinet model as:
(S x T)U(T x S), where:

S is the set of places similar to local states of Fsms,

T is the set of transitions similar to events.

The flow-relation is such that it does not in general capture the occurrence order i.e., the
causal relation among its places. Only places that are in sequential order are related, even
though their causal dependency is observable physically through the flow of tokens. The
transitions corresponding to events alone are modeled according to their causality. Thus
we see that the mathematical mapping of what is observable as the mechanics of the sys-
tem is incomplete or not faithful. What is supposedly defined by the flow-relation as cau-
sality, actually represents sequentiality as far as the places are concerned, thus corrupting

both the relations (causal and sequential).

(ii) This model is also capable of representing a dynamically varying number of processes
due to their birth and death during the course of the system’s behaviour. A given process
may spawn its own child processes. Multiple processes can merge with a parent process.
This is clear from the variable number of tokens appearing from place to place and the fact
that they are not necessarily conserved after the occurrence of a transition by the ones

before the occurrence of that transition.

When such a powerful model is chosen to represent the system of a fixed set of processes,
the locality information, that is, the identity of the individual components, is lost from
their joint system behaviour. As will be shown, preserving the locality of the components
in the composition and thereby their respective entities such as states (analogous to
places), propositions that qualify these states and conflicts among them is imminent for a

deterministic verification, which is free of the exponential complexity.

1.4 Logic in System Verification

The area of logic is an altemnative that has strong support from a large segment of software
engineering community. The application of logic in verification is contributed by the effi-
cient search of the entire space of possible behaviours. More than the characteristic of

infallibility, popularly attributed to it, what logic accomplishes is the efficient search of

combinatorially large or even infinite state spaces, for all the known types of bugs in a
practical amount of time[3 5]!. No methodology comes near the efficacy of logic in that
role, particularly in the case of infinite search spaces where mathematical induction per-
mits seeking out in finite ime every nook and corner that may hide 2 known type of bug,
to quote the referred article above.

To further quote the above reference,

“logic works best when understood as a discipline for manipulating not just symbols,
(proof theory) but also facts about some world (model theory). To the latter end, one
develops a mathematical model of that world, and evaluates the soundness of the proof
system relative to the model. The model must be faithful to the world, yet simple enough
to permit the soundness of the logic to be assessed.

One weakness of logic is that it can not guarantee the recognizability of bugs of a kind not
anticipated by the axioms of the logical system. For this and other reasons, logic should be
viewed as just one player on a team whose overall goal is improved reliability. Logic has

proved a valuable player in this role, fully justifying its continued support and growth”.

1.4.1 Computational Model & Temporal Logic

Temporal logic is a suitable and commonly used specification tool for concurrent/distrib-
uted systems. This is because, the component processes run according to their own local
time scales, which have to be somehow integrated and consolidated to arrive at the global
properties of the system. Temporal logic is a tool with which, one can express the past as
well as fiture modalities apart from the present to formulate and prove the properties (and
thus verify them) of concurrent/distributed systems [4], [24] with the above mentioned
characteristic.

Not all computational models are rich enough, and similarly the logics. Depending on
whether or not frue choice is represented, we have branching or linear time logics.
Depending on whether or not concurrency among the elements of the system (states and

events) is represented, we have logics specified over partial or total order structures.

! The actual quotation is from the preface of the entire volume of the reference [3 5}

In the linear-time category, conflicts (that are true choices) exhibited by the specification
of the system are hidden, i.e., not represented by the underlying model of the system, sup-
ported by the logic. Instead, sets of independent, disjoint execution sequences of the sys-
tem are handled by the logical formulae. Each execution sequence forms a single
continuum in the time scale.

While in the case of branching-time logics, all the different execution sequences are con-
nected into a free so that the conflicts exhibited by the specification are not hidden and are
available for reasoning.

In practice, quite a few of the linear time logics support partially-ordered models of the
event-oriented paradigm([4][21]; similarly, the branching-time ones support the totally-
ordered models in the state-oriented paradigm [1]. The combination of both the partial-
order feature and branching-time semantics seems to be a rarity. The reasoning of this

observation is elaborated in what follows.

1.4.1.1 Taxonomy of Computational Models and Temporal Logics

The following figures tabulate the taxonomy of the models of concurrent systems and the
corresponding temporal logics in the respective platforms, reproduced from [2] for

empbhasis here.

Fig. 1 Taxonomy of models of concurrent systems

What is a Single Run?
v A sequence of eventy A partial order of evemsv

> ordered in time. ordered by causality.
How are A setof A setof .
runs detached runs sequences A set of partial

orders.

grouped
together, A branched | A tree An event structure
represenging structure with conflicts
a system s indicating
behaviour? conflicts

2

Fig. 2 Taxonomy of different classes of Temporal Logics
Interleaved Partially ordered,
execution sequences| causality based runs.

Linear time Pinter,Wolper [11]
Detached runs | temporal logic Katz[12], Lodaya[21]
Reisig [4]
A branched CTL* etc.
structug'e of F(B)[2], CTL-X[40]
runs with
conflicts <Theme of our

research>

An important characteristic and the trend observed from the taxonomy illustrated at both

the tables above, upon which our research is essentially centered around, are that:

o True concurrency is represented in the linear time temporal logics but not con-
Slicts. On the other hand, choices (not necessarily the true choices) are represented

in the branching time logics but not true concurrency.

1.4.1.2 Theme of Our Research

As shown in the bottom, right corner of the table of Fig. 2 above, there have been attempts
to propose a suitable logic reported in [2] called F(B) and most recently in [40] of CTL-X
(CTL without the next-time operator) with a Umodel/structure that represents both the
above highlighted aspects of true concurrency and true choice. F(B) is based on Occur-
rence nets whose process semantics does not support conflicts/true choices directly at the
same basic computational level as sequence/causality and concurrency that are comple-
ments of each other. This was mentioned in a previous section. CTL-X obviously does not
cover the next-time temporal modality in addition to being exponentially complex in gen-
eral, when it comes to impiementation of a verifier of properties with it, model-theoreti-

cally.

! Logics are often associated with models and structures in their semantic domain as with languages in syn-
tactic one.

Richer the computational model and the logic, the more difficult it is to implement a
model-checker, let alone the tractability of the checking. Though a theoretical possibility,
the computational model combined with the temporal logic of [2] are not implementable
in concrete form.

It is our claim that the above lacunae stems from the inherent drawbacks of the Petrinet

model and its derivatives due to:

« The incomplete representation of causality/flow-relation explained already,

« Conflicts not being represented at the basic level of processes which is related to

the above issue, and
» Highly general assumption of dynamically varying number of processes.

We claim further, that with the restricted assumption of a fixed set of processes in the
models of state-oriented paradigm and with a refined notion of causal dependency-order
among the states (specifically, the state entries) of component processes, it is indeed possi-
ble to make them partially-ordered as well, without explicitly generating the fotally-

ordered product machine.

Proposed as ‘sum machine’, this partially-ordered composition generates all the reachable
global-states of the product machine dynamically, using only the set of (local) states of
component machines that are associated with a minimal set of global states. In this sense,
the two machines are equivalent, with the product machine generated virfually by the sum
machine that is free of the state-space explosion of the former. An extension of the tempo-
ral logic which is a spatial, temporal logic to specify and verify the properties of the sum-
machine and so of the product-machine of a given input of CFsms, including both the
characteristics of #rue concurrency and conflict relations is proposed. This is the underly-

ing theme of this research.

1.4.2 Theorem Prover Versus Model-checker

Theorem prover is the traditional approach to verification using temporal logic. In this
approach, the axioms and inference rules of the logic are used as a deductive system. The
proof that a design of the system meets it specification is constructed manually using the

above mentioned axioms and inference rules. This task of constructing the proof is labori-

ous and a great deal of work is required to organize the proof. Even the simplest logics are

inherently complex with this approach [1].

In the case of finite concurrent systems, the literature shows that the proof construction
from axioms and inference rules is unnecessary. Instead, the model theoretic approach
aims to determine algorithmically whether the system meets its specification expressed as
a set of temporal logic formulae. For instance, a model checker algorithm for CTL, a
branching time temporal logic, is a pioneering work [1],[5] that has a great deal of influ-
ence on this work, particularly in the extension of the temporal logic CTL and the associ-

ated model-checker algorithms.

1.5 Summary of the Desirable Needs of a Model-checking Method

e A model-checker must be supported by a classical computational model that faith-
fully represents all the characteristics of the given specification, especially the
three basic relations of sequence, choice and concurrency and causality among

states as well as events.

» It must be supported by a formal logical language (propositionai or higher-order)
that can express all the properties, covering both safety and liveness properties of

the system specification to be checked.

» The checking must be algorithmic as opposed to heuristics and as tractable as pos-

sible.

1.5.1 The Drawbacks of Currently Existing Popular Methodology

Owing to the fact that the traditional model-checker based on Kripke structure supported
by the logic CTL [1] has an exponential complexity in the worst case, which is attributed
to the state-space explosion of its total-order model, there has been a family of methods
called Partial-order Reduction methods [40], [44], [9], [10], [13], [17] evolved in the last

decade.

Even though these methods are quite successful in practice, they are not based on a classi-
cal model in the following sense: though called PO based, they choose a representative

interleaving among all that are otherwise possible in a total-order model with the assump-

10

tion that if a property is true for one, it is also true for all. This assumption is valid for
safety properties but not for more versatile liveness ones in general. Because of the above
simplified representation of total-order view, there is no partial-order based, branching

time logic supporting these methods in a classical sense.

All these methods are aimed at constructing a reduced state-graph, based on exploring for
each visited state only a subset of the enabled operations, so that only some of the succes-
sors of that state are expanded. Hence these methods are called ser-methods. In these
methods, as reported most recently in {40], finding such subsets (called optimal ample set

method) is in general NP-complete and any implementation of it must use heuristics.

1.5.2 The Motivation and Proposed Work

The drawbacks mentioned in the last section above, make an important motivation to
develop a model-checker that is based on a classical partial-order model supported by for-
mal logic (to express both liveness and safety properties), as well as algorithmic which is

efficient at that, as much as possible.

In this work, we propose a partial-order model in the state-oriented paradigm that allevi-
ates the drawbacks of the product machine as well as those of the net models of the event-
based paradigm. We also propose a branching-space (to cover the PO-semantics),
branching-time logic to express the properties and a model-checker to verify if the proper-

ties expressed as the formulae of this logic are satisfied by the model.

Precisely, Chapter-2 defines and develops the theory of CMpm (Communicating Minimal
Prefix Machines) system, from a set of state-transition systems called Minimal Prefix
Machines Mpms), M;,i=1..n, each of which is a deterministic, possibly infinite, machine.
The sum machine M of the CMpm system is defined as a disjoint union of the compo-
nent machines M;, i=1..n, based on a global dependency-order representing causality
among the state entries which is a partial-order (PO). We also define the traditional prod-
uct composition IIM of M;, i=1..n. The causality among local Mpm-states is extended to

define the notions of configurations and their Final-state vectors.

We assume a given input specification of a set of communicating Fsms, F;,i=1..n each of

which is finite and possibly non-deterministic, constituting a CFsm system.

11

We define a set of n functions that map entities of M;,i=1..n to those of F;,i=1..n respec-
tively, using which we construct £M (and so M;,i=1..n) corresponding to the given input,

., i=1..n. We also define a surjective mapping from [1IM onto IIF the latter being the
product machine of F;i=1..n. The reachable state vectors of the extended sum machine
X *M correspond one-to-one, to the global states of [IM. Composing the above two map-
pings, we deduce the surjection from the reachable state vectors of ZM onto those of I1F.
This is the important result of this research, as the sum machine M does not enumerate
all the possible runs and their non-deterministic interleavings as opposed to the product
machine ITF, but can generate all of them or their properties at the time of verification,
dynamically. Following figure illustrates the mapping between M; and F; and shows the
path of state-explosion in the absence of sum machine on the right side, and that of no-
state-explosion with sum machine introduced on the left in order to construct IIF from

Fi,i=l..n.

Fig. 3 Pictorial representation of Role of CMpms in alleviating state explosion of CFsms

No state-explosion ¥ M (Sum m/c) State-explosion

i (Product m/c)
E Powe- [1 P

Finite model of CMpms with cut-off points is defined. Finite, deterministic model of
CMpm system is proved equivalent to non-deterministic model of CFsm system using the
functions B;, i=1..n.

Chapter-3 introduces the proposed branching space-time (i.e., branching-space and

branching-time) temporal logic CML (Computational Mpms Logic). CML is defined as a

12

monadic, third-order logic with three equivalent versions. Two of them, CMLr and
CML p\ are based on toral order models ITM and ITF respectively. The third version is
an extended partial-order version CML s\ based on the extension of £M with configura-
tions and the state-vectors, that is equivalent to the former two versions. Safety, liveness
properties can be expressed unambiguously at ease with all the three modalities of past,
present and future. CML incorporates the newly introduced branching space aspect of
concurrency as well as the conventional branching time aspect of conflicts. The improved
expressiveness due to the former is explained.

Chapter-4 explains the model-checker algorithms to verify the properties of the input
CFsm system expressed in CML . These formulae are transformed to corresponding
CML s formulae over IIM which in turn are viewed as CML>M ones, upon a corre-
spondingly generated sum machine. The complexity of the model-checker involves the
generation of TM and its distributed, nested depth-first search of multiple Mpm-trees for
the verification of properties. The deterministic algorithm of the model-checker directly
follows from the functional definition of notions such as Minimal prefixes and configura-
tions as well as the functional definition of M; onto F;, for all i =1..n. Exponential com-
plexity due to enumeration of all the runs (maximal configurations) and interleavings of

every run is shown to be alleviated.

Chapter-5 presents the summary of the work, comparison with some of the related work,

followed by the conclusions and scope of future work.

13

Chapter 2
Communicating Minimal prefix machines (CMpms)

The CMpms model proposed in this chapter is state-oriented but has the advantages of the
traditional event-oriented models such as Petrinets. In other words, it alleviates the demer-
its of both the paradigms (state and event based) that are the impediments of an efficient

verification system whose needs were outlined in Chapter-1on introduction.

We assume an input specification of a set of n communicating sequential processes repre-
sented as a corresponding set of » Communicating Finite state machines (CFsms). We
transform this set of CFsms into a set of n communicating concurrent machines called
Minimal Prefix Machines (CMpms) for the reason that will be clear in the sequel. In what
follows, first of all the set of CMpms will be introduced as a set of n state-transition sys-
tems representing a set of # communicating processes.

We show that a set of n CMpms constitute a partially-ordered, sum machine as contrasted
to their totally-ordered, product machine that is traditional. After their formal definition of
CMpms and the sum machine, and a discussion of their salient features and properties
through Lemmas and Theorems, CMpms with respect to a set of n given input CFsms will
be introduced thus completing the development of the model from the given input specifi-

cation.

2.1 Formal Definition of Communicating Minimal prefix machines (CMpms)

Minimal Prefix machines are developed to model communicating processes that progress
concurrently and so each of them is defined as an element of a set, each representing a
process, that communicates with the other elements of the set by synchronization. The fol-
lowing definition and Definition 2.2 that follows subsequently constitute the formal defi-
nition of CMpms.

Definition 2.1 An Mpm denoted M, i=1..n, is a state-transition system that is possibly
infinite with constraints as follows:

M; = (Spi Epi Remi- Somi) Where,

Spii 18 the set of countable Mpm-states, possibly infinite.

14

E,,; is the set of countable, possibly infinite events,
R,i < (Spmi X Sp;) is the binary reachability relation among the Mpm-states such that:

the inverse relation of R, denoted R,,;! is constrained to be a function, referred to as the

predecessor function, defined for all states except sqr,;, the initial-state.
R,,; contains precisely one element for each e,,; € E,,; such that:

Lpi 2 Ry —> Epyi 1s a bijection, referred to as the labeling function which assigns an event

uniquely to every element of R,;;

R,,,; is a ternary transition relation, derived from R,,; and L ,;:

Ryni © Spi X E,yi X Sp,;) such that,

For every transition 7,,,; = (Spi €mir S'mi) € Romi

Lmi (Smiv s ’mi) = ;-

Smi 1S said to be the input state and s',,;, the output state of e,,;.

The inverse of L,,; is often referred to as the 1/O function denoted: 10,,,;.

Somi € Spyi1s the initial state of M;.

All events are considered atomic in the sense that they are executed instantaneously.

Since L,,; is a a bijection, and from the definition of predecessor function as the inverse of
the reachability relation R, it follows that the state-graph of an Mpm is restricted to be a
tree that is free of cycles. As long as an event is ready to be executed from its input state, a

unique output state may be produced.

In the case of non-terminating systems, as there is always some ready event to be executed
from a given input state, there is an indefinite growth of an Mpm representing a non-termi-

nating process and hence has an infinite state space and events.

Having defined Mpms, we need to define their communication aspect, as follows:
2.1.1 Communication among Mpms, to define CMpms

The Mpms communicate by synchronizing on certain common events among them. The
above definition of Mpms along with the following one(s) constitute the formal definition
of CMpms.

SYNC;,,, SYHC,,, are each defined as symmetric, binary relations :

15

Definition 2.2 sync;,, syncoy S (Spi X Spy) i, =1..n, (i #j) such that:
(Smi> Smj) € SYNCiy and (S S'pyj) € SYNCoy, I

(Smi» €m» S'mi) € Rtmi and

(Smj» €m» S'mj) € Rimj -6m € Emj and e, € Ey,; . Then,

e is called a synchronous event,

Smi» Smy @re synchronous input states and,

S'mi» S'mj are synchronous output states.
*

(Smi> €mr S'mi)» (Smj» €m: S'mj) are called the synchronous transitions, that are referred to as
partner transitions of each other. Similarly, sy,; and s,; are partner input states of each

other and sy, S'y; are partner output states.
In general, more than two Mpms may contain a given synchronous event. In that case,
every pair of corresponding synchronous input states are related by sync;, and every pair

of corresponding output states by sync,,, relation.

Together, sync;,,, sync,,, form sync:

sync;, U syncy,,; = sync

sync;, relates states that are exited simultaneously at some instant of time before the syn-
chronous event but they are entered independently of each other. On the other hand, syn-
Cour Telates every pair of states that are entered simultaneously after the common

synchronous event, but they are exited independently of each other.

Through out the sequel, the order in which the states are entered , i.c., their entry order is
the one that is emphasized and captured rather than their exit order; the exit order among
states is the same as the entry order of their respective successors i.e, the output states of
the /0 function and so is redundant. This is because, the events are assumed to be atomic
and so take place instantaneously. For instance, the simultaneous exit of synchronous
input states is captured by the simultaneous entry of the corresponding synchronous out-
put states. In this sense, sync,,, relation is emphasized more than sync;, relation, in the
sequel. This is the reason why only the synchronous output states entered together alone
are glued together as illustrated in Fig.B. This point of contact is referred to as a synchro-

nization point that represents the simultaneous entry of partner output states.

16

2.1.1.1 Sync,, /Simultaneity Relation is Equality

Sync,,, relation , by virtue of relating two or more distinct states of multiple processes that
are entered simultaneously, captures the equality subset of a global, partial, causality
order, to be defined and is instrumental in defining the latter from the first principles. This
simultaneity relation is not tractable if we were to order the events as opposed to states; for
in the case of the events being related, there is no simultaneity among distinct events as a
synchronous event is identical in all the participating processes and there is no way of tell-
ing a synchronous event apart from an asynchronous event. On the other hand, the output
states of a synchronous event are distinct and different and so there is a scope to represent
their simultaneous entry, if they were to be chosen as primary entities in the ordering.

Consequently, lot of modeling advantages follow in the case of ordering the state entries
by keeping their equality/simultaneity order as a basis for many conceptual notions to be

derived.
2.1.1.2 Initial Mpm-states are Simuitaneous

Switching on or booting of a given system is considered as a special start condition when
all the initial states sgp;,i=1..n of the Mpms are entered simultaneously at the same time,
after the special synchronous event init, synchronizing all n Mpms. This idea is not only
intuitive but also facilitates the mathematical treatment of the theory of Mpms to be put

forth in the sequel.

So, we assume without contradicting any other ideas of the theory, that there is a transition
denoted: (Null, init, s0;) € Rimi, of all the Mpms M;, i=1..n respectively, where:

(Somi SYCout Somj)» V 1,j=1.n,i<j.

Example 2.1 Fig. C of Appendix' shows a set of three state-trees of Mpms M;, M, and
M;.

In this example,

!Fig.A, Fig. B, Fig. C and Fig.D are placed in Appendix for easy reference, as they are constantly referred to
from many different sections of different chapters. Wherever Fig.C causes confusion, its equivalent repre-
sentation Fig. D is referred to and vice versa. In fact, Fig.B, Fig.C and Fig.D are three different, equivalent
representations of a CMPm system.

17

le ={(aO’ bo), (bO’CO)s (d07 al), (do,a:,_).__}

The inverse of this relation viz., the predecessor function is easily verified to be a function
(many-to-one) from the state-tree of M, as every state has its unique predecessor.

Rim1 = {.-..(bo, Ao, o), (o, Co, do).---}

Lm1(bo, o) = Ag, Lmi(co, do) =Co

101 (Ag) = (bo, o), I0m1(Co) = (co, do).

The function L, is easily checked to be a bijection as every event is associated with a
unique element of R;;.

Example2.2 Fig B shows the set of three communicating Mpms, M;, M, and M;. The
synchronous output states of different Mpms that are partner states of each other are
shown glued together. The transitions of the three individual state-trees are drawn in three

different styles to tell them apart. Though each of them is infinite, they are shown in a

truncated form as will be explained in a future section.

syncin = {(bo. qo). (qo. o). (Co. to). (do. Vo), (do, V1), (V1. 1), (81, do), (Uo. 20).---}

SYNCou = {(a0.Po)> (Po. o), (3o, Xo), (Po, X0, (Co, So), (do,uo), (ro.ho),---}

Note that sync;, , syrnc,,,, are symmetric as mentioned in the definition.

The simultaneous entry of ¢y and sg for instance, that are tied together represents a syn-
chronization point.

sync = sync;, U syncqy, = {(bo,q0), (30,Po)s----}

We say that: (bg synci, qo), (ag SYCoy Po) etc.

Thus every pair of the initial Mpm-states s,

omp [=1{--n are related by sync,,, and they

together form the initial synchronization point after their simultaneous entry after init, as

discussed.
2.1.1.3 Causality, the Gliobal Dependency-order among Mpm-states

We formally link the » Mpms by the sync,, relation, which represents simultaneity by
relating the states entered at the same time after executing the synchronous event. We per-

form the following union and the reflexive, transitive closure to create the global depen-

18

dency-order among the states of all Mpms, which is in general a partial-order that is

reflexive and transitive.

The global (intra and inter) dependency-order often referred to as causality is defined as:
Definition 2.3

Causal Dependency-order (<) S (Sp; X Spy)

=Ry URy,s ... URy,, Usync,,)*

where the superscript ‘=’ stands for the reflexive , transitive closure of the union of the
binary relations R,,,;,i=1..n and sync ;.

The subset (sync,,, U id) of the above closure represents the equality relation ‘=’ ;

The id function (from reflexive closure) is added for manipulative convenience in order to

extend < to relate the state-vectors to be introduced at a later section.

The definitions of < and = relations can be extended to define < and > relations as well:
< is defined as the difference between < and = relations:

<:=< -—‘=and,

> as the inverse of < relation:

> = (<)t

The binary causal-order that forms a derived, global, partial-order (PO) among Mpm-

states is the basis of the ‘sum machine’, to be defined shortly in the sequel.

2.1.1.4 Significance of State Order Versus Event Order

This issue was touched upon in a previous section. The causal dependency-order or cau-
sality that is global and partial is defined and centered around Mpm-states rather than the
events being related as the entities of the PO, as in many models of the literature.

Many models of event-structure assume < as granted, while in our case it is a derived
notion. It is derived from the equality/simultaneity of output states that follows every syn-
chronous event. In other words, it is derived from the physical communication mechanism

of the concrete domain rather than a granted notion in the abstract domain.

When a synchronous event takes place, it is different from an asynchronous one in the

sense that every participating process executes a replica of the synchronous event. But this

18

information that might prove vital from modeling point of view, is not recorded at all in
the case of models relating only the occurrences of events’ execution. On the other hand,
when we relate the states by their entry order, we are in a position to account for and
model the simultaneity of two or more distinct states, one from every participating pro-
cess, that hold right after the synchronous event.

Since states directly carry certain propositions which become true as soon as they hold,
relating the states and hence their predicates carries a lot of value in terms of : the model-
ing capability, development of the logics and in algorithmic application.We prove these in
the course of development of the rest of the theory in the current and subsequent chapters.
It is to be noted that in the sum-machine, there are as many events as there are states
(excepting the set of roots of the Mpm-trees) and since every state-entry is followed by an
event-occurrence, the same partial-order of causality among states can be extended to
define that among events as well, and in this sense both the entities viz., states and events
are exact duals of each other and completely accounted for. But, for our current applica-
tion viz., verification of properties, we only require the PO among states as explained in
the last two paragraphs.

Example 2,3 For illustration, let us consider Fig. B again for the following sample of

elements in each of the above relations:

< = {(30, Po). (Po: X0), (X0, 20), (a0, bo), (b, <o), (S0, So). (Co, t0)-(Co. do),
(%0, Yo0)» (do. do). (Do, So).(bo, Ug),........}

= = {(a0, Po). (Po. 20), (Po, X0, (X, 80). (Co. So). (So. Co). (to, Z0),
(do, uo).(a, ag), (bo, bo), (Yo, Yo). (Vo, 80).----}

SYNCqoy 1S Symmetric relation and so is the equality relation =.
<=< —-=

= {(a0, bo), (co, do).(X0. ¥0).(bo. €0),(q0, S0)-(do> do)

(bo, s0).(bo, Ug),-......- }

> = <"1:= {(bo, ag), (do- Co):(Yo» %0):(Co, bo). (S0, G0):(do,q0):
(s0.b0)-(u0,bo),....... }

20

The states that are /ater in the order of < are referred to as the descendents of the states
that are earlier in that order, which are the ancestors. The immediately following descen-
dent is the successor and the preceding ancestor, the predecessor. This terminology is
adopted with respect to the local transition relations Ry,;,i=1..n as well as the ones to be
defined among vectors. The states that are equal are either identical or distinct partner

output states of each other.

2.2 Certain Theoretical Basics of Mpms

The < relation defines a ‘necessarily-entered-before-or-together ' relation, that forms the
back bone for most of the notions to be developed in CMpms theory. Certain basics of the

theory are in order:

All the » Mpms have their own respective clocks controlling the speeds of execution of
their local events. In every Mpm, all events are atomic in the sense that their execution is
instantaneous, when ready. We also refer to the execution of an event as the sappening of
an event. When an event happens in a given Mpm, its Jocus of control transits from its cur-
rent state to the next state; we say that the current state is exited and the next state is
reached or entered, synonymously. When we say that ‘the state holds’, it means that the
locus of control of the given Mpm resides at that state, from the instant it was entered till

the time it is exited when an event of the next state transition takes place.

All the » Mpm:s are tied together i.e., dependent on each other through synchronization or
the causal dependency-order < derived therefrom. Even though the n loci of control are
essentially dependent on their respective local clocks, these loci are also dependent on
each other since they must wait for each other at the synchronization points, viz., the syn-
chronous events and states as per the relation < . Since the equality relation (=) comes
from synchronous states entering together, it is appropriate to refer to < as: ‘necessarily
entered before or together’ relation.

Even though there are » different clocks controlling n different local time scales/loci of
control, there is only one global, ‘real time’ scale, onto which events of all the above »
local time scales may be projected when the system of #» Mpms execute or run actually.

Depending on the relative speeds of execution of the n local clocks, there could be many

21

possible projections onto the real time scale during a concurrent execution of # Mpms. Of
course all these possible projections must obey the dependency-order, < . We refer to each
of these possible projections as an interleaved observation or simply an interleaving
within a given execution/run of n Mpms. These concepts will be formally presented
towards the end of this chapter.

In summary, with the causal dependency-order (inter and intra) respected by all the n loci
of control of Mpms, there could be many different possible orders of execution of their
states and events that are not dependent on each other and so unrelated by < , in a given
run of n Mpms in real time. Informally, the /ooser the dependency-order < (i.e., the lower
its cardinality), the looser is the coupling among Mpms, the more will be the number of
independent (asynchronous) states and events and the larger will be the number of possi-
bilities of ordering them, which are in other words the number of projections/interleavings
mentioned in the last paragraph. Similarly, the more the number of synchronization points,
the tighter the dependency-order (the higher its cardinality), the tighter the coupling, and

the fewer are the number of such projections.

2.2.1 Primary versus Secondary Mpms

The individual Mpms are capable of executing independently of other Mpms except dur-
ing synchronization events. But during their generation and application for verifying the
system properties (as will be discussed in Chapter-4), they are traversed one after the other
except when blocked by synchronization requirements.

In other words, the Mpms are simulated for practical purposes, in such a way that at a
given time, only one of them is traversed exhaustively and the others are allowed to make
only a restricted progress as much as necessary to satisfy the synchronization require-
ments of the former. The formerly mentioned Mpm is referred to as the primary Mpm and

the latter, as the secondary Mpms.

The above simulation is needed in order not to lose track of any of the reachable state vec-
tors or the global-states of Mpms. At any given time, the state of the primary Mpm repre-
sents the present and those of the secondary ones the past or the present with respect to the
former state. This and the concepts of the previous section will be formalized in the fol-

lowing sections.

2.3 The Sum Machine, M

By using the causal dependency-order < , we can define the following composition of the
set of CMpms, M;,i=1..n referred to as the sum machine, denoted as M:
Definition 2.4 : XM =2, M, =(ZS,,;, TE, <, Zsgy), where

2 denotes the disjoint-union from i=1..n of every entity.
The composition of the dependency-order < is not a rigid one since by taking away syn-
Cout COmponent from its constituents, we get back ZR,;;,i=1..n and so the set of Mpms M;,
i =1..n. Thus the sum machine consists of the disjoint union of Mpms, with all their part-
ner output states tied together according to synchronization requirements. The only differ-
ence between the sum-machine XM and the set of CMpms M,,i=1..n is the enriched global
causality < of the former composed from R,;,i=1..n and sync,,, relations of the latter.
Hence the notation ZM denotes the sum machine, emphasizing the disjoint-um’on1 of its
component machines.
The sum machine is a partially-ordered machine/state-transition system by virtue of its
partial dependency-order < among the (Mpm-)states.

Example 2.4 Fig. B of Appendix illustrates the sum machine ZM of M,, M, and M;

introduced earlier in which,

Som1 = 40, Som2 -= Po and sgp,3 = X, all three of which are glued together to represent the
initial synchronization point, considered to be entered simultaneously after the special

synchronous event, /nit,

(CO SYnCoy 50), (tO SYRC oyt ZO)v (dO SYNCout U()), (1'0 SYNCout hO)a (VO SYNCoyt gO)v

(sl SYNCou X3), (a.'Z SYNCout P2 SYNCout XZ)a (al SYNCoyur P1 SYNCoyt xl) are other pairs and 3-
tuples that represent simultaneous entries of partner output states and hence the synchroni-
zation points that are used to form the global dependency-order < in the sum machine,

Xi-1.3M;.

! Notation convention -
Throughout the sequel, the symbol X continues to denote the ‘disjoint union’ of sets.

23

2.4 Sequence, Conflict and Concurrency in =M

Sequence, conflict and concurrency are the three fundamental binary relations in addition
to causality, among the local states of the n communicating processes in any concurrent
system in general, which in particular correspond to the states of # Mpms in this context.
We define these as binary relations in terms of the local reachability relations R, i=/..n
and the global causal dependency-order, < . Sequence and conflict originate among local
states and are inherited by the non-local ones through the dependency-order. Concurrency

is basically a global relation since it relates only non-local states.

24.1 Sequencein M

Sequence is a stronger relation than the causal dependency-order < . The latter relates
two states when one is entered before (or together with) the other. Whereas, the two states
are in sequence only when the one entered before also has to exir in order to enable the
entry of the other.

Definition 2.5 : seq = (S;; X Sy i,j=1..n.

(Smi Seq Smp) fE:

38" it Smi Romi S'mi) N (5'mi < Smp) Where Ry,; is the transitive closure [6] of Ry,;, repre-
senting the reachability relation among states within an Mpm-tree.

seq is an irreflexive and transitive relation. It is a global relation which locally degenerates

to the reachability relation Ry , since < reduces to R},,; within a given Mpm M;.
2.4.1.1 Sequentiality Versus Causality among Mpm-states

Both the relations sequence and causality are derived global relations of synchrony/simul-
taneity i.e., the equality relation and local reachability relations: sequence extends the
local reachability relation globally through equality. It is the converse in the case of cau-
sality: it extends equality globally through local reachability relations.

To define sequence, we first start from (s.,; R},; s’)- Then, this relation is extended by
relating s.,; to all the states that are related to s',; through equality or in general causality

itself. In this sense, sequence is a stronger relation than causality.

24

To define causality, we first start from an element of equality relation not in id say, (S =
Smj)- Then this is extended by local reachability relations relating s.; and sp; respectively
with their local descendents. The exact definition of causal dependency-order is given pre-
viously.

The basic relations in both the cases are equality and local reachability relations.

(Smi Seq Sp;) implies that s,,; should be exited to allow the entry of s,,; . In other words, at
least one transition of Ry is involved in reaching s,,; from s,,;. On the other hand, (5,,,; <
Smy) not necessarily means (5,,; seq Sp,;), though it could well be so. It only implies s,,;
should be entered before the entry of s,,; (a transition is not necessarily involved requiring
Smi to be exited before the entry of s,,7). This leads us to draw the following conclusion.
Example 2.5 Referring to Fig. B again, it is true that (cy seq dg) but not (sq seq dy). This
is because, as explained before, there is no transition taking place between sy and d; as
opposed to ¢y and dg in which case, unless ¢ is exited dy can not be entered; sy only inher-
its the causality between ¢, and d,, from its equality with cg i.e., ¢y =sq. Therefore (s5 < dg)
is true and not (sg seq dg) as the two states sy and dg can co-exist in M; and M, respec-

tively.
2.4.2 Conflictsin =M

Conflict, to be formally defined below, means true choice, as exhibited by the given con-
current system. The true choice/conflict is contrary to the non-deterministic choice arising
out of the different execution orders of the component Mpms in this context, of the sys-

tem. Therefore nondeterministic choices are artificially imposed.

We define a local conflict relation as an irreflexive and symmetric relation:

Definition 2.6 (Smi 1 Conf;‘ sm:?.) iff:

MNSmil Roni Smiz V Smiz Roni Smin) Where, ~ is the complement operator and R},; , the Kleene

closure [6] of Ry;.
Local conflict is thus the complement of the local sequential/reachability relation.
A global conflict relation is derived from the above local definition:

confc (Smi X Sw)i,j=1..n

Two states S,,;, 5,7 Of M, M; respectively are in conflict denotzd:

25

(Smi conf spy), which is deduced from the following equivalence, referred to as conflict-

inheritance property:
2.4.2.1 Global Conflicts are propagated Local Conflicts

Following is an important property that defines global conflicts as the ones originating
locally within Mpms and propagated globally among non-local states through causality.
This property implies that by maintaining the local conflicts alone of a given Mpm-state
and a minimal set of those that are causally dependent on it, all the non-local ones in con-
flict with it can be deduced without enumerating all of them.

This property is exploited in verification by scanning only the ‘local neighborhood’ of

Mpm-states, as will be explained in Chapter-4.

Property 2.1 (s,,; conf; s i) <= (Spy conf smj), Y Sk Smi Smi < Smk » S'mi < Smj>
where i j,k =1..n.

All conflicts thus originate locally within an Mpm and are propagated globally through
synchronization embedded in the dependency-order, < . For instance, all the states that
are in local conflict with a synchronous output state are also in global conflict with the lat-

ter’s partner output states.
Example 2.6 From Fig. B again,

(tg conf x,) follows from (zg conf; x4).
2.4.2.2 Induced Local Conflicts

It is also the case that local conflicts in one Mpm are inherited/manifested as local con-
flicts of another Mpm. A synchronous input state sy, i, can be a partner state of two dif-
ferent synchronous input states that are in local conflict, belonging to another Mpm. In
this case, two different pairs of synchronous transitions result, both with sg; ;; as input
state.

Example 2,7 [etus consider Fig. 4 below. It shows two Mpms M,, M, in which state b,
of M, is a synchronous input state with two different partner input states qq and ry syn-
chronizing respectively on the synchronous events ey, ;. The corresponding synchronous

output states of ey, e respectively of M, are d; and d, which are in local conflict. This is

26

essentially the manifestation of the local conflict between qg and ry of M,. This is a case of

induced local conflict.

Fig. 4 Example for induced local conflicts

The induced local conflicts of Mpms will be associated with non-deterministic synchroni-
zation of true choices of input Fsms in a future section, which may in general lead to expo-

nential enumeration of local conflicts, due to this non-determinism.

All the elements of the disjoint union of the local conflict relations Zconf;, i=1..n are the

ones explicitly represented in XM, and the derived ones of confrelation are implicit.

It is to be noted that the relation conf like seq, disallows the related states to be holding
simultaneously i.e, at the same time; the relation seq ensures that one state holds only in
the past of the other, while conf is stricter than that: it means that one state can not even

hold in the past or in the future of the other, and vice versa.
2.4.2.3 Backward Conflicts in ZM

Definition 2.7 Two states Sy, Sy are in backward conflict ift:
Aspi: (Smj €onf smi) N (Smj S€q Smi) N\ (S S€q Smi)-
Backward conflict Lemma:

Lemma 2.1 There are no backward-conflicts in M

Proof: (By contradiction)

27

Let Isy;: (Smj cOMf i) N (Sij S€q i) N (S S€q siy;) where,

(Smj €ONf i) => (S conf; Sm) N(S'mj < Smk)-

=> Asmi: (Smj CONS; ') N (Smj S€q Smi) N (S'mj S€q Spyi)

=> Tsyi’ (Smj €ONf; S'my) N (Smj Ry 8" mj) /N (S'mj Riyj ") such that: s"; < sy
=>g"

mj has more than one predecessor, a contradiction of the definition of state-tree of an

Mpm at Definition 2.1.
2

The above lemma, Lemma 2.1, can be proved alternatively as follows:

Locally within the state-tree of an Mpm, backward conflicts are avoided by the state-tree
formation. In the definition of backward conflicts, the relations seq, conf are ZR,;, Zconf;
respectively extended globally through simultaneity (of synchronous output states) . So,
what we need to ensure is that, the above extension does not introduce backward conflicts.

In other words, we need the following property.
2.4.2.4 Uniqueness of (Synchronous) Partner Transitions

Property 2.2 A synchronous output state is associated with a unique synchronous transi-

tion and thus has a unique set of (possibly a singleton) parter states.

Proof: (By contradiction)

Let spiou De a synchronous output state that has two sets of partners {Sy;ou} and {s'miout}
after a synchronous event e, and e', respectively.

=> (Sgiin €m Smiout)» (S'miin €'m Smiout) are the two synchronous transitions with output state
Smiout With partner transitions (Smjin €m Smjout)> (S'mjin €m S'mjout) rESpectively.

=> if Smiin <> S'miin. it 1S @ contradiction of unique predecessor of sy according to the
predecessor function of an Mpm. When Sy;in = S'miin, it iS @ contradiction of the definition
of I/0 function as bijection, since both e,, €'y, are mapped to (Sy;in» Smiout)-

Therefore, sg;,, Must be associated with a unique transition.
&

Conceptually, by restricting every synchronous output state to have a unique set of partner
states (by associating a unique transition with it), we make sure that the extension of conf;

to conf and R} to seq by means of < in the definition of backward conflicts, ensures

28

their absence globally (in M) as well as within an Mpm, since backward-conflicts vio-
late the tree formation of the state-graph of an Mpm.

Essentially, by avoiding backward conflicts, we associate a unique past (by the unique
predecessor property applied cumulatively) and a wnique present (by the unique set of
partner states in the case of synchronous output state, along with the unique past of each of

them that comes with it) with every state.

Disallowing backward conflicts makes the modeling of sequence, conflict and concur-
rency all at the same computational level and hence easier, and gives rise to algebraic or
manipulative convenience of its entities without taking away the expressiveness of a given
specification. This will be made progressively clearer in the course of development of the
model.

Property 2.3 Two Mpm-states s; and sy, can not be related by conflict and causality
relations at the same time. i.e., (Smi €Onf sp;) is in contradiction with (Sp; < Sy

Proof: This property follows from the absence of backward-conflicts.

Let us assume, both (sy; conf'sy,;) and (sp; < Sm;j) are true.

(Smi CONS Spgj) = (Smi €ONf; S' i) A (S'mi < Spyj) V (Spyj cONE; S' i) A (S'j < Spni)---(1)

Let us assume, (Sp; conf; s'ni) A (S'mi < Spy) is the case in (i) above.

=>(Smi < Smj) N (S'mi < Smj) Where (sy; conf; s'mi)

=> (a)Both s,,; and s'y,; have a same synchronous pariner state s'n; such that: (s'n; seq sp;)
or,

(b) both sy; and s'y,; have a common descendent s"p; such that s";; < spy.

(a) contradicts Property 2.2 and both (a) and (b) imply the presence of backward conflicts,
a contradiction of Lemma 2.1.

Similarly, the disjunctive case (Sy; confj s'm;) A (8'mj < Smi) can be assumed and the proof

is similar.

2.4.3 Concurrencyin M

The binary concurrency relation co among disjoint Mpms is defined as follows:

Definition 2.8 co < (Sp; X Sy) where (i %)

29

(Smi €O Spy) 1Y 5y, 5,7 are unrelated by seq or conf.
The co relation is therefore the complement of (seq U conf). This makes sense conceptu-
ally as well because, both seq and conf imply that the related states cannot co-exist at the
same time, while concurrency does the opposite, or the complementary condition.

In other words, the union (seq U conf U co) is a total binary relation, relating states of

ZSmi» i=1..n, that is irreflexive.
2.4.3.1 Concurrency is not ‘Unorder’

It is to be noted that concurrency is defined not as a complement of the causal order but as
that of sequence and conflict. By so doing, we make room for both the relations co and <
to possibly co-exist among the same pairs of states. This indeed will be the case because,
the non-local states related by equality are automatically in causal order; and since they
are neither in sequence nor in conflict, must be concurrent as well.

The advantage of the above idea is two-fold:

(1) The fact that concurrency is defined independent of causality is exploited in labelling
every Mpm-state with a concurrent state-vector (whose states are all pairwise concurrent)
which has at least n pairs of states related by causality as well. Thus the partial order <
among Mpm-states becomes a /abelled PO, with each state having, details of which will
be elaborated in a sequel section. The labeled information will be exploited in the verifica-
tion algorithm of Chapter-4.

(11) Because concurrency is the complement of the union of sequence and conflict, all the
three basic relations are included in the ‘universe’ or the same level of execution, (as
opposed to the case of concurrency being the complement of causality whence conflict is
pushed out of the process semantics), a much sought after goal in modeling concurrent

systems.

Example 2.8 For instance, we consider states related by co relation from Fig. B of
Appendix:

(co co sg), (dg co s0).

The co relation is irreflexive and symmetric but not necessarily transitive. Two sequential

states from a given Mpm could both be concurrent with a third state of a different Mpm.

30

For instance, back in Fig. B, (cg co sg) and (sq co dy) but (¢ seq dy).
All the three relations viz., seq, conf and co manifest globally and their union is a fotal
relation among all the Mpm-states, through the underlying global, dependency-order < ,

that is partial.
2.4.3.2 The Paradox of Concurrency in *M

<M is a state-oriented model, and so all the entities are primarily defined with respect to

its (Mpm-) states. Concurrency is no exception.

Two (or more) states of different Mpms are said to be concurrent if it is possible that they
both may hold at some point of time in their respective Mpms. Informally, they co-exist at

the same time.
The paradox stems from the following two orthogonal views of concurrency:

« When two or more transitions of different Mpms can take place independently,
asynchronous of each other, then the corresponding output states are said to be
concurrent, since they may co-exist (it is noted that it is not a mus?) i.e., they may

hold at the same time.

e On the contrary, when different Mpms participate in a common synchronous event,
there is such a strong dependence among them that the common event have to be
executed simultaneously and the corresponding synchronous output states are
entered simultaneously after the common synchronous event and they must co-

exist. These output states are concurrent as well.

Therefore concurrency is attributed to both independence/asynchrony and dependence’
synchrony of states (and events) of different Mpms at once. This is the manifestation of the
above mentioned paradox. The logical explanation is that: concurrency is first originated
by/sourced out of synchrony or strong dependence as simultaneous synchronous output
states and then become prolific or multiply by asynchrony among Mpms. Therefore, it
makes more sense to represent strong concurrency (than not, as in many models) along
with concurrency; as after all, the former seems to be the basis of the latter and not vice

versda.

31

The sync relation represents ‘strong-concurrency’ since the two related states must hold at
their respective Mpms at some point of time, before or after the happening of the synchro-

nous event concerned, as the case may be.

2.4.3.3 Synchronization: the Controlling Medium of Concurrency and
Causality

Both concurrency and causality are triggered and controlled by the synchronization that is

followed by the simultaneity of Mpm-states in the following sense:

The synchronization points source the ‘threads’ of concurrency, as many as the number of
participating processes which later ‘grow’ or progress asynchronously of one another, sus-
taining the concurrency among their local states till the next synchronization point, when
the processes are forced to wait for each other; this is followed by the growth of threads
again, as above. At every synchronization point, the processes participating are controlled
or regulated to wait for one another and after the synchronization, the respective threads
of the processes are set to progress asynchronously. In this sense, synchronization is said
to be the source of simultaneity (and hence causality) and the controlling medium/agent

of concurrency as explained above.

The important point to note here is that unlike in eQent-structures of many behaviour mod-
els where concurrency and causality are complementary, in our model both are not disjoint
as both are controlled by the simultaneity relation (due to synchronization). There is no
analogous simultaneity relation for events since synchronous events of participating pro-
cesses are identical and hence do not convey any more relational information than asyn-
chronous ones, as already mentioned. Concurrency is viewed as unorder, complement to
the causal order, < in these event-based models.

The above fact has an important consequence: The process based semantics of event based
models rule out conflicts from a process due to the fact that concurrency and causality
(which are complementary) solely make up the universe by their union.

The crux of the thesis lies in the fact that causality and concurrency are not complemen-
tary. Causality is first derived based on synchronization and local reachability relations of

the concurrent automata (CMpms) and then' applied to derive all the three relations viz.,

32

sequence, conflict and concurrency in the same basic and global level of computation of

the sum machine.

Example 2.9 For instance from Fig. B,

(dg sync,,, up) is a synchronization point which represents the origin of concurrency by
way of its synchrony. The respective local descendents of the two states dy and ug that are
reached asynchronously after local transitions according to Rp,; and R;;» respectively are

concurrent as well.

Thus, (dg Syncey uo) => (dg co ug)
(do = up) and (ug Rypn vi) => (dg < vy), from the equality of sync,,, and the definition of

From (i) and (ii) as a consequence of above paradox, we have both the results:
(do <v;) and (dg co v1)
The important result below (as explained in a previous section) follows which is claimed
as the crux of the entire work:
» Concurrent states are not necessarily unrelated by causality (<), although it is

true that the states unrelated by < are concurrent, assuming that they are not in

conflict.

The above result will be stated and proved formally at a later section. The added advan-
tage of explicit sync relation (in comparison with the other partial-order models in which
sync is transparent) is that, concurrency and strong concurrency are distinguished. The
former is possible concurrent holding of states of different Mpms and the latter is neces-
sary concurrent holding of the states since they either are entered together or exited
together. Because sync relation is a subset of both causality and co relations, these two
relations co and < have non-null intersection (with the intersection containing elements
in addition to those of sync,,, relation due to the transitivity of < relation. An example

was shown already). This result has an important application in the following:

33

If a global-state is reachable in one interleaving and if its local components wait for each
other, then the global-state is reachable by all interleavings thus avoiding the enumeration
of all the non-deterministic interleavings and the consequent state explosion. The possible
and necessary holding of concurrent states enable us to define the interleaving operator
and deduce the property of all interleavings from one. This feature will be expanded in a

future section and subsequent chapters as well.

2.4.3.4 Concurrent transitions

Two transitions (possibly synchronous) fyni = (Smi> €mi> S'mi) and Tipj = (Smj» €mj» S'mj): 1 <
J> Timi € Rymi> Timj € Ry are said to be concurrent iff:

(Smi €O Spj) and (8'y; €O S'ry).

When ry,,; and ry,; are synchronous, partner transitions, ey = ey; and they take place

simultaneously. The input and output partner states are related by the stronger sync rela-

tion than co.

2.5 The Product machine I1M

We define the following conventional composition of M;, i=1..n, to give rise to the famil-

iar ‘product machine’ as:

Definition 2.9 TTM := 11, M, := (S,, Ex, Run, Som) Where I1 denotes the product of
the n components.

Sm S Spr X Spa X o X Sy, B =UE,i=1..n

Som = (S0m1> Som2 -+ Somn/) and

the transition relation R, is defined as follows :

V Sy S € Sm-€m € En s Smy €me Stm) € R IfF:

37 (Spi.em Smi) € Rymi Where s, Siyi € Smis em € Emi

JAN

Vji<i:

(Smjp €m Smj) € Rimj if (St synco stj) and e, € Ey;

Smi =S

i .y otherwise.

The reachability relation R, (used more often than R,) similarto R i=/..n is defined as:

34

o Sm) € Ry, iff (S €y S'm) € R,
Global-state:
Since the states s, € S, of [IM are composed of the Mpm-states, as reachable vectors,

they are referred to as global-states, as opposed to Mpm-states that are local to Mpms.

Example 2,10 The product composition of M, M,, M; illustrated in Fig. D of Appendix

is shown below:

Fig. 5 The product machine ITM of M}, M5 and M3 of Fig. D

The initial state of the product machine is: (agpgxg)-

States are related by R, as for instance:

((20Po%0) Ry (2090%0)), ((bodoXo), Ag. (CoSeX0)) € Ry, etc.

35

2.5.1 Sequence and Choice in IIM

Sequence and choice are the two relations used to compare every pair of global-states of
[IM.

2.5.1.1 Sequence in [TM

The sequence relation seq, is defined as the transitive closure of the reachability relation
Ryt

Definition 2.10 seq, =R,

If (Sp Riy S'm)» S 1 s2id to be the predecessor of s'y, which is the successor of s,

If (s, Seqg S'm) , a sequence of states from sy, to s'y, is said to be a path of 1M, with s, and
s', as the initial and final states of the path respectively. s',, the final state of the path is

said to be the descendent of s, and s, is said to be the ancestor of s'y,.
There could be more than one path from a given initial state to a final state.
For example from Fig. 5 above, both the following paths:

((aoPo%o), (2090%0), (bodoXo)s (CoSoX0)s (CoSoYo)) and,

((aopoxo): (boPeXo), (bodoXo), (bodoyo), (Coso¥o)) have

(agpoxo) and (cgsgyo) as their initial and final states respectively.

2.5.1.2 Choicein [IM

Choice is a complementary concept of sequence in [IM. Itis a binary, symmetric and irre-
flexive relation among states. If two states are not related by seq,, then they are related by
choice relation.

Definition 2,11 : (s, choice s'y) iff (s, seqg 'y, V ', Seq, s,) where ” denotes the com-

plement operator.

2.6 Analysis of [TM with respect to =M

Even though IIM is the product machine composed in a traditional manner, each of its
states is formed as a vector of Mpm-states. So, the pre-existing structure of Mpm-states, in
particular, the sequence, choice and concurrency relations among them defined with

respect to ZM cannot but be carried on to ITM as well.

36

We proceed further to analyse [IM with respect to M and see if more light can be

thrown on the former thereby.
2.6.1 Gilobal-state Theorem

Theorem 2.1 Every pair of the # components of a state of I1M are related by the concur-
rency relation co, and vice versa.

i.e,Sm € Sy of [IM<=>(5y; COSy) Vi,j=1..n, i <>].

Proof:

=>part:

Any two Mpm-states have to be related by either seq or conf or co by the property of their

union being a toral relation.

Let (Spi S€q Sp;)- It means that s.; can not be entered unless and until s_; is exited; which
in turn means that they can not hold simultaneously (at the same time) and in other words,
they cannot co-exist to form a state of [IM.

By the same token, (S, conf sy,;) can not be true either.

Thus, (Sg; €0 S) V 1, j =1..0n,i <.

<= part:

Since co is the complement of (seq U conf), s,,; and sp,; could hold simultaneously which

means all » components can form a reachable vector or a state of [1M.

2.6.2 Choices & Conflicts in I[TM

We can extend the conflicts of ZM to [IM and view them on the latter as will be defined
in what follows. It will be shown that conflicts carried over to [IM from IM are blended
with another category of choices unique to [TM in an indistinguishable manner from the

latter. Therefore conflicts are transparent to IIM.
2.6.2.1 Conflicts in [TM

Definition 2.12 Two states sy, 'y are in conflict denoted (s, conf s'y,) iff:

(Smi conf S'y;) as defined in M, where sp;, Sp; are some components of sy, s'y, respec-

tively.

37

Since conflict represents the true choice exhibited by the specification, one would expect
the conflict relation to correspond to the choice defined in the last section. But we see that
it does not, as illustrated by the following example:

The two states (by qg Xo) and (ay qq Yo) are not in conflict since none of their respective
components are; but they are related by choice according to the definition of choice rela-
tion in [IM as defined in Section 2.5.1.2. This means that there are choices in [1M other
than the ones due to conflicts among Mpm-states. We call these extraneous ones as non-
deterministic choices just the way they are traditionally termed, and they originate from
the simulation of concurrency among Mpm-states by non-deterministically interleaving

them sequentially in all possible arbitrary orders.

Example 2.11 For example, from state (ap,pg,Xg) in Fig. 1 above, (bg.qq.Xg) can be
reached through (ag,qg.Xg) or (bo.Po,Xo) by executing the asynchronous transitions (ag, €,
bg) of M, and (py, €», qo) of M (e, e, are respective local events not labelled in the figure)
one after the other sequentially in either order. The states (ag,qo,Xo) and (bg.po.Xg) are in

(non-deterministic) choice.

The above phenomenon of replacing the concurrent transitions of the Mpms is referred to
as nondeterministic interleaving and the corresponding paths of [IM as non-deterministic

choice paths. The issue of interleavings will be formally handled in a future section.
2.6.2.2 Non-deterministic choices in [IM

Definition 2.13 Two states s, S', are related by non-deterministic choice if they are nei-
ms Sm Yy Y

ther in conflict nor in sequence:

(sm choice gy det S'm) IfE:

(sm cONfy S'm) V (Sm S€qgS'm) V (S'm S€qg Sm))

Since the choice comes from conflicts or non-deterministic choices,
Definition 2,14 Two states s, s', of [IM are related by choice denoted:
(sy, choice s'y,) iff:

(sm confy s'y) V (s choiceygg et S'm)-

The union (seq, U choice) is a total relation among all the states of ITM.

38

Both the relations seq, and choice of [IM are now larger than the ones that might have
modeled the true sequence and true choice (conflict) relations respectively, as exhibited
by the specification and by ZM. In the process, concurrency is hidden as well from the
product model, as reflected by the complementary nature of seq, and choice relations to
each other.

Thus among the relations seq, conf and co of ZM, co disappears in [IM. In its place, due
to nondeterministic interleaving, every transition of ZR,; of ZM appears multiple number
of times (provably exponential as will be formalized in a later section) in IIM one each

from a set of as many global-states (as the above number), to make up R,.

2.7 Extended Sum machine, =M

The theory presented thus far of the sum machine will be referred to as the basic sum
machine, in which the local Mpm-states are the central entities. In what follows, we
extend the presented notions of causality and the other relational structure among the local
Mpm-states to those of extended sum machine denoted ™M, in which the state-vectors or
equivalently the global-states of Mpms will be the central entities of interest.

When there is no confusion, we skip the adjectives viz., basic and extended and their two
distinct denotations of the sum machine, and let the context of reference identify one or
the other.

Minimal prefixes and Configurations are the two important extended notions of the depen-
dency-order < again, forming vectors/sets of Mpm-states according to some criteria.
These extended notions constitute the foundation of the (extended) sum-machine LM
and its component Mpms that enable their applicability for an efficient verification of the

properties of the concurrent/distributed system to be discussed in the sequel.
2.7.1 Minimal Prefix, Mp

An Mpm-state is a unique instance of an Fsm-state. This instance is not arbitrary, but car-
ries a meaning. Abstractly, it inherits a unique past; as a culmination/extremity of which,

there is a unique vector of Mpm-states associated with it, called its Minimal prefix.

39

The conceptual definition of a Minimal prefix is made below. This definition precedes the
more mathematical ones of Lemma 2.5 and Corollary 2.1 and Corollary 2.2, in order to
emphasize the basic idea, a priori.

Definition 2.15 The Minimal prefix of an Mpm-state is an n-state vector, one from each

Mpm M, i = 1..n which should necessarily and sufficiently be reached in order to guaran-

tee the entry of the given state, in accordance with the causal dependency.

MDP;i(Smi) = (Sm1_syncouts Sm2_syncout> -+ Smi> ---»Smn_syncout) 38 Shown in Fig. 6 where the sig-
nificance of the state labels sp,; gyncout €tC. Will be explained shortly. The necessity condi-
tion of the definition guarantees the minimality of all the states that must precede the entry
of the given state sp; and the sufficiency condition of the definition guarantees the maxi-

mality of the specific vector components reachable among all those states that must pre-

cede s,,;.

As will be formally proved, the non-local components of an Mp vector turn out to be syn-

chronous output states. 4 Minimal prefix thus forms a pairwise concurrent. reachable vec-

40

Fig. 6 Minimal-prefix , A Representative Vector of Global-states

mn_syncout

Zone of
Local states
reached
asynchronous
of Smi'

The above figure represents a set of n paths P;i=1..n of n Mpm-trees and a couple of
state vectors having s, as their i™* component. The vector on top formed by (Sm1_syncout»
Sm2_synouts ---»Smi>---» Smn_syncout) 1S the Mp vector of sp,;. The zone of Mpm-states between
the two vectors with s;; component represent the ones reachable asynchronous of sp;,
from the individual non-local components of Mp in the respective Mpms. The synchro-
nous components of Mp could have progressed up to the respective components of the
bottom vector with s.; within the zone (formed by the top and bottom vectors) still
enabling the entry of s,;. Mp can be considered as a Lepmmtalu&q,ﬁalthga.syncbzam

. It is this

combinatorial possibility that gives rise to exponential enumeration of global-states due to
non-deterministic interleaving of the product machine.

If we can somehow avoid all the above asynchronous combinations of local-states to form
asynchronous global-states and instead generate them with Mp vector alone as their repre-
sentative on need-basis, as and when the occasion demands, then we would be avoiding

their exponential enumeration. This will be the pursuit of the sequel.

41

Mp of a given state of an Mpm thus represents ‘minimal globality’ not only by virtue of
generating itself, but also of potentially generating all the global-states of the product
machine. This will be made clearer in one of the following sections.

Example 2,12 The Mp of the state dy in Fig. B is given by:

Mp(dp) = (dg, uo, Zo), the 3-state vector. The reasoning behind the definition of Mp with
respect to this example is as follows:

In order for d, to be entered, M, must trivially be at state dy. Since dg synchronizes with
Ug, Ug must be necessarily entered to allow the entry of dy. By transitivity in < , zg in M3
must have also been entered. We say that M3 has to be minimally at z; ; the term minimal
is used because, M; could have exited z, and entered g; for instance, independent of M,
and M,, but it is sufficient that Mj is at z, to guarantee the entry of ug and in turn d,.

The condition of sufficiency is needed here to include only that vector, whose components
are the maximal/largest among the respective Mpm’s states (local maximum) ordered by
R,,; are necessarily entered. In this example again, the states s; , yo of M, and Mj; respec-
tively must be necessarily entered to guarantee the entry of dy, but it is not sufficient until
ug and z, are entered as well which are the respective local maximum (in the order <) of

M,, Mj to guarantee dy’s entry.
2.7.2 Global-state Corollary

Corollary 2.1 Every Minimal prefix is a state of [IM.

This is the corollary of the Global-state Theorem stated at Theorem 2.1. This follows since
every Mp is a reachable vector of Mpm-states, every pair of which are concurrent to each
other, i.e., related by the relation co since they can neither be in sequence (due to the max-

imality criterion of Mp) nor in conflict.
]

2.7.3 Minimal prefix and Synchronization

2.7.3.1 Mp Lemma
Lemma 2.2 All the non-local components in the Minimal Prefix of every state of an Mpm

M; are synchronous output states.

42

Proof: The proof follows from the fact that the non-local Mpms must progress sufficiently
and minimally in order to enable the local Mpm to enter a given state which can only be

due to synchronization requirement.

The necessity, sufficiency conditions of the definition of Mp of say, sp,; =>

(i) Non-local components must reach a specific, maximal state sg;, possibly after a
sequence of transitions in the order R, , j<i. This state must be a synchronous output
state which is directly a partner state of the given state s, or that of a synchronous output
state s of another Mpm M , k<>j, k<>i which should progress further on in order to be
a partner state of s.; .

(ii) The sufficiency condition of the definition of Mp of s,; =>

Asynchronous progress of M;, j<>i beyond the above maximal synchronous output states

is unnecessary since that will not contribute to the progress of M; to reach sp; either

through direct or indirect partnerships.

Hence the result.
=B

It is thus noted that Mp covers both a minimum and a maximum criteria by its necessity

and sufficiency conditions respectively.

Synchronization is the hurdle or a stumbling block that keeps an Mpm (the primary one),
from progressing to all its future states independently of other Mpms (the secondary
ones). In order to enable the given Mpm to cross the mentioned hurdle, the partner
Mpm(s) participating in the synchronization have to possibly go through a sequence of
asynchronous states and then synchronize with the former. This process may call for cer-
tain more synchronizations in a recursive manner. This will be reflected in the generation
algorithms of CMpms (with respect to given CFsms). After the synchronization in each
case, it is immaterial whether the respective partners continue asynchronously to progress
or not, and if so how far, so long as the necessary hurdles for the Mpm in question before

reaching a given state have been sufficiently crossed.

The above is stated as the necessary and sufficiency condition in the definition of an Mp.

43

2.7.3.2 Minimal Prefix as a one-to-one Function

Lemma 2.3 Minimal prefix can be expressed as a one-to-one function with its domain as
the states of an Mpm and the range as the respective Minimal prefix vectors of those

states.

In other words, Mp;, i=1..n denote the n one-fo-one functions, that express the Minimal
prefixes of the states of the n Mpms respectively.

Proof: (by contradiction)

Essentially the proof follows from the absence of backward-conflicts in ZM.

For a state to have more than one Minimal prefix, by its definition,

(i) the state is reached by two different paths of the given Mpm.

Or,

(i1) Either the state or one of its ancestors (with respect to <) is a synchronous output
state with more than one set of partner states.

(i) => contradiction of the restriction of the state-graph of an Mpm to be a tree.

(ii) => contradiction of the property of uniqueness of partnership in synchronous output
states as proved in Section 2.4.2.4.

Thus, Mp; is a function within Mpm M;, i=1..n.

Mp; - Sini > (St X Spz X .Sy X ... XSpn)

MPi(Smi) = (Smi_souts Sm2_souts-+-+Smis-+-Smn_sout) Where,
the i'" component of the Mp of the state s is that state itself and the rest are synchronous
output states, either partners of each other or having their own partners in the past of s;
according to Mp Lemma. When s; itself is a synchronous output state, it shares an identi-
cal Mp-vector with all its partner states. That is why Mp; is only a local function, within
the domain of local Mpm-states of a given Mpm, M;.

Mp; is a one-to-one function; it follows trivially because, as every state is unique in an
Mpm’s state-tree, at least the i" components of the two Mp-vectors corresponding to two
distinct states have to be different, even if the other (n-1) components are possibly the

same.

Hence the result.

Example 2.13 It is noted from Fig. B of Appendix,

Mp,(dg) = Mp(uyp), since (dg Syncy,, g), where ug is in M.

Mp,(v)) = (v1, tg, Zo) Where v, is the output state of an asynchronous transition. Except v,
both the other components are synchronous output states in the past of v, in the depen-

dency-order < .
2.7.4 Minimal Prefixes and Labelled Partial Order

The bijective association of Mpm-states and the Minimal Prefix vectors make the partial
order < relating the Mpm-states, a labelled one. This labelled PO of the sum machine is
linked to the operational semantics of the product machine which helps to generate all the
latter’s global states. This will be demonstrated by some of the theorems of the sequel.

The Mp labels will be used dynamically during verification while branching in space
from one Mpm-tree to the other to do the local search of the needed Mpm-trees, without
losing track of the continuity in time. The Mp label of an Mpm-state is the ‘minimal
encoding’ of the non-local states that are causally dependent on the given Mpm-state.
Local conflicts together with these labels keep track of the global conflicts, as will be
demonstrated. This property is exploited in model-checking to be discussed as well in

Chapter-4.

2.7.5 Local Configuration, C(s;)

The notions of local configuration and of general configuration that follows the former
are important to establish the link between the (Mpm-) states of ZM and the global states
of ITM. They are also necessary to correlate the conventional notion of runs and interleav-
ings of concurrent systems and formally define them with respect to our context. This link
is vital for the expressiveness of a specification and the strategy adopted in the implemen-
tation of its verification and the complexity incurred.

Definition 2,16 The Local configuration of an Mpm-state s,; is defined as the upward
closure of that state, which is:

The set of states : {spi | Smk < Smi,» Vk=1..n}.

45

The phrase upward closure is the logical synonym for Local Configuration and is chosen
with respect to the state-trees of Mpms which grow downward from their respective ini-

tial-states situated up in their roots.

The upward closure and so a local configuration is the set of all states that are to be neces-
sarily reached in order to enable the entry of the state in question. This view establishes
the link between the Minimal prefix of a state and its Local Configuration. Each of the n
components of the former corresponds to the local maximum of the states ordered by
R,,;,i=1..n among the member states of the latter. This notion will be formally presented at
a later section.

Property 2.4 No two states in the upward closure (local configuration) of a state can be in

conflict.
Proof: (by contradiction)

Assume (Sy,; conf sy,) where,
Smi» Smj are members of the upward closure of sp.

=> (Smi €ONf Stg;) N\ (Smj < Smi) from the above assumption and definition of upward clo-

sure.
=> (smi COnf smi) by the conflict-inheritance property of Section 2.4.2.
=> contradiction of (Sm; < Smi), from Property 2.3.

Hence the result.
8

Local configuration represents the unique global past-and-present associated with a given
Mpm-state in entirety , tracing back upward to the initial states of the system.

For the same reason as argued for Mp, local configuration is also unique for every state
within a given Mpm. However, two states of two different Mpms may inherit the same
past and present due to synchronization. In particular, two or more synchronous output
states that are parmer states share the same local configuration and Mp-vectors.

Consequently, we can formally define C;, the local-configurations of the states of individ-

ual Mpms M;, i = 1..n, as the following set of one-to-one functions:

C;: Smi — Smset where Smset is the powerset of S,,,,i =1..n.

46

Ci(Smi) = {Smj | Smj < Smi}. forj = 1..n, forevery i=l..n.

Example 2,14 _From Fig. B of Appendix, C,(dy) = {dy, co,bo.a9, Uo,t0,S0,90-P0-Z0-Y0-X0 }
and nothing else. C;(dp) refers to the local-configuration of the state dy in Mpm M;. No
other local configuration of M; maps to the same set as above. But C(dy) is also equal to
Ca(ug) since dg and ug are the synchronous output states reached simultaneously after a

common synchronous event.
2.7.6 General Configuration C

Definition 2.17 A general configuration C, or a configuration in short, of the extended
sum-machine Z M is a subset of states of EM i.e., C & XS, , satisfying the following

two constraints:

(i) Upward closed : If a state is present in a configuration, so does its local configuration.
(ii) conflict-free: No two states within the same configuration are in conflict with each
other.

Every local configuration of s; by its definition satisfies both the above constraints as fol-

lows:

The upward closure i.e., local configuration of s; also contains the local configuration of
every other member by its definition. No two states of an upward closure can be in conflict
from Property 2.4. Thus every local configuration is a special case of a general configura-
tion.

The initial configuration C, of £°M consists of just the set of all initial Mpm-states, which

also constitute the Mp of every one of those states, as there is no pas’ beyond these :

Co = {Smo1> Smo2---+Smon} = MPi(Smoi), 1I=1..0

Example 2,15

Co = {ao, Po, X0} =Mp (a) := Mp (po) = Mp(xo) in Fig. B.

C = {dy, co.bg.2g, V1, Ug.t0.50.90-P0> E1- Z0-Y0.Xo} is @ general configuration which is not a

local one of any specific state.

By introducing the above notion of configurations in Mpms, we have the important advan-

tage of expressing any configuration as a set union of local configurations, a result which

47

is directly used in deterministic model-checking and proving its complexity claim as elab-

orated in Chapter-4.
2.7.6.1 Path
Definition 2.18 A path P, is a sequence (ordered set) of k states, k> 1 from the state-tree

of Mpm M;, i < n with an initial state and a final state, where:

Each state in the path is a successor state of the previous state in the Mpm-tree, except the
initial state.

For example, P; == {sp};, szi,-.-,smki}l is a path where:

S 1S the initial state of P,

Smii 18 its final-state denoted as: fs(P;) and

k is the length of the path P; which is the number of states in the path.

Sm2;i 1S @ successor state of s,;; and so on.

k =1 => initial state is the same as final state of a path.

Example 2.16 _The path P, = {py, qq, So. to, o} of M, in Fig. D has its initial-state as pg
and final-state as ry with its length k = 5.

The paths are thus defined local to individual Mpms.
Definition 2.19 Two paths P;, P; are conflict-free iff:

No two states of P;, P; are in conflict.

i€,V smi e P Vsy e Pj, "(smjconfsy;).

Conflict-freeness can be extended to more than two paths as well.

A set of n paths are said to be conflict-free if every pair of those n paths is conflict-free.
7
2.7.6.2 Disjointness Theorem
Theorem 2.2 Every configuration is a disjoint union of exactly 2n unique, conflict free
paths P;, i=1..n with initial-states so,; respectively from the » state-trees of M;, i=1..n.

! Since a sequence is an ordered set, without loss of generality, a path is treated as a set itself for manipula-
tive convenience in the sequel.

2 n is italicized wherever possible to make it stand out in the running material which is the same as its non-
ftalicized occurrences in other places.

48

ie., C=2X,. ,P; where,
P, Pj are conflict-free Vi,j=1.n,i <>j.
Proof: From the first constraint of the definition of the configuration, viz., the upward clo-

sure, every configuration contains the initial states of all the Mpms, sgp;, 1=1..n.

The second constraint of the definition of a configuration, viz., conflict-freeness, allows
just one single path with sq; as its initial state from each M; i=1..n. Since the state-tree of
M, is rooted at sy, for two paths with sgy; as their initial-state to be conflict-free, one
must be a proper subset of the other. Otherwise they must be in conflict, by the definition

of conf; relation in Definition 2.6, since the very successors of sqy; are in conflict.

By the same constraint of a configuration, viz., conflict-freeness, no pair of the n respec-

tive paths, one from every state-tree of M;, i=1..n can be in conflict with each other.

Only one wnique path from each state-tree can account for the subset of states of C that

belong to M;. Any other path will alter the configuration to something other than C.

Therefore, any configuration is a disjoint union of n unique paths with initial states sy,

one each from every M;, i=1..n that are conflict-free.

Hence the result.

Example2.17
The configuration C = {d,, c0,bp.20, V1. Uo.to.S0-90-Po» 81> Zo-Yo-Xo} from Fig. B can be

viewed as:

C = Z;_, 3P; where:

Py = {ag,bg, co. do}.

P> == {po. 9o, So. to- Uo. V1 },

P3 = {x0, Yo, 0. 81}

Local and general configurations with their corresponding Mp and Fsv respectively are
illustrated in Figure 7 on page 52.

The above view of a configuration leads to the following notion.

49

2.7.6.3 Disjointness Theorem and Labelled PO

A labelled PO is an abstract entity and the set of n paths of n Mpm-trees is a concrete
one, since it associates with the operational semantics of the n concurrent automata
(CMpms). A configuration being a set of Mpm-states related by the causal dependency-
order < (which is partial) , each labelled by or mapped to its unique Minimal prefix vec-
tor is a labelled partial-order, that is conflict-free. So, we see that disjointness theorem
bridges the gap between the entities of abstract and concrete domains respectively, by
extracting conflict-free, labelled PO structures that are configurations out of a collection
of concurrent automata (CMpms) or the so-called sum machine.

The advantage of the fusion above is two-fold :

(i) Because of the connection to automata and their operational semantics, the problems of
expressing many interesting liveness properties as well as safety ones and verifying them
can be more easily solved in the concrete domain, as will be demonstrated in next two
chapters.

(i) It lays the foundation for resolving many open questions in the classical formal lan-
guage theory, some of the details of which will be discussed at a later section and the rest

are left for the future work.
2.7.6.4 Final State Vector of a Configuration

Every configuration has an associated final-state-vector.

Definition 2.20 If C = X ., P, its final-state-vector is defined as:

Fsv(C) = (fs(P)), fs(P,),...fs(P,)) where fs(P;) is the final-state of

P;, i=1..n.

The i component of Fsv(C) is denoted as.

: Fsv;(C) which is fs(P;), i=1..n, in the sequel.

Example 2.18 The Final state vector of the configuration, C = {dy, ¢y, b, ap, V1,
Uo,t0,S0.90-P0> 81, Z0,Y0-Xo} 1S given by:

Fsv(C) = (dg, v;, g;) which follows easily from the set of paths of C illustrated in the last

subsection.

S0

Lemma 2.4 The Minimal prefix of a state s;, give’n by Mp;(s,;) is the same as the Final

state vector of the Local configuration of s,,; denoted C;(s;)-

Proof: Ci(spi) = {Smj | Smj < Smi}, forj=1..n, for every i=1..n.

Let Ci(sp;) = X i=1.nP; by applying the disjointness theorem, Theorem 2.2.
Let Mp;(si) = (Sm1, Sm2, ---» Smn)- Then,

Smi 1S the local maximum (largest) in the order of R,,; among the states necessarily entered

in order to enable the entry of s;, by the definition of Minimal prefix, Example 2.12.
=> s = f5(P;), i=1..n.
=> Smi = FSVi(Ci(Smi)), 1=1..n.

=> Mp;(Smi) = Fsv(Ci(smi))-

2.7.6.5 Fsv Lemma

Lemma 2.5 There is a one-to-one mapping between configurations and their final state

veclors.

Proof:

Since there can only be one final-state of a path, there can be only one final-state-vector of
a configuration. Also, for two different configurations to be distinct, they must have their
respective Fsvs differing in at least one component; for if they do not, they become one
and the same, by the upward closed constraint of a configuration or the disjointness theo-
rem.

Therefore Fsv is a one-to-one function from the set of all possible configurations Cser, to a

set of Mpm-state-vectors of ZM:

Fsv: Cset > (S X Sp2 X oo X Spp)

Since the above is an one-to-one function, we can define the set of general configurations
as its inverse function as follows:

C:S,, > Cset where S,, € (S;; X Sp2 X ... X §,,) is the set of all reachable Mpm-
state vectors of A/ . This function is both one-to-one and onto obviously but Fsv is not an

onto function since only a subset of the vectors of the cross-product are reachable vectors.

51

Corollary 2.2 The Minimal-prefix of the state s_;, Mp;(sy,;) is the Final state vector of
its local configuration, C;(sy;)-

Property 2.5 "(fs(P;) seq fs(P;)), Vi,j =1.. n where X;_; ,P;is a configuration.

Proof: (By contradiction)

Let us assume (fs(P;) seq fs(P;)) for some i and j, i<>j. Then,

dsmi € Spis S5(P;) Ryy; Spyi such that sy < fs(P;) (By the definition of

seq in Definition 2.5)

The above => sp,; ¢ C since f5(P;) e C (By the upward closed constraint of C in Defini-
tion 2.17);

smi € Cis a contradiction since f5(P;) is the largest in the order of R,,;; among all the mem-
bers of C from the definition of C and P;,i=1..n. Hence the resuit.

Figure below illustrates a set of n conflict-free paths that grow into local and general con-
figurations. The vectors denoted by s;1-S'mn = Mpi(Sm1) and $'m1-Smn=MPu(Smn) are the
final state vectors of local configurations and their union forms a general configuration

whose final state vector is sy,;-Smn=Fsv(C), as shown in the figure.

Fig. 7 Local and General Configurations as sets of n conflict-free paths

Som1 Sgmp Somn

52

2.7.6.6 Minimal prefix and Concurrency

Minimal prefix is a vector, each component of which should precede or synchronize with
the associated (Mpm-)state, to enable that state to be reached. Therefore, the very entry of
a state automatically implies the entry of other components of its Mp-vector in its past, or

possibly the present.

Concurrency means two states holding simultaneously at some point of time, whether or
not they are actually entered simultaneously. It was defined as the complement of the
union of sequence and conflict. When there are no conflicts, (i.e., the conf relation is Null)
co is the complement of seq. It was also mentioned that concurrency is originated by
simultaneity of synchronous output states and multiplies due to asynchrony. So, given an
(Mpm-)state s,;, it may be interesting to consider, how many states can be reached asyn-
chronous:independent of s;, i.e., concurrent to it, before becoming sequential to it.

The above gives an idea of the degree of concurrency i.e., to what extent the related part-
ner states, originated as strongly concurrent ones in simultaneity, can progress asynchro-
nous of each other with their local descendents (in the order R;) still remaining
concurrent. In this sense, the co relation is given a different perspective with respect to

Mp, orthogonal to its relationship with conf. We assert the following:

2.7.6.7 Concurrency Lemma

Lemma 2.6 (s €O Smj) => (Smj > Mpi(smi)()) A\ (Smi > Mpj(smjX(i)) where,

Mp;(s,i)(§) denotes the j' component of Mp;(S;)-

Proof:

The very entry of s,,,; implies the past or present entry of every component of Mp;(s;,i), by
the definition of a Minimal prefix. Therefore, in order to hold simultaneously with sy, Sy
must at least be equal to the corresponding j" component of Mp;(s;) i.€., Mp;(s,;)(j), or
one of its local descendents in the order R'mj (and hence > ; it is to be noted that >

degenerates to R'mj among states local to M;). Likewise, the symmetric argument for sp,;

holds good.
]

53

Both the conjuncts in the lemma above represent the sequence of (possibly none) asyn-
chronous transitions of M; and M; respectively with respect to one another. This lemma
defines the interval/span of states which can be entered asynchronously with respect to
another state still remaining concurrent to it, (i.e., related by co) thus defining the degree

of asynchrony and so of concurrency.
2.7.6.8 Fsv Theorem

Theorem 2,3 Every pair of states in a Final state vector (of a configuration) are related
by co relation. i.e.,

If C= X;- 4P; then 5(P)) co f5(P;)) V i,j =1..n, 1<)

Conversely, if there is a vector of Mpm-states such that (s,,€0 Spyp €O...CO Sqy), then the

components form the final-states of the paths whose disjoint union is a configuration.
Proof:

Ihe first part:

~(fs(P;) conff5(P;)) : By conflict-freeness constraint of C from Definition 2.17.

~fs(P;) seq f5(P;)) : By Property 2.5.

Therefore, (5(P;) co f5(P;)) for all i,je n : By the definition of co in Definition 2.8.

of the three relations, seq, conf and co, as defined among all the states of M.

TIhe second part: (by contradiction)

Let us consider the » paths with the respective initial states as sqp,; and final state as sy;;,
P;. We have to show that ZP; satisfies both constraints of a configuration:

(i) ZP; is conflict-free by the following contradiction:

If any two states belonging to two different paths P;, P; are in conflict, by the conflict
inheritance property of Property 2.1, (spi conf sp,;j) would be the deduction, which contra-
dicts (Syi €O Sp,;) since co and conf are complementary. Thus the n paths are conflict-free.
(i1) ZP; is upward-closed as follows:

(Sm1€0 Sma €0...€0 $1,) => S > Mpy(sy)(i) , V j <>i by concurrency Lemma at Lemma 2.6
=> s = f5(P;), i=1..n and C;(s;) & ZP;

Therefore, C= ZP; forms a configuration.

54

Hence the theorem.

2.7.6.9 Continuations of Configurations in =M

Definition 2.21 If two configurations C and C' are related such that C ¢ C' then, C'is
said to be a continuation of C and Fsv(C") is said to be a descendent of Fsv(C). C is said to
be an ancestor of C' and also Fsv(C) an ancestor of Fsv(C'). We say that the continuation

C' is reachable from C as well as the vector Fsv(C") from Fsv(C).
As a special case of the above, suppose a continuation C' can be reached from C by a sin-
gle transition (Syy; €mi S'mi) Of Rymi such that C' — C ={ s';}. Then, C' is said to be the suc-

cessor of C.
2.7.6.10 Conflict between Configurations

Definition 2.22 Two configurations C and C' are said to be in conflict iff:
dsymi € C, s’y € C'such that: (sy; conf; 8'mi).

2.7.7 Configurability

The theorem to follow suggests a method of checking if the union of two given configura-
tions give rise to a third configuration, containing the two. It does so essentially by check-
ing if the individual components of the corresponding Fsvs are reachable from one another

when not identical.

The theorem is applied to check if the union of the local configuration of an Mpm-state s,;
and a given, possibly general configuration C gives rise to a continuation of C. If it does,
we say that C(s;) or sy,; configures with C. This process is referred to as the configurabil-
ity checking. Illustration with an example will be given in the context of application of this

theorem in Chapter-4.
2.7.7.1 Configurability Theorem
Theorem 2.4 The result of the set union of two configurations C, C' is a third configura-

tion C" if and only if every corresponding components of their respective Final-state-vec-
tors viz., Fsv(C) and Fsv(C') are reachable from one another (if not identical), in their
respective Mpm-trees.

ie,C"=(CUC(C)is a configuration <=>

S5

(i) Fsvi(C) R,; Fsvi(C"),

Or,

(ii) Fsv;(C') R},; Fsvi(C), forall i=1..n,

such that: in case (i), Fsv;(C") =Fsvy(C) ,

and, in case (ii), Fsv;(C") = Fsvy(C).

Broof:

=> part:

Let C, C', C" be three configurations. Then they can be expressed as follows:

C=2P;,C' = ZP;and C" = ZP";, by applying the disjointness theorem in Theorem 2.2.
Then, C"=(CUC)=>

2P =2,P,UZP,=2(P;UP})

The initial state of both P; and P'; is sqp,;, i=1..n, and they have to be conflict-free from the
definition of a configuration.

=> (fs(P;) R",,; £5(P;)) or (fs(P;) Ry, fs(P;)) from the following result:

fs(P;) = Fsv;(C) and fs(P';) = Fsv;(C'), by the definition of Fsv(C) as in Definition 2.20.
<=part:

It is now given that:

(fs@®;) Ry (P)) V (fs(P;) R’y; fs(P';)), i=1..n such that: C = ZP;and C'= ZP';are
configurations.

=> (P; U P';,) forms a single path P"; with sy as its initial state, i=1..n.

Since P;,P; are conflict-free as well as P';, P'; for all i,j: 1..n, i< >j from the disjointness the-
orem (Theorem 2.2) ,

ZP"; = Z;P; U L;P'; = Z(P; U P';) where P";, P"; are conflict-free for all i,j =1..n, i<>j.
To show that XP"; is upward closed:

fs(P";)=fs(P;) or fs(P';) , depending on P; is contained in P’; or vice versa.

=> C(fs(P";)) < Z.P"; from the fact, C and C' are configurations with C;(P;) < Z.P; and
Ci(P;) < Z.P;.

56

~.C" = ZP";is a configuration.
The ‘such that’ part of the theorem follows from the fact that fs(P";) is:
=fs(P;) , if fs(P;) is reachable from fs(P"';),

= f5(P';), otherwise.

Definition 2,23 Fsv(C) < Fsv(C")iff: Fsv;(C) R:ni Fsv;(C'), i=1..n
This is the extension of the dependency-order < to order the vectors as well.

2.7.7.2 Configurability Corollary
Corollary 2.3 Fsv(C) < Fsv(C)<=C c C

This is a special case of the theorem above when C is already contained in C'.

Fsv(C) is referred to as the ancestor of Fsv(C') , the latter being the descendent. When C'

succeeds C, Fsv(C') is a successor of Fsv(C).

2.8 Equivalence Classes of Final-state-vectors of *M

2.8.1 Asynchrony with respect to an Mpm-state

Consider a local configuration C;(sy,;) of state s.; in the state-tree of Mpm M;, and a gen-
eral configuration C such that s,; = Fsv;(C).

Then, Ci(sp,;) < C, from the definition of local and general configurations. We say that C

and Fsv(C) are reached asynchronous of sy;.

The above implies that:

Mp;i(smi) < Fsv(C), for all C such that s.,; = Fsv;(C), from Corollary 2.3 (configurability
corollary) and Lemma 2 4.

2.8.2 Equivalence Relation, RMp;

We define a binary relation RMp; as follows:

Definition 2.24 (Fsv(C) RMp; Fsv(C")) iff:
Fsvi(C) =Fsvi(C) =spi , Smi € Smi-

Following is true:

57

Mpi(s;) < Fsv(C), for all C such that s,,; = Fsv;(C).

RMp; is easily verified to be an equivalence relation since it is reflexive, transitive and
symmetric. This equivalence relation splits the set of Final state vectors into as many
classes as there are states of S,;. Mp;(sy,;) being the smallest in the order < among all the
vectors with s.; as a component, is the representative of the equivalence class formed by
RMp;, one for every sy,; € Sp; of M;. This follows from the following reachability rela-
tion:

Mp;(smi) < Fsv(C), for all C such that: s,,; = Fsv;(C).

We thus get the equivalence class of Mp;(s ;) denoted by [Mp;(sm;)lrmp; Which consists of
all the state vectors with s.; as their i'* component. It is to be noted that there are vectors
Fsv(C) within an equivalence class that are in conflict with each other even though they
are all reachable from Mp;(s,;).

Among all the Final-state vectors, there are Minimal prefixes (corresponding to local con-
figurations) and those that are not Minimal prefixes, (corresponding to general configura-
tions). The union, URMp; , for all s; € S.; splits the set of all the vectors into as many
equivalence classes as there are Minimal-prefix vectors of M, given by the cardinality of
the union of functions XMp; which is utmost the cardinality of X£S,;. It is utmost because,
simultaneous states have identical Mp vectors.

RMp;, for every i =1..n, is defined orthogonally, where each equivalence relation splits the
set of Final-state-vectors into disjoint subsets of [Mp;(sy;)lrmp;, in 7 orthogonal ways/
dimensions, one for every i =1..n. When a given Mpm M,; is traversed as a primary one,
we perceive the set of Final-state-vectors using the corresponding equivalence relation,
RMp;.

Example 2.19 From Fig. C of Appendix, consider s,;; = b, where,

Mp;(bo) = (bo, Po. X0);

Let sp, = Fsv(C) = (bo, po» Yo): 'm = Fsv(C") = (b, qo, X0) -

Then, (b, po, X0) RMp; (bo, po. Yo)» (bo, Po. Yo) RMpy (b, qo. Xo)

(bo, Po. Yo) RMp; (bo, qo, Xo) and (bg, do, x0) RMp; (b, Po, Yo) as well as

58

(bo, Po» Xo) RMp; (bg, Po, Xo)-
Fsv(C) and Fsv(C') will be in conflict, when C and C' are in conflict i.e., when some of

the respective members are in conflict. For instance,

(dg. Vi, 20) RMp; (do, Vo, 8o) even though (v| confs vo) and so (dg, V1, Z) confg (do, Vo, o)
Example2.20

From Mpms M,, M, and M; of Fig. C,

[20.Po.X0lrMp; = {(20.Po-X0). (20.90,%0). (30.P0-Y0)- (30.P0.X4)> (20.40.Y0).(20.90.%4) }-
[bo.Po-XolrMp; = {(ba,PoX0), (Bo.q0.X0), (bo,Po.Y0). (bo,Po.X4), (Bo.q0.¥0):(Bo.q0.%4)} -
[co.S0.xolrMp; = {(C050:%0), (Co-t0,20); (Co:t0-81)s (CosFo-ho), (Co.51.%3)}-
[do.uo.zolrMmp, = {(do.Uo,Z0), (do,V1,Z0), (do.Vo,80)}-

[a1.p1.x1]rMp, = {(a1.P1,%1)}-

[22.p2.%2]rMp, = {(32,P2.%2)}

Similarly, equivalence classes of RMp,, RMp3 can be enumerated as well.
[20.Po.X0]rRMp, = {(20.P0,X0), (bo,P0-X0)s (20,P0.Y0)> (30.P0-X4), (Po,Po.%4).(20,P0-X4) } -
[20.90-%0]rRMp» = {(20,90-%0) (20,Q0-Y0)> (20,90,X4)> (Bo.90,%0) (P0,90.Y0)> (P0-Q0-X4)} -

etc.

We apply this formalism to develop the equivalence of Final state vectors of XM and glo-

bal-states of ITM and the concept of cur-off at a later section in the sequel.

2.9 Final-state-vectors of M and Global states of [IM

By Global-state corollary of Corollary 2.1, we noted that every Mp-vector is a state of
ITM.

The set of Mp-vectors defined by the functions MP;, i =1..n form only a subset of global
states of [IM since all the non-local components are restricted to be synchronous output
states in any Minimal prefix, as cited by Lemma 2.2. Equivalently, they are the Final state

vectors of local configurations from Lemma 2.4, which are only a subset of general con-

figurations. This forms the background of the rest of the section.

59

2.9.1 Equivalence of [IM and M

2.9.1.1 Equivalence Lemma

Lemma 2.7 The set of global-states of IIM coincide with the set of Final state vectors of
ZM. i.e, they are equal.

Proof: s, € S, of [IM <=> (sp; €O spj), where:
Smi € Smi Of Mj, sy € Spjof M, V 1, j = 1..n, from global-state theorem, Theorem 2.1.
For every C in M, (Fsvi(C) co Fsv;(C)), where:

Fsvi(C) € Sy of M;, Fsvi(C) € Sy of M, V i, j = L..n, from Fsv theorem, viz., Theo-

rem2.3.
=>Fsv(C) € S, of [IM, for every C in ZM and,

C(sy) € Cset, for every s, in [TM where Cset is the set of all reachable configurations of

M.
]

2.9.2 Minimal prefix and Monotonicity

The following lemma shows that every local transition of an Mpm (and of M) has a cor-
responding global transition of IIM. Thus it links the Mpm-states of the sum machine
2M and the global states of the product machine 1M, generated virtually by the former.

2.9.2.1 Monotonicity Lemma

Lemma28

@) V sy € Sy, 3 Cin ZM such that Mp;(s,;) = Fsv(C), i=1..n,

(i) V (Smi» S'mi) € Ry 3 C,C'in EM and 3 s, s', € S, in [IM such that:
(Fsv(C) < Fsv(C')) and (s, Ry, s',) where:

Fsv(C) =5y, € [Mp;i(Smi)lrmp;

Fsv(C') =s'n, € [Mp;(s'mi)lrmp;

Proof:

60

(i) follows directly from the fact that for every Mpm-state s;, there is a Minimal prefix
vector defined by the function Mp; as Mp;(s,;) and the local configuration Ci(s,;) such
that the Fsv(C;(sy,;)) = Mp;i(s) from Lemma 2.4.

(1) (Smi> S'mi) € Rmi = (Smi < S'mi) » from the definition of < at Definition 2.3.

=> (Ci(smi) < Ci(s'mi)) - from the definition of a local configuration at Definition 2.16.
=> Mp;(Smi) < MPp;(s'm;), from the configurability corollary, Corollary 2.3.

=>Fsv(C) < Fsv(C") where:

Sm = Fsv(C) € [Mpi(smi)lrmp; and s', = Fsv(C) € [Mp;(s'y)Irmyp; - since the same tran-
sition (Smi, Ry, S'mi) can be made in general, from a set of global-states s, € S, (possibly

a singleton) with s_; as their component, which follows from the definition of the product

machine TIM, in Definition 2.9.

Hence the result.
2

This lemma is applied in proving the following theorem as a generator of all the global-
states of [IM from the local Mpm-states and Mp-vectors of M. This in turn is applied in
the verification algorithm of Chapter-4, since by sequential traversal of local Mpm-states
of M we essentially traverse the global states of ITM.

2.9.2.2 Equivalence Theorem |

Theorem 2.5
(i) There are as many global-states of I1M as there are configurations of M.

(it) The former are generated as the Final state vectors of the latter, such that:

For every successor C' of a configuration C in M such that Fsv(C) < Fsv(C'), thereis a
corresponding transition (s, R, s';,) generated in IIM where s, = Fsv(C) and s'y, =
Fsv(C").

Proof of (i)

For every C of XM, there is a unique Final state vector Fsv(C) , from Fsv Lemma at

Lemma 2.5.

61

=> For every configuration C of ZM, there is a corresponding global-state s,, of IIM,

from the equivalence lemma in Lemma 2.7.

=> There are as many global-states of [1M as there are configurations in ZM.
Proof of (ii):;

Given C' is a successor of C in M,

Fsv(C) <Fsv(C') <=> Fsv{(C) R,; Fsv;(C") , i=1..n from Definition 2.23.

=> (S;m Ry 8'm) in TIM where s, = Fsv(C) and s',=Fsv(C") such that:

Sm € [MPi(Sm)lrmp;

Sm € [MPpi(s'mi)IRmp;

from the definition of RMp; and Monotonicity Lemma in Lemma 2 .8.

Hence the result.

The detailed discussion of the proof follows:
The initial configuration consisting of the set of all initial Mpm-states, Cy ={som1,
Som2----S0ma} coOrresponds to the initial global-state of IIM, viz., o= (Som1> Som02>----Somn)

which is also Fsv(C,) as well as Mp;(sgp,;), i=1..n.

i.€., Som = MP;i(Somi) = Fsv(Co) =(Som1> Som2»---»Somn)-
Corresponding to every transition r,; of Ryy,;, @ successor C of Cy is reached in M and a
successor of sy, is generated by a corresponding transition of Ry, in [TM by applying the

Monotonicity Lemma.

Also, the same transition r,,; can be applied from at most all the states of
[Mpi(somi)JRMp;, the equivalence class reached by the transitions of Ry, j <> i executed
asynchronously with respect to sy;, from Mp;(Somi)-

This process can be inductively continued for every resulting configuration (and Final-
state-vector) of M and the global-state of ITM from the previous step. In each case,
when a successor C' of the configuration C is formed, the Fsv(C") differs from that of the
predecessor C only in one component in the case of asynchronous transition and two or

more components in the case of a synchronous transition. The corresponding R, transi-

62

tion in TIM space generates the successor global-state s', of s, from the previous step,

where s';=Fsv(C') and s,, = Fsv(C).
2.9.2.3 The Non-equivalence of IIM and ZM

But there are two important differences in the process of generating configurations in M
domain and global-states in [IM domain:

(i) In the former, only the local Mpm-states and their transitions of the n Mpms ZR,,; are
stored using which the configurations and their final state vectors are dynamically and
monotonically generated. (Even though the Minimal prefixes of the states given by
Mpi(Smi), V Smi € Smi i=1..n are stored as illustrated by the example in Fig. C and Fig. D,
these vectors are only used as /inks/handles at the time of changing the primary Mpm from

one to the other. This issue will be elaborated in later chapters.)

Consequently, the conflicts are distributed across the disjoint Mpms of ZM as the disjoint
union Zconf, as opposed to the global, homogeneous conflicts conf, of TIM. This amounts
to generating the global runs originating from global conflicts among global states of the
latter by using the local runs corresponding to local conflicts of the former or in other
words, non-enumeration of all the runs. As the cardinality of conf, is much higher than
that of conf, due to the distribution of latter, we incur a lot of complexity savings. This
issue again will be centrally handled by a different section.

Also since the global-states of [IM are generated as Final state vectors of configurations
of M, and since a configuration is a set of local Mpm-states, the order in which the local
transitions of TR, are executed to reach the destination configuration does not matter,
and are not recorded/stored. This is referred to as non-enumeration of interleavings, dealt

with in a separate section.

On the other hand in [TM domain, the sequence of transitions made from one global-state
to the other till the destination is reached, is recorded explicitly, thus enumerating all the
(global) runs as well as interleavings.

We exploit and capitalize on above characteristics of ZM in the verification of properties
of TIM so that the enumeration of all possible runs and interleavings of global sates are
avoided. Instead, those of the specific runs and interleavings as guided by the property

checked (i.e., the global-state whose reachability is to be verified) are dynamically chosen

63

by adding the local Mpm-states which suffice to be stored statically as they are. Since a

ngle configuration represents possibly multiple ordering of transitions depending on

2.9.2.4 Summation Lemma
Lemma 2.9 If Fsv(C) = (Sm1, Sm2> ---» Smn) then,

C = C(sm1) U Ca(sm2) U...U Cy(Smn) . where C is a configuration and C; the local config-

uration of sp,;, i =1..n.

Proof:

C = X,. .P; where P;, i=1..n are conflict-free paths respectively of M;, i=1..n according to
disjointness theorem at Theorem 2.2.

smi € C=>Ci(sy,;) < C, forall i=1..n, by the definitions of local and general configura-
tions, as stated in Definition 2.16 and Definition 2.17 respectively.

Therefore, Uj~; o(Ci(smi)) < C
Now, C can not have any more states other than the above union of left hand side because

every s, is the final state of the path P;, and adding any more state to any of these paths

will tend to make the new state final in the respective path, a contradiction.

Thus, U=y o(Ci(smi)) = C.
&8

Example 2.21 _ The configuration, C := {dy, c,bg,ag, V1, Uo,t0.S0,90.P0» 81> Zo-Yo-Xo} With
Fsv(C) = (dy, v, g;) is the same as:

C(dp) U Cs(v;) U C5(g;) which can be easily checked.
It is to be noted that unlike the union of certain paths of n Mpm-trees that disjointly make
up C, the component local configurations are not disjoint. They have non-null intersection

by virtue of sharing at least the set of all initial states of the Mpms, according to upward

closure criterion.

Sienifi f the S ion I .
The lemma suggests a method of reaching any arbitrary Mpm-state vector (and so a glo-
bal-state of TIM) given all the local Mpm-states, by building the local configurations of

each of the latter. Since any two local configurations that can make up a third general con-
figuration are provably non-disjoint, (by the definition of a configuration) we only have to
add that subset of states of first component configuration, not present in second to get the
union of the two and so on.

This lemma along with disjointness theorem supports representation of M without
explicitly representing the synchronization points (points of simultaneity') and so the cau-
sality order < . By storing the entire Mp-vector along with every Mpm-state, all local con-
figurations can be determined by the disjoint union of paths, one from every Mpm with the
corresponding component of the Mp-vector as its final state. The general configurations
can be derived from the non-disjoint union of these paths, applying this lemma and the
configurability theorem.

The Equivalence theorem 1 showed that every global-state of the product-machine TIM
corresponds to a configuration of the sum-machine ZM. The summation lemma shows
that every general configuration can be reached from the local configurations. Putting the
two together, we deduce that every global-state of I1M is reachable from the local config-

. T Minimal prefi M.

These resuits are used to show that a partially-ordered model-checker (to be introduced in
Chapter-4) with IM is free of the complexity due to the rotally-ordered product version

of composition I[TM which is posed as the theorem below.
2.9.3 T[IM Generator Theorem

Theorem 2.6 The set of all Minimal prefixes (Mps) of all the Mpm-states (local) of M
form only a subset of the set of all global states of TIM and are necessary and sufficient 10

generate the rest of the global-states of IIM, given ZM.
Proof:
Minimal prefixes are the Final state vectors of local configurations which form only a sub-

set of all general configurations. Therefore, the set of all Mp vectors is only a subset of the
set of all Fsvs and hence of all global-states of TIM, by the Equivalence theorem I.

Every local configuration is associated with an Mpm-state and no Mpm-state can be gen-

erated without minimally generating its associated Mp-vector, by the definition of a Mini-

65

mal prefix. Thus the set of Minimal prefixes are the minimal ones, necessary to generate

the set of all Fsvs, and hence the global-states of [TM.

By Summation Lemma, every general configuration C is generated as the set union of local
configurations Ci(sp;), i =1..n of Mpm-states. This is equivalent to generating Fsv(C) and
so a global-state of [IM, from the Minimal prefixes Mp;(sp;) of its component Mpm-
states. Thus the set of Mp-vectors is sufficient to generate the set of all global-states of
[IM.

The following sequence of steps is presented to make the above proof rigorous:

Every s, € S of [IM is Fsv(C) for some C of Cset of M, from Equivalence Theorem I,
stated as Theorem 2.5.

=> s, = Fsv(Uj=;_,Ci(Smi)) from the Summation Lemma as in Lemma 2.9.

such that:

Ci(Smi) = Zg=1 Py, Where fs(Py) = Mp;(spm XK), k=1..n, Py is a path of M,

according to disjoinmess theorem stated as Theorem 2.2, and from Lemma 2.4 relating a

Minimal prefix as the Fsv of a local configuration.

The interesting aspect here is that:

Just as an Mp-vector of a state consists of the components that are necessarily and suffi-

ciently be entered before reaching that state, the Mp-vectors are the necessary and syffi-
cient global-states generated in order to generate the rest of them. They form the minimal

or the smallest vectors in the order < of £°M and R, of TIM, as representatives of the
equivalence classes, [Mpi(Smi)lRMp;» ¥ Smi € Smi» V i =1..n. Using these minimal represen-
tatives, the larger vectors are generated using the union of the associated local configura-

tions.

2.9.3.1 Causality Lemma

Lemma2.10 Ci(sy) = Zi-1.oPi=>

(Smi = £5(P)) A fs(P) < f5(P;), V j=L.n,j<i.
Broof:

66

From the definition of C;(s,,;) which is the local configuration of s,;,

Smj < Smi» forall sp; e Ci(sm) -

Since fs(P;) e Ci(sy,;), Vi=l..n, it is also true that:

fs(P) < smij=1.n

When j=i in the above, fs(P;) < s, is a contradiction since fs(P;) must be the /argest (in the

order R,; and so in the order < as well) of all states of S; present in C;(5y;), from the def-

inition of final state of a path.
o B5(PY) = Sy

Hence the result follows.

2.9.3.2 Causality Theorem

Theorem 2.7 Concurrency relation co and causality relation < are not disjoint.
ie,{(co N <) Null

Proof:

The proof follows by considering the final-state vectors of local configurations i.e., the
Mp vectors.

Let C(sp;) = Z;=1_nP; be the local-configuration of s;.

Ss(P;) co fs(P;) V j =l..n:j <>i, by Fsv theorem, stated as Theorem 2.3.

@) < fsPy), V j=l.n:j<>1i, by causality lemma above.

.. The theorem follows.
3]

This result can also be proved alternatively using the definition of sync,,, relation which is

a subset of both co and < , more conceptually.

Considering only Mpm-states within a configuration, the above theorem states that con-
currency is not necessarily due to incomparable states in the partial dependency-order <

even though states unrelated by < are automatically concurrent. Mpm-states can maintain
their causality which can provide very useful information, and still remain concurrent.
This is essentially because, simultaneity which is strong causality/dependency is the basis

of concurrency.

67

The significances of this theorem and causality lemma above are the following:

(1) From the notion of Minimal prefix, it is mathematically provable that by maintaining
the dependency-order among the Mpm-states of a given vector, the logical flow or the
continuity of time as we branch in space from one primary Mpm to the other is main-
tained, a result that is paramount for the distributed verification of properties with Mpms.

(i) A4 state holding before or after or together with another state is orthogonal to the fact
that they are concurrent or not. This is applied in the checking of the reachability of a glo-
bal-state in all the non-deterministic interleavings without traversing all of them but just
an arbitrary one. This issue will be expanded in the following section to some extent, and

in detail in Chapter-4 on verification algorithms.

Example 2,22 From Fig. C of Appendix,

Mp;(do) = (do up 2) where dg =u, and zy <dy.

Therefore, when the primary Mpm is switched from M; to M, or Mj, the definition of
Minimal prefix guarantees that by continuing from state uy in M, (or z, in M3) we are
essentially continuing from the respective present and past of d, that are necessary for the
entry of dy and so there is no loss of any information i.e., global-states, by this localized

search and the continuity of time in this sense is assured.

Because dy = uy , i.e., (dg syncy, ug), we are guaranteed that if dy and ug hold conjunc-
tively in one interleaving, they must hold in all interleavings as well. Similarly, dy can not
be entered before z, does, however the interleaved execution of M;, M, and M; take

place.

2.10 Runs and Interleavings

2.10.1 Conflict-free Sum-machine and Product machine

It is possible to start from the initial configuration Cy of XM and build a single arbitrary
ccontinuation of it by choosing only one successor of the previous configuration at every
sstep, as long as is possible by simulating the transitions of £R;. We can thus form a

maximal configuration C,,,, which is infinite, in the case of a non-terminating system.

68

Ciax Obviously has no two states in conflict and consists of just one path from every Mpm
of ZM. The states of this configuration form a subset of £ S;;. All the transitions generat-
ing C_,.« could be isolated out and composed to form a conflict-free sum-machine, denoted
Zr ¢ XM, since it satisfies the definition of a sum-machine except that X conf,; = Null ,

Z conf; denoting the conflicts among the states of C,-
2.10.2 Definition of a Run

Definition 2,25 The product machine composed from the Mpms corresponding to a con-

flict-free sum-machine Xris a run, denoted as I1r.

The Mpms corresponding to Zr consist of only one path each in their respective state-
trees in order to form a conflict-free sum-machine. Since IIr is built from a conflict-free
subset of LM, it must only follow that it is a conflict-free subset of TIM, with conf;, =
Null.

This goes to say that a run in I[IM manifests as a maximal configuration in ZM domain.
There will be as many runs as there are conflict-free subsets of XS that form maximal
configurations each. An example of a run Ir and its corresponding sum-machine Xr, a
subset of ZM are shown in Fig. 8 and Fig. 9 respectively.

Fomally, Zr c ZM=

(ZS5e ZSni, ZE; < XE, <, < <, Zsoq= Zsom;) Where:

Zris a conflict-free subset of TM with X, S, = Cimax » FSV(Cimax) = Srmax-

Then I1ris defined from Xrjust as [IM from ZM:

[Mr=(S, E, Ry, sor = Sgm) Where:

Ismax € St FSV(Crmax) = Srmax and V' s, € S;: (5;R; Srmax)

V' s, 8 € S, (s, confy s'y).

The notation S;; is chosen to denote the local Mpm-states of r; < M;, i=1..n that are

present in Xr . Using ZR; the disjoint union of the local transition relations of r;,i =1..n

we generate R, from ZR;; just like R, from ZR,; .

All the ancestors Fsv(C) of Fsv(C,,,) correspond to the global states of run Ilr.

69

2.10.3 Non-enumeration of Runs and M

Since a run is a product machine, multiple runs occur due to the conflicts among the glo-
bal-states of TIM, as decided by the cardinality of the conf, relation. As discussed in an
earlier section, the cardinality of conf relation of M among the local Mpm-states is
much smaller than that of conf;.

Even among the elements of conf, only the local conflicts of Z conf, are actually repre-
sented as the local branches of individual Mpm-trees, and the rest are the inherited ones of

the former without being explicitly represented.

Just like the global-states related by conf, (derived from conf) divide [IM into multiple
runs, Mpm-states related by I conf; divide ZM into multiple local configurations that are
explicit and stored statically. The rest of the general configurations are derived as the var-
ious combinations of the set union of the former from Summation Lemma at Lemma 2.9.
This characteristic of IM is referred to as the non-enumeration of configurations. Since
every run in [IM space has a corresponding conflict-free sum-machine in M domain,
the above characteristic corresponds to non-enumeration of runs in IIM domain. More
concretely, the runs resulting primarily from the conflicts conf; of a given primary Mpm
are referred to as local runs or equivalently, primary runs of M;, i=1..n.
Definition 2.26 A local run or a primary run of [IM is the one corresponding to a con-
flict-free subset Ciymax & M which forms a maximal local configuration.
Example 223 The sum-machine shown in Fig. 9 is a primary run of M, as well as of Mz
such that Fsv(Carmax) = (€ 51 X3). The execution of M is partial since there is no progress
after the state c,. We avoid the exponential enumeration of all general configurations by
storing only the primary /local runs corresponding to all the local maximal configurations
alone statically. Using these, we configure the general ones as demanded by the need, viz.,

the property to be verified by applying the Summation Lemma.

When a given Mpm M, is generated/traversed as the primary Mpm, a subset of the local
continuations of each of the secondary ones M;, j <> i, as represented by conf;, are corre-
spondingly generated/traversed to configure with those of the primary Mpm M;. Viewed
mathematically, by traversing only the isolated elements of conf,, we are at once able to

keep track of those of conf, j < i as well, without having to traverse the latter separately

70

and exhaustively. But instead, the latter are accounted for, by reaching the non-local com-
ponents of Mp vectors of Mp; function, and forming the union of local configurations of
C; and a subset of C; functions, by applying the configurability theorem. This argument is
symmetrically applicable for every i =1..n, withj <>1.

The above result can be stated as the following property:

Property 2.6 All the (general) runs are possible to be generated, by traversing a subset of
primary, local runs alone.

Proof:

A (general) run Ir is associated with a sum-machine whose member states form a config-
uration C,,,,,. Similarly, a local run corresponds to a local configuration Cirmax- The result
follows from the Summation Lemma of Lemma 2.9 stating that every general configura-
tion can be generated as the union of n local configurations. Only those local configura-

tions that are relevant to the property checked are considered in the union and hence a

subset of them alone.
[]

This result is an important consequence of the concept of Minimal prefixes and the fact
that global conflicts are manifestations of local ones. It is implemented using the config-
urability theorem viewing configurations as disjoint union of a set of paths and will be

elaborated in Chapter-4 on verification.

But it is to be noted that, depending on the system specification, it is possible as an
extreme degenerate case, that the summation of local configurations do not result in any
new configurations due to their possible overlap. In this case, the set of local configura-
tions are already enumerated and coincide with the set of all general configurations. This

issue will be explained further in a following section.

Example 2.24 Referring to Fig. C/ Fig.D of Appendix (Fig.C is reproduced as Fig. D
with Minimal prefixes taken away from the state node entries and stored separately as a
table), while traversing M, we consider only the local configurations formed by the con-
flicts of the relation, confs. Since (v confs rp) , where Mp»(vq) = (dy, Vo, go) and Mpa(rg) =
(o, To. hg), when we traverse two local configurations of vq and r respectively, we auto-

matically will have reached the respective local configurations of g, and hy of M3 and

71

those of dy and ¢, of M. Thus we have taken into account (g, conf; hy) of M3 while tra-

versing M5. d,, and c, form a single continuation of M, since (cq seq dg).

Therefore, if we switch from M, to M3 as the primary Mpm after reaching v,, we only
start traversing the local continuations of gy from Mj3. Thus by traversing the local contin-

uations of a single Mpm, we also traverse the non-local ones automatically.

Fig. 8 Zr, Conflict-free Sum machine

The above figure illustrates a conflict-free sum-machine Xr ¢ ZM:
Ir=(XS;c XS, ZE;< XE;, <[, C <, Isg;= XSgm) Where:
Z 8 = {aq, bo, 0. Po, 90, So» to, To. S1. X0, Yo Z0, ho, X3}

The set of synchronous events of XEj; = {Ay, By, Eg, Go}

Zsori = {ag, Po. Xo}-

The component Mpms r, 15, r3 corresponding to X r are shown in the following Figure:

72

Fig. 9 Mpms corresponding to a conflict-free sum-machine

The product machine constituting the run [1r, composed from ry, r; and r3 is shown in the

following Fig. 10:

73

Fig. 10 Run ITr, (infinite) corresponding to a conflict-free sum-machine Zr

Since a run is conflict-free, the choice among states in the run as illustrated above must
only have resulted from non-deterministic choice due to choice,, 4., relation since conf,
is null among the global-states of Ilr.

Every path of I'lr above from s = (agpgXp) t0 Semax= (CoS1X3) is the result of non-determin-
istic choice referred to as an interleaved path of the run Ilr. Formal definition of an inter-

leaving follows.
2.10.4 Interleavings of a Run

An interleaving is a more restricted subset of [IM than a run, arising as a result of a spe-
cific order in which the events of different Mpms are executed in that run, forming a single

maximal path of a run.

74

Definition 227 An interleaving is a choice-free subset of a run i.e., lI'IIr c Ilr defined

as:
nlr = (SIr o Sn RIr o= Rr ’ EIr = En Sorr = sOr) such that:
Ry, totally orders all the states of Sy, with so, = s, being the lowest/least and
Strmax— Srmax = F SV(Crmax) » being the Aighest in the order.

The choice relation among its states Sy is Null. Therefore, the interleaving reduces to a
single path of [Ilr; the prefix Il from its notation may be skipped in the sequel and I,
denotes an interleaving/interleaved path.

An interleaving results from choosing just one successor non-deterministically from every
global state until s;,,, is reached. Thus even the non-deterministic choice component
(subset of choice g) from its parent run is Nu/l in an interleaving.

The notation Sy, is chosen to denote the set of global states of the interleaving I1I; of run
IIr, and similarly other entities. Upper case I, is chosen for interleaving so as not to inter-
fere with lower case i, the subscript for the component machines; similarly with the other

components of ITI,.
2.10.4.1 Interleaving Insensitivity/Independence of =M

Eroperty 2.7 The set of all local states X Sy; and transitions ZR;; used to generate any
interleaving I, of a run ITr is equal to that of every other interleaving of I1r, which is the
same as the sum machine Zr corresponding to ITr itself. We refer to this property as inter-

leaving insensitivity or equivalently, interleaving independence of the sum machine.

In other words, SIri = Sn" EIri = En', RIri = Rﬁ, i=1.n, VIr c IIr
Proof: Since si = Srmax = FSV(Crmax) , it follows that:

Crmax = Cimmax and every transition of ZR; will occur in ZI; in order to reach s, = Si,.
maxi € Slr » 1=1..n such that spaxi = Fsv(Cimmax)-
Therefore all states £ S; and events ZE; of XR,; will be generated to form the states and

events of ZSy; and ZEy; respectively. This explains the property,

! Since an interleaving IT1, just reduces to a single path, it is often denoted as I, itself without the preceding
symbol of the product m/c.

75

Stri = Sei» Etri = Eis Ry =Ry, i= 1n.

Aliter:
Interleaving insensitivity can be alternately proved by the fact that_since a configuration is
g sel it IS Iindependent Qf Ihe orde in which the membe gates are added 10 generate I

|
Since there are no cycles in a sum machine, and there is only one successor from every
state s, according to the total-order Ry, ZRy; will occur exactly once in I, to generate Ry

The fact that the transitions of TR, are generated multiple number of times in [Ir as

opposed to just once in I, explains the result S;; < S;.
Example 2.25 From the run illustrated in Fig. 5, the following path of global-states,

Sy = {(30, Po» X0)» (Bo, Po. X0). (o, o, Xo), (bo, Gos Yo), (S0, So, Yo)- (Co» to- Zo)s (Co. To» ho)
(Co. 51, X3)}

is one of the interleaved paths of the run I1r corresponding to the interleaving, 1. The con-
figuration Ciyqy and the sum machine L1, formed by the local Mpm-states constituting Sy,

above is easily verified to be the same as that of S; . i.e,,

Sir1 - {20, bo, Co} = S

St;2 = {Po- do- So» tos To» S1} = Sr2.

Sir3 = {X0- Yo» Z0, ho, X3} = S;3and

Cirmax = Crmax = Z Spri.i=1.3.

The above can be shown for every interleaving of the run I1r.

There are as many interleavings I, of a run ITr as there are number of subsets of S; satisfy-
ing the definition above. Intuitively, it is easy to visualize that, the more the degree of con-
currency (the less the cardinality of < relation) , the more the number of such subsets and
so, the more the number of interleavings of ITr; the less the degree of concurrency, the less

the number of such subsets and so the less the number of interleavings.

Conceptually, multiple interleavings result from projecting the events and states of all M,,
i=1..n from their respective local time scales onto a single global, real-time scale in roral-

order such that every projection also obeys the dependency-order < .

76

2.11 CMpms with respect to a given CFsms Specification

As mentioned in the introduction, we assume an input specification as a set of n communi-
cating Fsms (CFsms) F;, i=1..n from the state-oriented paradigm. Fig. A of Appendix illus-
trates a set of three CFsms F;, i=1..3 that communicate through the synchronous events
specified.
Traditionally, we compose the given set F; = (Sp. Eg. Ry sop). i=1..n
into a product machine denoted as I[TF according to the following definition:
Definition 2.28 TTF = (Sg Eg Ry sgp where,

SFe (S X Sp X... X Sg), Ee= U=y _.Ep.
Sor =(Sof1, Sof.---Sof/ 1S the initial state.
When all the elements of Ry, the transition relation are generated, we automatically gen-
erate all the states sy € Srand events ec € Epas:
(55 eg st) € Ryiff:
3i € (1..n): (sg e5 ') € Ry and,
Vj<>i:(sg eg s'g). if s'g = 5%
s; = s’ ,otherwise.
The binary reachability relation Ryis nothing other than R,r with the event omitted from
every element.
There seems to be a strong correlation between the entities of a set of #» communicating
Mpms and a corresponding set of communicating Fsms. The correlation is so strong that a
mathematical mapping of the former’s product composition onto the latter’s is possible.
Equivalently, given a set of communicating Fsms, it is possible to arrive at a (possibly
more than one) set of communicating Mpms functionally using the above mentioned
mapping. Formal definition of finite model of CMpms (which is a deterministic model)

and the proof of its equivalence with the non-deterministic model of CFsms will be pre-

sented at a future section.

77

2.11.1 =M Generator Theorem

Theorem 2.8 Given a set of n CFsms F;, i=1..n along with their synchronization require-
ments (consisting of synchronous events and each of their partner Fsm-identities), a set of
n CMpms can be generated such that there exists a function B; from every entity of M; to
the comresponding one of F;, i =/..n denoted as:

B;:M, -—>F; i=l.n

The above is a denotation of the following:

Bemi :Smi = Sg> Bemi: Emi — Ef; and extended to By —> Bpg

Proof: (By construction)

The recursive steps involved in generating M;, i =1..n constituting the sum machine M
from F;, i=1..n will be shown below abstractly.

Given all transitions 15 = (Sg;,., €5, Srow) Of the transition relation R of Fi.i =1..n respec-
tively,ie,rs € Ry, we generate all i,y € Ry of M, i =1..n as recursive functions
and also the synchronization relations sync;,, , sync,,,. The dependency-order< of T Mis
generated implicitly in the process.

Both 1i(p) , Tmi(q) are recurrence functions corresponding to the /evels p and q of the
state-trees of M, M; respectively, claimed to be generated. We also use the auxiliary func-
tion f / f. chosen by the implementer of the generation algorithm, such that it gives an
occurrence identity to every state and (event) such that each occurrence is uniquely gener-
ated at level p / (p,q,...) of M; / (M, M;,...) respectively in the case of local and synchro-
nous states (events). This will be made clearer below:

Following auxiliary functions f; , fsyq.i; are assumed :

£ :Spi XRg—>N,i=l.n

foi(Null, rog) = 0;

The subscripts 0 and i stand for the leve/ p = 0 of the Mpm-tree of M; respectively.
foyncij - Smi X Rg X 1S, XRg)-=> N, i, j=1..n i <j

We adopt the following noration, for the elements of rg:

If the transition r,5 = (Sgn. €5, Sfoud) then,

78

Iif-IN 7= Sgp. Niii-€ = €g and ryg.0ut := sg.out.

Similar break-up for r; is followed as well.

ro5 = (Null, initg, sqg) where,

rog-in = Null, /*the initial synchronous input state is considered Null */

Tog-€g = initg, the special, initial synchronous event.

Tof-OUt = Sog;

Atlevel p =0,

Tomi = Feni(0)-1n = Null,

Tymi(0).€mi = iNity,, the initial synchronous event.

imi(0). out = (rg.out, foi(Null, 1)) = Somis

Therefore, 1,,;(0) = (Null, inity,, Som);

V fmi(P-1) € Ripi,fis € Ryg

fyni(P)-IN = Nymi(p-1).0ut; /* output state of one level becomes the input state of next in the
state-tree */

if rg.em; is asynchronous/local

Fumi(P)-€mi = (Tuii-egi» fiTymi(p-1)-0ut, 1y5)),

Imi(p)-out = (ry;.out, fi(ryy,;(p-1)-out, rg)).

else if ryg.ey is synchronous with rg.eq (i.e., fg.ef = Ig.eg)

¥ @ Tunj(@): (fumi(p).in YMCin Ty (Q)-in)

/*Level q refers to the level of the state-tree of M; synchronizing with a state at level p of
M;. This involves generating beyond ry;(q-k) in M; for some k < q, corresponding to a
sequence of transitions of M; asynchronous of M;, up to rypi(q) where: Mpi(rmi(Q)-in)() =
runj(q-k).in */

fimi(P)-out = (fig.out, fivncij(Temi(P-1)-in, rigi, Timj(q-1)-in), 1),

! In this abstract inductive procedure as well as the concrete algorithm, we assume without loss of generality
that all the synchronizations are between two partners (except the special initial one. /nir) only. though more
than two partners can be extended likewise. The auxiliary function fsvncij can be implemented in many
wavs. Instead of the range N, it could be just a concatenation of f; and fj values. (in general extending to
more than two of partner functions).

79

Fymi(P)-€mi = (figi-€mi» Foyncij{Tumi(P-1)-i, Tig, fimi(q-1).in, 1g));

We add (fyyi(P)-in, im;(@)-in) to syncy,, and

(Tmi(P)-0ut, iyi(q)-out) to SYMCoy -

Thus from Reg, i=1..n, Ryyi, SYMCi, , §MCoy and so < = (= Ry U syncq,)” (implicitly) of
X M are generated.

In the above recursive generation, the following pattern of mapping is observed:

fimi(P) - (T (p), occH).....eqn. (m to),

where occ# is a natural number, an image of fi/fgync;; function.
Lemma 2.11 The above mapping of egn. (m to f) is one-to-one.

Proof; (by induction)

Basis: The state at level p = 0 is the single initial state sy, i=1..n and so is unique.
Inductive step: The input state sqp; of level p =0 is mapped to a unique number (occ#) by
fiffsyncij 1J =1..n, 1<) which is tagged on to the output state of r,5.out to produce a unique
output state for every r,g from sgg to generate corresponding fyp;.out.

Inductive Hypothesis: Every input state at level (p-1) produces output states at level p, that

are unique, i.e., mapped to unique-ordered pairs of the above mapping.

Essentially, the proof follows from the fact that every Fsm transition can be generated at
most once from a given input state of the Mpm and so every output state is given a unique
tag, as the occ# mapped by fi/fnij, 1J =1.n uniquely takes both the Fsm-transition and

the input Mpm-state into account.

Therefore, every r,,; (i., the state and event) is generated as a unique occurrence of ry;.
In other words, from a uniquely generated Mpm-state of the previous level, unique events
and output states of the current level are generated (since their occurrence number
depends on the already generated input state of the previous level) to form a siare-tree.
Since the events are unique by the same token as argued for output states, the / O function

of the definition of M, i=1..n is satisfied as well.

80

When the occ# component is dropped off from the ordered pair of the right hand side, the
above one-to-one mapping becomes a non injective L (many-to-one) one, labelled as B;

below:
25 .
B;i: Iymi —> I

Hence the £M generator theorem.
B

The concrete algorithm based on the abstract steps of the generation of state-trees of the
Mpms M;, i=1..n along with sync;,, sync,,, relations (which build the dependency-order
< implicitly) and so the sum-machine M, is listed in Chapter—. An account of this
algorithm will be given after introducing a couple of more concepts incorporated in the
algorithm.

Example 2.26 In the CFsm system shown in of Fig. A of Appendix,

toen = (Null, inity, a);

for(Null, ro) =0,

fotmt = m1(0) = (Null, init;, (2,0)) = (Null, initg, ay) where a; = (a, 0)

T = (Null, inity, p); 1y2(0) = (Null, init,,, po)

Tous = (Null, initg, X), 1,,,2(0) = (Null, init,,, xg)

For rin= (a, e, b) (e here is an asynchronous transition not labeled in Fig. A)

Tym1(1).in = 1, 1(0).out = ag;

fym1(1).0ut = (b, £1(ag)) = (b, 0) = bg = Fy(2)-in .

Forrg = (b, A, ¢), rimi(1).out =bg and, r;p = (q, A, S), ryma(1).0ut = qo,

rm1(2).out =(c, fsyncl?.(rtml(l)-ina If1» Go» rtQ)) = (C, 0)= Co , etc.

! In general, B; is not a surjective mapping since there could be some Fsm-states which are never reached
(due to communication deadlocks) and so there are no Mpm-states generated mapping to such Fsm-states.
This is because, Mpm-states take into account the global-environment by their Mp-vectors. Generation of an
Mpm-state means that there is at least one global-state reachable with that state as a component.

2 The notation B; : M; --> F; refers to the mapping of every element of M; onto a corresponding element
(state/event) of F;.

81

In Chapter-4, where the actual generation algorithm is presented, the various stages of

generation of this example will be better illustrated.

2.11.2 TIF Generator Corollary

Corollary 2.4 _ There exists a surjective map from every entity of IIM onto that of ITF

denoted:

B : [IM —> ITF where:

ITF = (Sg, Ep, Ry, Sop) (the product machine of Fj, i=1..n)

M = (S,,. Ex» Rip» Som) (the product machine of M;, i=1..n).

We can now define the mapping between the respective global-states and events of IIM
and IIF as:

VSmG Sm: B(Sm) = (Bl(sml)’ BZ(SXTL?.)“"an(Smn)) = (sfl’ S, -0 an) =sf€ Sf: by the appli-
cation of the definitions of B;, i=1..n.

Vene En, Bley) =B;(en;) =¢gforatleastonei e l.n

This is a surjective (onto) map since the set of Mpms simulate and map a// the reachable

Fsm-state vectors during their generation.
B

Example 2.27 The example used thus far in Fig. B, Fig.C and Fig. D is indeed generated
by the above explained fimctions B; from the set of CFsms F;,i=1..3 along with the syn-
chronization specification as shown in Fig. A of Appendix. The synchronization specifica-
tion lists the synchronous events and the corresponding set of Fsms which synchronize

during each such event.

The sync,, relation among M;,i=1..3 are shown explicitly by joining the related states
together in Fig. B. These synchronization points are not explicitly shown in the version of
Fig. C (Fig. D is same as Fig.C with Mp-labels stored in a separate table). As pointed out
already, the formation of the sum machine is therefore not explicit in Fig. C unlike in Fig.
B. To compensate for the explicit representation of synchronization points and so the
dependency-order < among M;,i=1..n to build the upward closure (and so the local con-

figuration of a state) we store the Minimal prefix Mp;(sp;).i=1..n along with every state

82

Sm;. We thus build Ci(s,;) as ZP;,i=1..n as claimed by the disjointmess theorem using con-

flict-free paths P; ending at components of Mp;(sy;)-

The underlined state of every node in Fig. C represents its state and the rest of the three
are the other two components of its Minimal prefix vector. The version Fig. C is more suit-
able for the view of configurations as a disjoint union of n paths of M;, i=1..n and to apply
the configurability and the generator theorems (TTM and M) during verification, as will
be detailed in Chapter-4.

The examples for B;,1=1..3 and B are given below:
B;(ag) = a, Ba(v}) = v, B3(x3) =B3(x2) =X;
Similarly, Bo(F;) = Ba(Fg) = F etc.

B(ay, Po» Xo) = (B1(a0), Ba(po), B3(%0)) = (a, p, x);
B(dy, V1. zg) = (d, v,) and so forth.

2.12 Finite Model of CMpms

The CMpms as defined and considered so far are essentially infinite due to the possibly
indefinite growth of their states and events. Under certain conditions as defined below, it
is possible to define a finite model of a given set of infinite CMpms, although it is not
guaranteed for every given set of CMpms.

Definition 2.29 A finite model of CMpms has a set of Mpm-states called cuz-off points/
states that form the leaf nodes of all the Mpm-trees such that the following property is sat-
isfied: A cut-off state is that Mpm-state forming the root of a sub-tree which is isomor-
phic[6] to the sub-tree rooted at an ancestor of that state, in the infinite version of the
Mpm-tree to which it belongs.

Because of the isomorphism mentioned above, it is clear that in the finite model, the
growth of each Mpm-tree beyond the cut-off states are unnecessary. Informally, the finite
model of CMpms have a recurrent behaviour of its structure after the cut-off points and so,
there is no need to grow it beyond these states. As mentioned before, isomorphism and

hence finiteness is not guaranteed in any arbitrary set of infinite CMpms.

a3

2.12.1 Finiteness of CMpms with respect to CFsms

We noted that each M;,i=1..n is in general an infinite system. When M; is mapped to F;,
which is a finite machine, multiple states of M; are mapped onto a single state of F;. Simi-
larly, multiple Mpm-state vectors (global state) of IIM are mapped onto a single global
state of [1F, surjectively.

Cut-off states of [IM with respect to [TF:

A global state of ITF decides its future behaviour i.e., the descendent states and events that
are reachable from it. When two global states s, s', of [IM with s';, being a descendent
of s, are mapped onto the same global state of ITF, s', is said to be a cur-off state of [IM
with respect to ITF. Since the future of s, is going to be repeated from s' as far as the
behaviour of ITF is concerned, we will not reach any of those global-states of I1F by tra-

versing the descendents of s'y,, that were not reachable from s,.

Example 2.28
B(ay. p1. x1) = B(ap, Po, Xo) = (a, p, X)
(a;, p1» Xy) is a descendent of (a,p,x) .

B(cg, 81, x3) = B(cg. S0» Xg) = (¢, s, x) with the former global state being the descendent of

the latter in [TM.
2.12.1.1 Cut-off states, as viewed in ZM

Definition 2.30 A cut-off configuration of IIM with respect to ITF as viewed from ZM is
defined as a configuration C such that for some configuration C'c C, B(Fsv(C")) =
B(Fsv(C)). Fsv(C) is called the cut-off vector. Fsv(C') is called the basis vector corre-
sponding to the cut-off vector, Fsv(C).

The above definition is general. In order to ease the detection of cut-off vectors during the
generation of XM and during verification of ITF using the latter as a platform, the defini-
tion has to be further refined with the following reasoning:

When we visit all the global-states of IIM in the product-machine itself, it is very straight-
forward to identify the cut-off states by directly applying the above definition since all the
global-states are reachable by paths of one single state-graph of [TM.

When we generate ZM and deduce the global-states of [IM using the former’s n disjoint
state-trees we do not exhaustively visit all the state-vectors; and so all possible ancestors
or basis vectors of [IM corresponding to all the cut-off vectors are not visited. The same
global-state which is reached for the first time by one interleaving could be a revisit (and
so cut-off) for another interleaving of states.

So, we need to refine the notion of cut-off vectors in order that they are detected at ease

using IM.

2.12.2 Minimal prefixes, Equivalence relations and Cut-off

The concept of Mp and local configurations further refine the notion of cut-off vectors by
distributing and localizing them:

2.12.2.1 Cut-off Lemma

Lemma 2,12 When a configuration C is reached in M, the set of Minimal prefix vectors

traversed is the same irrespective of the order (interleaving) in which the members of C
are added to build C.

Broof:
This is a direct result of interleaving insensitivity of configurations, stated as Property 2.7.
Every C has a unique set of Mpm-states.

Every Mpm-state has its unique Mp-vector, by Lemma 2.3.

Thus upon reaching C, the Mp-vectors traversed is the same irrespective of the order in

which the member states are visited and added to form C.
:::]

When we choose to visit the Mp-vector of every member Mpm-state of the configuration
C rather than every Final state vector of intermediate configuration generated (depending
on the order in which the configurations are summed) during the traversal of C, the set of
Minimal-prefixes (that are also global-states of ITM) traversed to reach C is going to be

the same, by cur-off lemma above.

So, it seems reasonable as well as convenient to use the Minimal prefixes alone as the

basis and cut-off vectors. In the following, we formally show that the set of Mp-vectors as

85

basis vectors and cut-off vectors guarantee the detection of any general cut-off vector fol-

lowing the general basis-vector as defined by the original definition.
2.12.2.2 Cut-off Theorem
Theorem 2.9 When Mpi(s'y) is the basis vector corresponding to the cur-off vector

Mp;(Smi). (possibly, i =j) then for every element of [ij(s'mj)]Rij as a basis vector, there
exists a corresponding cur-off vector in 1[Mpi(smi)]RMF,i. This is symmetrically applicable
foralli=1..n

Broof:

The proof essentially follows from the definition of the equivalence relations RMp;,
i=l.n

It is given that, Mp;(s'y;) is the basis vector corresponding to the cut-off vector Mp;(spi) ;

=> Each of the vectors s';, reachable from Mp;(s'y,;), will have some s, reachable from
Mp;(s;) respectively such that: B(s,,) = B(s'y,) , by the definition of cur-off vector at Defi-
nition 2.30.

=> Each of the elements s',, of the equivalence class [Mp;(s'm;)Irmp; (reachable from
Mp;(s'm;) asynchronous of s'r;) will have some element sp, of [Mp;(Smi)lrmp; Such that:
B(s,) = B(s'p), by the definition of equivalence class formed by the equivalence relation
RMp; of an Mp-vector at Definition 2.24.

Therefore, with Mp;(s'y,;) as dasis vector, if the corresponding cut-off vector Mp;(s,;) can
be detected, by the same token, we could also detect any other member of the latter’s
equivalence class as a cut-off vector corresponding to one from the former’s equivalence

class as the basis vector.

Hence the result.
B

Thus all the general Final-state-vectors are covered, classified into different disjoint sets
of classes by each RMp;, i=1..n. While traversing M; as the primary Mpm, we perceive the

global states that are in the equivalence classes created by RMp; and so on.

! In general, the basis vector need not be an Mp-vector of the same local Mpm so long as it precedes the cut-
off vector. An example will be given shortly.

86

The above lemma leads to the following definition.
2.12.2.3 Cut-off with respect to Local states

Definition 2.31 The Mpm-states whose Mp-vectors are cut-off vectors are referred to as
the cut-off states. Each cut-off state forms a leaf node of the state-tree of M; , for all i=1..n.
For every cut-off state sp,;, there is a basis state sy; such that:

(Smj < Smi) and, BOMp;(sm;)) = BMPi(Smi))-

This definition is seen to be consistent with Definition 2.30 and also with the original def-

inition of cut-off in Definition 2.29, as will be illustrated by examples below.
Example 2.29 From Fig. C of Appendix,

Mp,(ap) = (ag Po Xo) is the basis vector and, the corresponding

Mp,(a,) = (a; P2 X»), Mp;(a;) = (a) p; x,) are the corresponding cut-off vectors such that:
B(ag po Xo) = B(a; p x1) =(apx).

a, and a, are cur-off states (in conflicting paths/configurations) corresponding to the basis

state ag.

Example 2.30 __From Fig. C again, x; is a cut-off state and its dasis state is so. This fol-
lows from: B(Mps(x3) = (c; $; X3)) = B(Mpa(so) = (co So Xo)) = (€ s x) where sg < X3; Itis
noted that s, belongs to M, and x3 to M3. x; inherited sq as an ancestor at the synchroniza-
tion point s;=x;. It can be easily checked that if M; is simulated beyond the state x3, the
sub-tree rooted at x; would be isomorphic to the one rooted at x thus satisfying the origi-
nal definition of cut-off at Definition 2.29. This is because, the state x3 can simulate all the
events of M; that x, could (even though its environment in I[1F domain represented by the
Mp-vector is different from that of x, as opposed to being identical, which is often more

common).

Cut-off states truncate the possibly infinite Mpm-tree into a finite one, according to the
given input specification of CFsm system, with every path of the state-tree terminating at a
leaf node which is a cut-off state.

This is how the Mp-vectors and so local Mpm-states provide a meaningful representation
of all the cur-off points, representing all the possible interleavings without the need for

actually generating or traversing each of them, as the case may be.

87

2.12.3 Equivalence between Finite CMpms and CFsms

2.12.3.1 Equivalence Theorem I

Theorem 2.10 The deterministic, finite model of CMpms is equivalent to the non-deter-
ministic model of CFsms. In other words, for every given deterministic, finite model of

CMpms, there is a corresponding non-deterministic model of CFsms and vice versa.
Proof:

The proof follows from the existence of the set of mappings Z B;, i=1..n (and B).

Given a set of CFsms, it follows from M Generator theorem, the set of functions B; and
hence the CMpms/ XM can be inductively generated.

For the reverse direction, given a set of finite model of CMpms, unless their entities ie,
states and events are represented as ordered pairs of Fsm-entities and their occurrence
numbers, it is hard to actually generate B;,i=1..n and hence the corresponding CFsms, but
the fact that there exists a set of B;,i=1..n makes the argument.

Hence the equivalence.
B

2.12.4 Induced Local Conflicts due to Non-deterministic Synchronization

This issue is related to the non-enumeration of runs defined in a previous section. induced
local conflicts of CMpms have been illustrated already in Secrion 2.4.2.2. When we gener-
ate CMpms from a given input system of CFsms, the induced local conflicts are caused by
the non-determinism in the synchronization specification of the latter as illustrated in the

figure below:

88

Fig. 11 Example of induced local conflicts due to Non-deterministic and Tight Synchronizations

F, F, F.

ANV ANN
.

(< €

‘/M\
e(z"(n-1)§+1
€ass(p1)

O

The non-deterministic synchronization of true choices may cause a large number of

€**(n-1))+2

induced local conflicts in the output CMpms; as a result of which, there may not be any
significant non-enumeration of runs/configurations at all, as the number of local configu-
rations/runs themselves tend to be the same as that of general configurations/runs, and
exponential at that. The more the number of such non-deterministic synchronization tran-
sitions that are tightly coupled i.e., with a large number of participating processes, the
more will be the number of induced local conflicts and the less will be the difference
between the number of general configurations and local ones.

In the worst case, there may be an exponential number of induced local conflicts and cor-
respondingly local configurations due to non-deterministic synchronization of true
choices, given by all possible combinations of synchronous states of the n processes. The

exponential enumeration of global-states due to all possible combinations of synchronous

89

local states is different from that due to all possible combinations of asynchronous local
states. The former is due to non-deterministic synchronization of true choices as we just
characterized and the latter is due to non-deterministic interleaving of artificial choices
simulating true concurrency. The latter is conventionally characterized as the state-space
explosion of total-order models that simulate concurrency. The former also causes explo-
sion of states but is inevitably induced by the given specification.

By reducing the non-determinism from the tightly coupled synchronizations or the num-
ber of participants from those non-deterministic synchronizations, the combinatorial
explosion due to true choices can be avoided as well. As mentioned in the section on non-
enumeration of runs, summation lemma can be applied meaningfully to derive general
configurations that are different from the local configurations only when there is enough
scope to do so as permitted by the combination of non-determinism and tightness in syn-

chronization specification. Otherwise, the set of local configurations form an already enu-

merated set, and thus exhaustive.

Here again, we notice the duality between true choice and true concurrency. Non-defer-

2.13 Justice, Fairness among Runs/Processes of CMpms

Justice and fairness are the notions related to the observation of a system that stretches
indefinitely up to infinity. Since M is essentially infinite and so is ITM, it is easy to
define these with respect to the CMpm system, representing a set of n concurrent pro-

CESSES.
2.13.0.1 Run, an Infinite entity

As seen above, finiteness of [TM and so of ZM is enabled by the concept of cut-off. This

is not quite applicable to runs (and interleavings) as explained below:

Runs are defined to be conflict-free. In other words, at every conflict point, one of the

states in conflict is chosen arbitrarily. The cut-off vector is equivalent to the correspond-

80

ing basis vector only in the sense that all the vectors possibly reachable from the latter are
reachable from the former as well.

So given a run IIr < [IM, the global-states actually chosen to be reached from the cut-
off global-state need not be the same as the ones chosen from the corresponding basis vec-
tor, if the conflicts were resolved arbitrarily and differently from each other, at every con-
flict point encountered.

Therefore, the very nature of a run or its interleaving is inherently infinite in size due to
the possibility of resolving conflicts in an arbitrary and unpredictable ways, at every con-
flict point, without any pattern of recurrence.

Though the runs I[1Ir < IIM are essentially infinite, due to finite generation of M up to
cut-off states, only a finite truncation of TIM is generated and hence the infiniteness of a
run is not observed/recorded in any IIr ¢ TTM. But it is observable from its correspond-

ing mapping onto ITF because of the latter’s cyclic characteristic/behaviour.

Example2.31

The Mpm-state s, of M, with Mpa(s;) = (g 5| X3) is a cut-off vector corresponding to the
basis vector, Mpa(sg) = (Co S Xg)- Succeeding sq, the state t; is a conflict point with two
branches leading to u, and 1, respectively. At u,, there are two branches transiting to v,
and v, respectively. Though not shown because of truncation, similar instances of conflict

points will be possible from the cut-off state s, as well.

Now, the resolution of conflicts at descendents of s; is possible in many different ways
arbitrarily at each cycle of the system execution which may not match one on one with

each of similar conflict resolutions at descendents of s;.

The above goes to show how the concept of cut-off can not be applied to terminate a run
and define it as a finite entity. In other words, the pattern of a run can not be captured.
However, all the possibilities of conflict resolutions and so the reachability of global-

states are nevertheless predictable, using the cut-off states of the sum-machine, ZM.

Fortunately, as will be elaborated in Chapter-3 in the context of specifying properties, we
generally are interested not in posing properties that depend on the exacr pattern of a run.

but in determining what states are reachable and what are not; whether there is some or all

91

runs satisfying a certain property or none at all etc., and these are manageable with cut-off

states applied usefully, as will be covered in Chapter-4.

2.13.1 Classical Definitions of Justice & Fairness

The following definitions are quoted from [1].

Justice: A concurrent/distributed system is said to be just iff every constituent process of
the system is infinitely ofien disabled or infinitely often executed. In other words, every
enabled process should be eventually executed or disabled.

The above definition can be applied to a run, by posing the condition on the individual
transitions of a run of the system rather than the process as a whole.

Fairness: A system is said to be fair iff: each process, if infinitely ofien enabled, then it
will be infinitely ofien executed.

The above definition can be extended to a run by posing the same condition above on
every transition of a run instead of a process in general.

We consider only just systems which means that every process is at least infinitely often
disabled which implies, it must ar least be infinitely often enabled. Such an enabled pro-

cess is either chosen to be executed or disabled subsequently.
2.13.2 Unfairness in CMpms

Definition 2.32 An unfair run is one which is a result of excluding one or more states in
favour of others in conflict with the former, infinitely often. Consider C < Cgp,y cOITE-
sponding to a run I1r such that s is configurable with C. (i.e., C U C(smi) is a configura-
tion).

Consider the following set:

{C < Cpmax | Smi is configurable with C such that:(Bi(Smi) = 55) A Smi € Crmax}-

In the process of building C;max, Whenever we reach the subset C with which a state s,
that maps onto s is configurable, it is nof chosen to be added to C and some other state in

conflict with it is chosen instead; this deprives the former of its membership in Cp,, cor-

responding to the run ITr.

92

We call Ir (and its corresponding map I1ry) as an unfair run because it is unfair towards
all the above states s;; in [1M, and the state s in ITF domain.

Since the infinite Mpms are truncated after the cut-off states, the manifestation of an
unfair run is more easily observable in its mapping on I1F domain.

Example 2,32 From the run ITr; of Fig. 10 having the following as one of its interleaved
paths is unfair:

{(2,p.x), (8,9,%), (b,g,%), (¢.5,x), (c.t,2), (c,r.h), (¢,5,%), (c,1,2), (¢.r.h), (C,5,X),.....}

The unfairness of the run is due to the fact that in this run the conflict between the states of
M, mapping onto u and r respectively is always resolved in favour of the latter. The run is
therefore unfair to the state u.

In the above example, there is a recurrence of global-states between (c,s,x) back to itself,
with multiple cycles of the same sequence for ever. This is because, r is the only state in
conflict with u. In general, there could be multiple choices other than u and in which case,
the recurrence is difficult to establish except to say that u is starved or knocked out.

More interestingly, the unfairness to state u of F, is propagated to state d of Fy, through the
synchronization point between d and u corresponding to that between dg and ug of M, and
M, respectively. We say that process 1 (corresponding to F{/M,) is starved by process 2 or

the system is unfair to process li.e., M;.
2.13.3 Implementing Fairness in ZM
It is more easy to account for unfaimess among processes/Mpms than among runs due to

the fact that runs are combinatorially too high to keep track of.

Let the relation nl-conf = (conf — Xconf., i=1..n) denote the non-local conflict, where no

two related states belong to the same Mpm.

Definition 2,33 The state s is said to be in asynchronous non-local conflict denoted:
(Smi anl-conf spy;) iff the following condition holds:

(Smi Ml-conf sy,;) N\ (predec(sy,;) co sp;), where predec(sy;) is the unique predecessor of sy;
in the state-tree of M;.

In the above definition, in order for an input state and output state of an event of a process/

Mpm to be concurrent and in conflict respectively with a given non-local state, it must be

93

a synchronous event, with predec(sy;) as the input state waiting for its partner state s',;. In
addition, §'p,; possibly has two successors sp; and s"y; in conflict such that "y is a partner
of sp;, the former (s"q;) propagating its conflict with its sibling Sy tO Sy

Unfairness Lemma:

Lemma 2.13 A process represented by Mpm M; starves a process M;, i<j iff: for some
Smi € Smiand Sy € Spyl (S anl-conf sy;) such that s; is a cut-off state, thus making the

system unfair.
Proof: The result follows from the following argument:

Let predec(sy,;) = S'mi-
(S'mi €O Spj) => thereis a configuration C with final-state components s'r; and sy
(Smi €ONf Spy;j) => the successor Sp; of s',; can not be added to make a successor of C .

Smj iS @ cut-off state => For some Cmax» @ continuation of C, the infinite sequence of tran-
sitions made and the states added to C are such that: infinitely often, there is conflict
between some states s"; and s"y; resolved in favour of s"p; such that: Bi(s";) = Bi(Smi)
and Bj(s"y;) = Bj(sy;)- In the first cycle, the conflict is between sp; and sy,; and subse-

quently between the generic states s"p; and s"q; .

Hence the run corresponding to Cyay is #nfair and hence the system.
]

This is how the notion of asynchronous, non-local conflicts is applied as a faimess imple-

mentation tool. The application of this lemma in the unfairness theorem (to be presented)

and model-checking will appear in Chapter-4.
2.13.3.1 Recording of asynchronous, non-iocal Cutoffs

During the generation of M, the generation of synchronous states in each Mpm call for
the following: In order to find the matching partner states (possibly more than one) corre-
sponding to a synchronous input state sp; j, of the local Mpm M;, the partner Mpms are
traversed exhaustively. When we come across the cut-off states sy cuorr Of those partner

Mpms such that:

(smi_in sync;, smj_in) A\ (Smj_out cont} Smj_cutoff) A\ (smj_in R'rnj smj_out) ,

94

we record Sy, curofr @8 asynchronous, non-local cut-off state in conflict with s.; o, where

(Smi_in Rmi Smi_ow) as defined in the previous section.

Example 2,33 In Fig. C, when finding an input partner state of sy of M, by traversing
M; from xy = Mp,(sp)(3) (the third component of the Minimal prefix vector of sg), we find

that: (z; conf; x4) where x4 is a cut-off state such that:

(o syncin yo) N (so Rz to) A (Yo Rz X4) -

Z 1s a synchronous output state, propagating its local conflict (with x,) to its partmer out-
put state ty, asynchronous of s. It follows that:

(to anl-conf x4) by inheritance of conflict.

When t, is generated, the above information is recorded while traversing M; to generate

all possible partners of sj in the sync;, relation.

There is also an indirect inheritance of the above asynchronous non-local conflict as fol-

lows:

In the same example above, after cy of M, is generated, in order to find its input partner

state (synchronous), M, is traversed from sy = Mp;(c)(2).

From (ty anl-confx,) , (t; < ug) and (ug = dg) it follows:

(ug anl-conf x,) and so (dy anl-conf x;) by conflict inheritance and the fact that x, is non-
local for dg of M, as well as ug of M,.

Therefore, dg is in asynchronous, non-local conflict with a cut-off state of M3 through the
synchronization of non-local event B which is necessary in order to enable synchronous

event C.
2.13.4 Justice among Runs of CMpms

Definition 2.34 A just run is one in which no Mpm is preempted, i.e., not prevented from
executing its local events, by others infinitely often; in other words every Mpm will be

infinitely often enabled/given its chance to execute.

The above definition is consistent with the classical definition that a just system should

have every process executed or disabled infinitely often.

95

Example 2.34 _The following path of ITF as viewed in M of Fig. C of Appendix, com-

pletely preempts M, and M, in favour of M3 and so represents an unjust run:

{(a,p.x), (,p.y), (3,p.X),.....}.

This corresponds to the branch of Mj; in Fig. C starting at x, and ending at the cut-off state
X4, which indicates a cycle.

But within an Mpm, among two or more conflicting states that are ready to occur, some of
them may be always chosen as opposed to others which represents unfairness, as formerly
defined. The unfaimess towards a synchronous output state in an Mpm is propagated to
other Mpms through that synchronization point and an apparent, induced injustice may
result.

For example, as a result of an unfair run illustrated in the first example above, M; is
starved since it waits at state c, for ever and hence an induced injustice due to unfairness
results.

We consider only just runs in this work except the unjust ones induced by unfair runs. This
assumption is embedded into the model checker algorithms discussed in this chapter. This
can be made clear by the example above.

For instance, in case injustice were to be allowed, the above shown infinite sequence
{(a,p.x), (3,p.y), (a,p,X),.....} of global-states exclusively executing the events of M; indef-
initely would have been considered a Jegal run and this in turn would have falsified all the

formulae with universal run operator, (A,) which could otherwise be provably true.

2.14 Generation Algorithm of CMpms , M with respect to CFsms

The generation of =M consists in simulating the Fsms corresponding to every primary
Mpm generated. Every primary Mpm’s generation also involves a partial generation of the
other Mpms (corresponding to other Fsms) that are secondary , as partners of the former in
the synchronous events. In other words, generation of every Mpm-state involves the gen-
eration of all those states in its local configuration/upward closure, that belong to local as

well as non-local Mpms.

The Mpms that are currently secondary have their own tums to be generated as primary

ones in an arbitrary succession. Depending on the generator algorithm (Algorithm (1) or

(i) listed in Chapter-4), states of these Mpms (that acted as secondary ones previously)
already generated may or may not be generated/visited again.

Each of the Mpms is an expanded, possibly infinite version of the corresponding Fsm.
Hence the Mpm-states retain their locality i.e., the component identity, at the same time
representing a minimal globality by the association of their respective Minimal prefix vec-
tors.

When a secondary Mpm becomes the primary one, the subset of its states already gener-
ated during its secondary status and their Mp-vectors remain the same as the ones to be
generated as members of a primary Mpm. This is because, every transition r,,; of M; is
uniquely generated as a function of its uniquely generated input state (which is the output
state of a unique previous transition) and the input transition r;; of the Fsm F; being simu-
lated. This unique association of past and present with a state minimally, gives rise to the
important definition of the Minimal prefix Mp;,i=1..n which is a one-t0-one function, and
is independent of the order in which the primary Mpms are generated or the fact whether it
is primary or secondary. Mp is a conceptual as well as a pragmatic notion because, by
defining it and associating it with every state, it also gives a clue as to how to generate that
state and those on which it depends causally from other Mpms as well.

During the generation of every synchronous output state, the cut-off states in asynchro-
nous non-local conflict with it are kept track of, and recorded if any. There are many pos-
sible partner input states of a synchronous input state and a corresponding unique

synchronous transition is generated in every case.

The algorithm is recursive and adopts a distributed, depth-first search and generation of
input Fsms and Mpm-states respectively. More about this traversal and the quantitative
generation complexity will be discussed in Chapter-4 since the traversal for generation

and verification adopt a similar core methodology.

Thus, we generate all the Mpm-states as members of their respective Mpms, simulated
individually as primary ones, in any arbitrary order. Together with the Mpm-states, the set
of all Mp;,i=1..n is also generated and stored as the /abels of respective Mpm-states. ZMp;
is only implicit in the representation of the example shown in Fig. B of Appendix and

explicit in Fig. C and Fig. D. Using these Mpm-states and their respective Mp-vectors, the

97

set of all global-states of I[IM (and so of ITF) can be generated dynamically and monoton-
ically by the sum/set union of these states to form different configurations corresponding
to different runs.

Because of the association of the Mp-vectors as the /abels of Mpm-states, the traversal of
the local Mpm-states alone of the state-tree of an Mpm (corresponding to the traversal of
its local runs) takes care of the traversal of non-local Mpms as well. When a particular
state is reached in the local Mpm, all the minimum number of states traversed by the non-
local ones so far can be deduced by using the Mp vector and the upward closure of all its
components. This is further simplified by the application of the disjointmess theorem:
backtracking the unique set of n paths of the n state-trees from the corresponding compo-
nents of the Mp-vector up to the initial-states of the trees. Thus an abstract PO structure’

configuration is concretized into paths of finite automata.
The detailed generator algorithm is presented in Chapter-4, in the context of model-check-

ing.

2.15 CMpms, CFsms and Formal Languages

In what follows, we outline certain rudiments of automata and language theoretic issues in
the context of CMpms model that summarize the purpose of the theory of CMpms pre-
sented thus far, and identify the perspectives of this model in the realm of classical lan-
guages and automata theory in the process.

CMpms form in general infinite, deterministic, synchronous automata as contrasted to
CFsms that form in general non-deterministic, finite, synchronous automata. Given the
latter, what we have shown is that there exists at least one set of CMpms (possibly more,
that are isomorphic to each other (depending on the auxiliary functions chosen by the gen-
eration algorithm) which simulate the given set of CFsms and therefore their infinite state
trees need not be expanded beyond the cur-off points. This truncated set of CMpms, by
virtue of the surjective mapping B, is equivalent to the simulated set of CFsms, up fo their
global states and transitions.

It should be noted here that any arbitrary set of infinite CMpms need not possess any cuf-

off points that are isomorphic at all to certain of their ancestors at the end of finite prefices,

98

and so there may not exist an equivalent set of CFsms. But their inherently infinite size

makes them more powerful to open up the class of possibly recognizable sets of infinite

PO-structures.

Mudeline. Losical and Aleorithmic Applications of CMpms:

The set of n disjoint state-trees of CMpms/sum machine correspond to an acyclic
graph, whose relational structure is a labelled Partial Order of Mpm-states each
labelled with its Minimal Prefix. Thus, CMpms combine the modeling advantage
of the labelled PO to represent true concurrency and the branching-time semantics
of the labelled trees to represent true choice in the abstract domain. The modeling
advantage of Mp as labels is exploited in the extended partial order model of the
temporal logic CML, as will be introduced in Chapter-3.

The splitting of the labelled PO structure of the Mpm-trees of £M into many con-
Slict-free structures called configurations and extracting each configuration as a sef
of n paths of the respective n labelled trees has an algorithmic advantage in the
concrete domain, by the application of the operational semantics of individual
Mpms to implement the model checker for the logic CML above. The complexity
is cut down as well by exploiting the localities/identities of Mpms combined with
the application of the labels of each node/state in the tree structure that are Mp-

vecltors, an extended notion of causality and concurrency.

Due to the infinite size of CMpms in general, and their distributed nature with their
respective identities/localities intact, visualizing and implementing the classical

notions of justice and fairness are now possible.

Issues of Formal Language Theory:

The truncated version of i.e., finite, deterministic automata of CMpms is provably equiva-

lent to the non-deterministic model of CFsms, as shown. There are many classes of finire

automaton recognizable languages respectively over different classes of acyclic graphs

such as Words strings, Trees, Traces, Grids and PO structures; of which, the finite autom-

ata over PO structures have not been quite established as those over words and trees

[371.[2].[34]. The CMpms model covers the language for labelled PO structures (con-

nected into a sei of trees). The more interesting aspect is that, the language of these

99

labelled PO structures is definable in a monadic third order logic, as will be introduced in
Chapter-3. Therefore it seems viable to extend the Buchi, Elgot theorem mentioned in
[37], from the language of words to language over conflict-free, PO structures (configura-

tions) connected into a set of trees, to cover all the conflicts/branches of time.

2.16 Complexity Saving with Sum Machine of CMpms

2.16.1 Complexity Lemma

In Section 2.4.2.1, we mentioned that :

(i) The local conflicts conf; are the original sources of conflicts and the global ones (conf
- T conyf) are the local ones propagated by causal-dependency.

(ii) The Mp label of an (Mpm-)state, being a state-vector decides all the states that are
causally dependent on it, both locally and non-locally.

Therefore, by maintaining Mp-label and local conflicts of every state, it is clear that we
can deduce all the global conflicts. The significance is that, the local conflicts decide num-
ber of maximal local configurations (and so that of local runs) and the global conflicts
decide the number of general maximal configurations (and correspondingly global runs).
Since the former is much less than the latter (assuming the specification is conducive to it,
by having 2 minimal number of non-deterministic synchronizations that are tight), and can
be used to deduce them using the Summation Lemma , we do not have to enumerate all of
the global conflicts and equivalently the global configurations/runs. The following
Lemma formalizes the above.

Lemma 2.14 The following statements are equivalent (in addition to the equivalence

within each):

(i) Local scanning of labelled Mpm-states <=> Global scanning of Final-state vectors .
(ii) Scanning of maximal local configurations, Cip,yi , i=1..n <=> Scanning maximal gen-
eral configurations, C pay-

(iii) The global relation confis derivable from the disjoint union of local conflict relations,

X conf;, i=1..n.

Proof:

100

The proof of (i) follows essentially from Monotonicity Lemma at Lemma 2.8 to generate
the Final-state vectors. The labelling of every Mpm-state refers to its Mp vector.

The proof of (ii) follows from Summation Lemma at Lemma 2.9, since every Ciy, € Cset
can be viewed as C,pax = UCnaxi(Smri)» where Fsv(Ciax) = Smr

The argument for (iii) follows essentially from conflict-inheritance property at Property
2.1. It also follows from (ii) as follows: A configuration is conflict-free. Therefore, the
number of general configurations is proportional to the cardinality of the global conflict
relation, |conf] and similarly, the number of local configurations to | Z conf}, i=1..n.

Since all three statements (i), (ii) and (iii) are methods of generating global-state vectors

from local Mpmb-states, they are equivalent.

The lemma above leads to the following theorem.

2.17 Complexity Theorem |

Theorem 2.11 Unlike in the product machine ITF of a given set of CFsms specification,
in the case of ZM generated with respect to those CFsms, there is no state-explosion
caused by the following, as permitted by the given CFsm specification:
(i) enumeration of @/l the runs (of ITF corresponding to those of [TM).

(ii) enumeration of all interleavings of every run.

Proof; The proof is an application of the above lemma. Since a maximal configuration
Cymax cOrresponds to a run TIr < TIM, whatever holds good for the former entity is true
with the latter i.e., a run as well. Therefore, if every general configuration can be reached
by the union of local ones, every global run corresponding to a general configuration can

be generated by local runs as well. This means that there is no enumeration of all the runs.

By local scanning of partially-ordered Mpm-states we simulate the giobal scanning of
totally-ordered state-vectors, by Monotonicity Theorem. In that case, interleaving does not

come into the picture because it depends only on the path of global scanning.

Alternatively, the proof of (i) also follows from the property of non-enumeration of runs,

as discussed in Section 2.10.3, as Property 2.6.

101

The second part (ii) is due to interleaving insensitivity of ~ M as stated in Property 2.7.

The above is when permitted by the specification because, when the degree of synchrony is
very high in the given CFsms, the causal dependency-order < among the Mpm-states
may degenerate to a total-order and there are no interleavings to be avoided. When the
non-determinism and tightness in the synchronization increase, the number of local runs
may degenerate to as many as global ones and hence there are no global runs to be
avoided as well. These are the degenerate cases posed by the specification and the above
non-enumeration of runs and interleavings can be usefully applied only in the absence of

such cases or cases tending towards them.

The detailed discussion of the proof is as follows:

Runs originate from conflicts, as modeled by conf relation. Since the state-trees of the
Mpms are disjoint, many entities of the sum-machine are localized and distributed. Thus
only the local conflicts are explicitly represented by Xconf,, where | Zconf, | < |conf|. In
the case of product-machine, the conflict relation conf, is among global-states where ,
|conf| <|confy| . This is appreciable since all continuations of every component are consid-

ered from every global state, in a homogeneous or non-distributed fashion.

Instead, by the locality of conflicts, only the local runs corresponding to local configura-
tions are traversed and the required global ones deduced using the Mp-vectors stored
along with every Mpm-state. Thus there is no need of enumeration of al/ global conflicts
and so of all possible general runs corresponding to general configurations, except the
local ones. Every global state is generated essentially by the addition i.e, union of its com-

ponent states.

Even if there is a single run, in the case of product machines, there is non-deterministic
choice defined by choice,,, 4 due to interleaving the execution of the component

machines in all possible sequences, artificially.

102

The sum machine corresponding to every interleaving T11, of Ilr is the same, as that of its
parent run T1r. Consequently, the enumeration of all the interleavings of a run is unneces-
sary in the case of T M,; i.e, there are no artificial non-deterministic choices and sequences
init

Depending on the order in which the local Mpms are traversed, an arbitrary interleaving
takes place automatically till the required global-state is reached. The reachability on all
interleavings can be checked by extending the causality theorem as will be proved as the
interleaving theorem in Chapter-3 after the introduction of the temporal logic CML. The
theorem states that the causality/dependency-order < among the elements of a given
state-vector enables the deduction of the reachability of that vector on all interleavings
given the reachability in any one of them.

The model-checker algorithm in Chapter- 4 incorporates the features of temporal logic
introduced in Chapter-3 along with sum-machine, as mentioned. The logic is required to
formulate the properties to be verified which will be introduced in Chapter-3 and further

in Chapter-4 on model-checking / verification.

2.18 Summary of CMpms

Theoretically, we have developed a model that represents causality, sequence, choice and
concurrency in their true form faithfully as exhibited by the given input specification of
Communicating Finite state machines. Concurrency originates from simulianeity, and is
reinforced by causality rather than being its complement. This enables causality among
states to be modeled orthogonal to concurrency, a characteristic that is applied in the tra-
versal of local runs to generate global/general ones and in the deduction of a property of

all interleavings from that of one.

The above conclusive note will be elaborated in subsequent chapters. But for now, it has
turned out that from our primary attempt to cut down the enumeration of all interleavings,
we have also accomplished the non-enumeration of runs as a secondary but a very desir-
able bonus. It follows from the fact that both categories of non-enumeration are the result

of non-enumerating the global-states, by maintaining only the set of all local states of pro-

103

cesses that correspond one on one, to a minimal set of global-states called Minimal pre-

fixes.

In practice,

We propose a fixed set of Communicating Minimal prefix machines (CMpms)
constituting a state-oriented, partially-ordered, sum machine, which overcomes

the demerits of the traditional totally-ordered, product machine.

The reachable state vectors of the sum machine of CMpms, ZM correspond one-
to-one with what are defined as its configurations as well as to the global states of

the product machine of CMpms, [IM.

A given set of CFsms is assumed as the input specification. It is shown that a sur-

Jjective mapping from [IM onto the product machine of CFsms I1F, exists.

Therefore, composing the above two mappings mentioned, we get the mapping
from IM onro TIF. The finitenessicutoff of ZM is defined corresponding to the
finite IIF of given input CFsms. The equivalence between the deterministic and

finite model of CMpms and the non-deterministic one of CFsms is shown.

The properties that are traditionally verified on I1F with high complexity and low
expressiveness are now verifiable on £M with the advantages of reverse results:
low complexity due to non-enumeration of runs as well as of interleavings (to an
extent permitted by the given specification) and the high expressiveness of the sys-
tem properties starting right at the modeling of sequence, choice and concurrency
in their true form as exhibited by the input specification, all at the same basic level

of computation.

104

2.19 Comparison and Contrast of ~M with ITF

The following tabulation summarizes the advantages of viewing [1F virtually upon the
real machine M, rather than actually generating it as in the traditional methodology,

given an input specification of a CFsm system.

TABLE 1 Product Machine of CFsms Versus Sum Machine of CFsms
Product Machine,[IF Sum Machine , XM
Totally-ordered and inter- | Partially-ordered and non-
leaved model. interleaved model.

By simulating concurrency
with choice (non-determinis-
tic) and sequence, the three
relations viz., sequence,
concurrency and conflicts
are all corrupted.

All the three relations are
faithfully represented in their
true form, using a global,
causality relation that is
partial.

Localitylidentity of pro-
cesses and hence their respec-
tive entities is not maintained.

Locality is very much kept
track of and utilized to advan-
tage.

Runs and interleavings are
not distinguished from one
another.

Runs and interleavings
(within runs) are distinct.

To impose Justice among
processes is not feasible.
Defining fairness is not
straightforward.

Justice among processes is
easy to impose since locality
of processes is defined. Fair-
ness is easy to handle due to
the distributed simulation of
essentially infinite Mpms,
each primarily.

State-space explosion occurs
due to exponential enumera-
tion of runs and interleavings
within each run respectively.

No state-space explosion
since the runs and interleav-
ings are not enumerated.

105

Chapter 3
Computational Mpms Logic (CML)

3.1 Logic in the Context of System Verification

As mentioned in the introduction, the advantage of logic in the context of system verifica-

tion is quoted in [3»5]l as follows:

“The application of logic is an alternative (to the verification tools without the use of for-
mal logic) that has a strong support from a large segment of software engineering commu-
nity in the area of system verification, specifically in the efficient search of the entire
space of possible behaviours. More than the characteristic of infallibility popularly attrib-
uted to it, what logic accomplishes is the efficient search of combinatorially large or even

infinite state spaces, for all the known types of bugs in a practical amount of time”.

In order to make use of a model of a (concurrent/distributed) system particularly for the
purpose of verifying its properties, a formal platform is needed to formulate such proper-
ties. Since concurrent systems have processes with their own Jlocal time scales, consolida-
tion of these time scales is necessary, in the context of the verification of such systems in
order to arrive at their global properties. This warrants the use of temporal as well as spa-

tial (to be introduced) logic as a specific logic tool in the verification.

A logic defined formally, i.e., a formal logic is associated with a language using which the
formulae of the logic are expressed. The language has a symtax and semantics. The seman-
tics of the language and therefore of the logic are defined with respect to a compuiational
model (simply referred to as a model) usually denoted by a triple structure, to be intro-
duced in the sequel. The terms model and structure associated with a logic are often used

synonymously in a semantic connotation through out the following.

Temporal logic offers a platform with its modal operators to analyze the past, the presemnt
and the future properties of the system, posed as formulae in the logic. The computational
model of the system in turn serves as a platform for the semantics of the logic, by virtue of

being the underlying entity whose properties are specified and validated as expressed by

! The actual quotation is from the preface of the volume of this reference [35].

106

the formulae of the logic. A good logic structure is designed in such a way that it exploits
the features of the underlying computational model and vice versa, in order that the best
features of both are brought out and utilized in practice by the model-checker i.e., the ver-
ification method, based on them. In other words, the two entities viz., the logical structure
and the computational model have to be compatible with each other. Unless the two rein-
force each other, by being mutually compatible, their individual richness cannot be put to

use. This is elaborated as follows:

The model supporting the logic is amenable for implementation when it provides an oper-
ational, automata theoretic support. A temporal logic is considered rich when it combines
the partial-order semantics with branching-time semantics. There are certain branching-
time temporal logics over partial-order structures without the support of a compatible
model, such as F(B) [2] and the logic reported in [21]. This is because, the underlying
model based on occurrence net can represent only a single conflict-free run at a time, as its
process structure. Therefore, the branching-time feature cannot be implemented by the PO
semantics of the model, compatible to the logic. On the other hand, if the logic structure is
based on a fotal-order model such as CTL, checking its formulae directly on top of con-
current automata based model will not be fruitful in utilizing the partial-order semantics
of the latter. This is clear from the known results that the complexity of verifying a CTL
formula over a concurrent set of automata is not improved i.e., still PSPACE hard, just as

in the traditional product machine or the Kripke structure.

The partial-order based computational model of CMPms forming a sum-machine is not
just a collection of concurrent automata but endowed with the special property that comes
with it, viz., of the Minimal prefix that forms the backbone of the model. By introducing a
logic that is tuned to this property of the model and its extensions by means of its axioms
and inference rules, we ensure the design of a compatible partial-order based logic on top
of the sum-machine model, and then show that the rotal-order logic on top of the produci-
machine can be checked using the former pair. The combinatorial explosion due to global-
state enumeration present in the fotal-order model/logical structure is thus alleviated. Con-
sequently, the exponential complexity , as permitted by the non-determinism in the specifi-

cation given and property checked.

107

3.2 The Perspective of CML, Abstract and Concrete

Abstractly, we define CML (Computational Mpms Logic) as a logic over possibly infinite,
labelled Partial-Orders, derivable from the sum machine as explained in Chapter-2. Since
these PO structures can be finitely truncated and extracted as a sef of n paths of n respec-
tive finite Mpm-trees according to the disjointness theorem at Theorem 2.2 of Chapter-2, it
is easy to deduce the properties of these PO structures with the operational semantics of
the finite automata. CML has a branching-time semantics as well by relating the local
conflicts of the individual Mpm-trees with the global conflicts among runs or equivalently,
the maximal configurations formed by the labelled PO. Thus CML is a logic that com-

bines a PO semantics with branching-time one.

The PO semantics mentioned above has a clear link with the Jotal-Order semantics that is
provably equivalent to the former, as will be shown. This equivalence only adds on the
advantages of the latter that has étrong ties with the concrete, operational domain to those
of the former. By the above link, we are able to reason about the global-states of all the

interleavings of every run without explicitly enumerating every one of them.

We propose three versions of CML, each one as a monadic third-order logic (as will be
explained shortly) : CML [y whose underlying fotal-order model is the product machine
I1F of a given CFsm system I1F, CMLpy based again on the rotal-order model of the
product machine 1M, CML*Z;M which is based on the extended partial order model of

. *
the sum machine ~ M.

[1F is viewed as a (surjective) mapping of ITM which in tum is viewed as a virtual prod-
uct machine through the rea/ sum machine M. This follows from the [1F and 1M Gen-

erator theorems respectively of Chapter-2.

Since ITF is viewed and generated as a virtual machine by the physical sum machine ZM,
CML'y serves as the actual logic from which CML 1 and CML f are derived/visual-
ized. More precisely, the set of temporal formulae to check both safery and /iveness prop-
erties of M and hence of IIF are expressed with operators for qualifying both rrue
concurrency and true choice (conflicts) as exhibited by the specification, and modeled in

S M. Thus the enriched expressiveness of CML stems from ZM and is carried over to I1F

108

in the specification of the latter’s properties. These ideas will be formalized in the follow-

ing.

3.3 Background of CML

The syntax and semantics of the logic CML is close to that of F(B)[2], a partial-order ori-
ented, branching-time, monadic second-order temporal logic on top of occurrence net
model. Unfortunately, F(B) can not be implemented , as it is the case till to date, that there
is no finite acceptor for prime even structures with conflicts.

Both CML and F(B) have borrowed the modal operators from CTL, though the latter is
not a partial-order logic. Both CML and CTL address the state-based product-machine as
their underlying model. But in the case of CML, the product machine is viewed as the
mapping of sum machine that makes all the difference in their semantics as well as com-
plexity of model-checking later on. Further comparison and contrast will be made between

CML and CTL in the summary and later chapters.

3.4 CML, A Branching Space-time Logic

3.4.1 Branching Time Aspect

Depending on whether or not conflicts of a system are taken into account in the logic, we
have l/inear-time and branching-time temporal logics. Both are popularly in vogue in the
literature. The former assumes the model of the system to be a disjoint ser of sequences
representing runs while the latter views those sequences to be connected into a free. The
branches of the tree take place due to true choices or conflicts of the system in time scale
and hence the name branching-time[5][2]. An account of the taxonomy of different com-
putational models of a concurrent/distributed system and temporal logics was given in
Chapter-1.

The branching time aspect of CML is thus linked to the confrelation in ZM, whose struc-
ture is a disjoint set of trees. Two conflicting configurations represent two different contin-
uations (future) of the initial configuration but are not the continuations of each other.

Thus they can be considered as two different branches in the time scale. Two conflicting

109

successors of a given configuration represent two different branches of time in the imme-
diate future.

The conflicts of M are originated by Zconf.. In other words, the source of conflicts is
local and distributed and so are the continuations of configurations and hence the branches
of time. This has an important implication in the distributed and localized model checking,
since the set of local trees corresponding to local runs (manifesting as local configura-

tions) alone are statically stored.

As discussed in Chapter-2, the cardinality of the conflict relation jconfy| is much higher in
TIM than that of the relation | Z conf,i=1..n] of ZM. This is because, from a given global-
state of the former, the conflicts of each component have to be considered; in other words,
the successors of every component have to be visited. Whereas in the case of ZM, only
the local conflicts are considered during the traversal of a given Mpm; only upon the suc-
cess of local traversal (according to the property checked), any non-local traversal is car-
ried out. While scanning the local conflicts, the global ones are automatically accounted

for according to Complexity Lemma 1 (Lemma 2.14).

3.4.2 Branching Space, A New Dimension of CML

The branching space aspect of CML is related to the branching-off in ZM from the space
state-tree of one Mpm to that of another. This dimension of branching is through synchro-
nization points among the otherwise disjoint set of state-trees of the Mpms. These points
of contact are contributed by the synchronous output states. These states manifest them-
selves as non-local components of Minimal prefixes of a given primary Mpm and serve as
handle states in branching from the local, (primary) Mpm to the other non-local (second-
ary) Mpms.

We refer to each of these as handle states because of the following: we continue the tra-
versal of the current configuration/run from these states in the secondary Mpms; these
non-local Mpms (to which the branches can be made later), have already progressed up to
these states to enable the primary Mpm (from which branch is made) to reach its current

state, through the necessary synchronization points/states.

110

3.4.2.1 Duality of Conflict and Synchronization Points

The synchronization points for branching space are analogous and dual to the conflict

points for branching time as illustrated below:

Fig. 12 Branching time (contlict) and Branching .space (synchronization) points

synchronization
point

Conﬂlct point
f/

In the example of Fig. 12 above, (a) shows a sub-tree of the state-tree of some Mpm M;

and (b) shows a couple of sub-trees of both M; and M;.

In (a), s,; represents a conflict point from which there are two branches (of time) such that
the states s'y,; and s",; of the two branches respectively are in conflict with each other.
From the conflict-inheritance property, all the descendents (in the order <) of §';; are in

conflict with those of s";

Similarly in (b) of Fig. 12 above, sp; and sy, as synchronous output states (Sy; SyHCout Smj)
together represent a synchronization point. These two states that are simultaneous, also
represent the source of concurrency as mentioned in Chapter-2. The concurrency is inher-
ited by all the descendent states of sy; and sp; that are reachable asynchronous of each
other. Thus, assuming s'y; and s'y,; are reached asynchronous of sy; and sp; respectively,

we have: (s'n; €0 Spi), (Smi €O S'ry)-
3.4.2.2 Branching Space Versus Branching Time

So, we see that a conflict point formed within a state-tree of an Mpm by a single state
gives rise to different dranches of time, that continue independently to give rise to differ-
ent futures. Likewise, a synchronization point formed by multiple partner output states
belonging to disjoint state-trees of respective Mpms gives rise to different branches of
space, as many as there are partners, that may progress independently/asynchronously in

space, i.e., within their respective localities of state-trees.

111

The branching in space is orthogonal (o branching in time. The branch of time or continu-

ation in time while executing the events of one Mpm before branching in space is main-
tained even affer the branching in space, during the execution of events at a different

Mpm.

3.5 CML, A ‘Monadic Third-order’ Logic

3.5.1 Third Order Logic

A higher-order logic as opposed to a first-order logic, allows the predicate names to have
other predicate names or function symbols as arguments. Furthermore, quantification can
be applied not only to variable symbols, but also to function symbols and to predicate
names [43].

Temporal logics typically are based on higher-order theories as they use the modal opera-
tors as predicate names that take propositions as their arguments to express the temporal
properties which in turn are in the scope of certain quantifiers. For instance, CTL[1], [5] is
a traditional second-order logic where the path quantifiers operate on first-order formulae
of modal predicates.

A monadic second-order formula begins with a prefix of quantifiers followed by a first-
order formula. More detailed and formal definition can be found in [37] and its cross-ref-
erences.

A monadic third-order formula begins with a prefix of quantifiers, that quantify a monadic
second-order formula.

The definition of CML as a third-order logic in the following section exemplifies the

above concepts.

3.5.1.1 Break-up of a Monadic Third-order Formula of CML

(i) The innermost first-order sub-formulae will consist of modal predicates with modal
operators qualifying the propositions. These are also referred to as the interleaving formu-
lae, to be operated upon/quantified by the interleaving quaniifier. A run as defined in
Chapter-2 is a conflict-free product machine with a corresponding maximal configuration

of the sum machine. Since a run consists of many interleaved paths, we extend the above

112

mentioned interleaving formulae, with the run quantifiers/configuration quantifiers, oper-
ating on them. -

(ii) The second-order formula resulting from the interleaving quantifier, quantifying a
first-order modal formula‘interleaving formula is called a run Jormula since it will be
quantified by a run quantifier.

(iii) The third-order state formula results from a run quantifier operating on a second-
order, run formula.

The above formulae are in monadic form. By inductively nesting the above categories of
formulae, we get still higher-order formulae than the third-order ones that are non-
monadic. The term monadic probably was coined to define simply one elementary level of
arriving at the state-formulae with only one run operator. quantifier and an interleaving
operator without any nesting. By restricting ourselves to monadic formulae, we isolate out
the higher than third-order formulae due to nesting. Consequently, we manage to check
the entire formula in one pass, without breaking it up into multiple levels of state-formu-
lae and consequent need for labeling algorithms to verify the entire nested Jformula. This

issue will be elaborated in Chapter-4 on model checking.

3.5.2 Branching Space and Interleavings

Since M is the underlying model of CML, any global-state of [IM is reachable as the
final state vector of a configuration C. From the inferleaving insensitivitylindependence
property of a configuration, it follows that C represents all the interleavings of the run in
M domain corresponding to the configuration C. The causality theorem is recalled from
Chapter-2:

(co N <) <> Null,

which is exploited to check if the components of the final state vector Fsv(C), wait for
each other by checking their causal dependency order.

Given Fsv(C), if the components are only related by the concurrency relation co, and unre-
lated by < , we say that the components possibly wait for each other in order to hold

simultaneously at some instant of time. We also say that the vector Fsv(C) is reachable by

113

some interleaved path of a partial run corresponding to C. The fact that the components of

Fsv(C) are unrelated by < means that they are not bound to wait for each other.

On the other hand, if these components are related by < in such a way that they are
bound to wait for each other necessarily as will be elaborated, it means that irrespective of
the interleaved order of execution, the vector is reachable. We say that Fsv(C) is reachable
by all interleavings of the partial run corresponding to C and the components must wait
for each other. This will be formally stated and proved in the sequel.

From the above paragraphs we see that, it is possible and useful to have an interleaving
operator along with the run operator, the latter alone corresponding to branching time. We

call the former, the branching space operator because, it stems from the causality theorem

which in turn originates from simultaneity (strong concurrency), represented by synchro-
nization points that link the otherwise disjoint Mpms in space._The synchronization points
in_space are dual fo conflict points in time as cited before.

Two main advantages of interleaving operator are:

(ii) The reasoning of interleavings can be made orthogonal to that of runs. This way, both
concurrency and conflict can be analyzed at the same basic level, independent of each
other. This has been precisely the very goal of our research, which fills the void entry of
the survey table of Reisig [2] as explained in Chapter-1.

3.5.3 Branching-Time and Runs

Branching-time semantics in CML is contributed by the conflict-points of the individual

Mpm-trees. By maintaining the Jocalities of individual processes/Mpms,

114

(i) we maintain the original sources of conflicts sprouting within the processes alone, and
only manifest globally through causality. (i.e., the source of conflicts is intra and not inter
process).

(ii) the distinction between runs and interleavings is made easily, since the latter does not
come into the picture within local states at all. (i.e., the source of interleavings is inter and
not intra process).

Thus CML turns out to be a richer logic with the branching space feature associated with
concurrency and expressed by interleaving operators, in addition to the branching time
feature associated with conflicts within a given space or an Mpm’s state-tree as expressed

by run operators.

3.6 Building Blocks of CML

Before formally defining the synfax and semantics of CML and its structures, we intro-
duce the following input assumption followed by certain basics:

We are given a CFsm system constituted by F;, i=1..n that communicate by a specified set
of synchronization events (each with specified partner Fsm-identities) and a set of /abel-
ing functions pg i=1..n, assigning a unique atomic proposition to every Fsm-state of F;,

i=1..n respectively such that:

Py - Sg > Apy is a bijection from Sg to A,z where,
Sy is a set of local states of F; and

Apyg is a set of atomic propositions of F;.

Example 3.1 From Fig. A of Appendix,

Pri(@) = apa, p(b) = ap, etc.

Assuming TIM is the product machine of a set of CMpm system, {M;, i = 1..n} generated
with respect to the given CFsm system such that:

B; : M; -->F;, i=l..nand,

B: [IM --> I1F is a surjective map as defined in Chapter-2,

we define the following:

115

Definition 3.1 Given the set of atomic propositions Apg; over Sg, a corresponding set of
atomic propositions Apy,; over Sy, is generated such that:
B; : Apy; —> Apg and,

Pmi - Smi = Apm; is a bijection.

By the generation of Mpm-states S;;,
For every s;;; € Sp, there exists some s € Sg such that:

Sm; = (S5, occ#) where occ# is as defined in the proof of ITM Generator theorem, in Theo-
rem 2.8, in the generation of ZM given {F;, i=1..n}.

S0, Py, is generated such that:

Pmi(Smi) = Pmi(Sg. 0cc#) = (apy, occ#) = apy,; where apg = pg(sg),

Then,

Ap,,; —> Apy; is a mapping derived from the mapping S,; --> S and,

Pmi iS @ bijection that results by the same token as the bijection pg.

Note: B, (and B) are structures, with a unique element denoting each entity’s map from M;

to F; as follows:

Bgmi : Smi - Sj; for states,

Bemi - Emi - Eg for events,

Bapmi : Apmi --> Apg for atomic propositions etc.

But for simplicity, we let B; (and B) denote each of the above set of functions, decoded

with reference to the context.

Example3.2 A, is the set of atomic propositions of M, generated such that:
Pmi(20) = Pmi(a, 0) = (apa, 0) = apqo,

Pmi(bo) = apyg etc.

From Fig. A and Fig. B of Appendix we see that,

Apn = {ap,, apy, ap., ap4} which is given and,

Apmi = {@Pa0, 3Pa1> 8Pa2: 3Pbo» 3Pcos apq4o ywhich is generated.

(The atomic propositions are not labelled in Fig. B)

116

App= {ap, aPq, @Ps, 3Py, 2Py, Pr, aPs, 2P, aP;} and,

Apm2 = {@Ppo- aPq0» @Ps0» 2Pr0> 3Pu0> 3Pr0» 3Ps0» 3Pvi» 3Pv0» @Ppl» app2}-
Example 3.3 Following is a sample of the typical examples of real-life systems, in gen-
eral:

T Apg; = {(buffer empty), (ready to receive), (ready to produce),...}

Z Ap,;; = {(buffer empty),, (buffer empty),, (ready to receive)o,

(ready to receive);, (ready to receive),,...}

The following extensions are defined :
Definition 3.2 pr: S;—~> Apyis a bijection such that:
p(s) = {(apg = Pa(sg)). i=1.n},V'sp e Spof ITF .
Pm : S —> Apm i a bijection such that:

Pm(5m) = {(Pmi(Smi) - i=1..n}, Vs € Spof [IM.

B : Ap,, --> Ap¢is a surjection such that:

B(pm(sm)) = p(s)-

Example 3.4 From Fig. 13 and Fig. 14 corresponding to [1M and ITF respectively,
Pm(@0 » Po » X0) = {aPa0 » aPpo » 2Pxo} »

pda,p,x)= {apa. ap, , apy} and,

B({apqo .aPpo » @Px0}) = {@Pa . aPp , 3Py }-

117

Fig. 13 Partial product machine IIM corresponding to Mpms of Fig.C

118

Fig. 14 Partial product machine ITF corresponding to IIM above

3.6.1 Propositional Operators of CML

3.6.1.1 Atomic Proposition & Satisfiability

Sm [=m aP,; iff: ap_; = Pmi(Smi) € Pm(Sm),1=1..n, where: apy,; € App; and sp,;; is the it
component of s,.

We say that, s, satisfies the proposition ap,;,i=1..nin ITM, denoted by: |=p,
Example3.S

som = (a0, Po» Xo) is the initial-state of [IM.

Som [=m @Ps0 SINCE Pm1(Som1) = aPao 5

Som l=m 2Ppo0» since pm2(50m2) = aPpo;

Som [=m @Pxo0 » SINCE Pm3(Som3) = aPxo;

119

Similar definition can be made with states of S¢as well:

s¢|=rapg iff p(s5) = apg,1 =1..n, apg € Apg.

We say that, s; satisfies the proposition apg in I1F, denoted by: I=f.l
Example 3.6

sor = (ag, Po» Xo) is the initial-state of I1F.

Sof [= apao, from the fact pp(son) = apao;

Sof = appo, from pp(Sop) = appo;

Sor |= apxo . from pg3(Sof3) = aPxo;
3.6.1.2 Conjunction of Propositions

Sm [= (g Ah) iff:
(5m[=8) N (spm |= h) where g and h are propositions.
Example 3.7 som |= (apao A\ appo N apyo)-
Conjunction of atomic propositions, of all the n components of a state sy, viz., A=y
Pmi(Smi) is called a primitive conjunctive proposition, satisfied by sy,
Sm = N i=1..n Pmi(Smi)
The above can be defined correspondingly in ITF domain as well.
For instance,
Sor [= (apa /\ ap, /\ apy) and in general,
st = Ni=1.n Pri(S13)
Note: It is to be noted that not all the components of the atomic propositions need to be

added as a conjunct to be satisfied by sp,. 7 is just the upper limit.

3.6.1.3 Disjunction of propositions

sol=(gVh) iff

! Whenever there is no confusion, the satisfiability operators [=,, [=¢are denoted with the subscripts viz., m
or { dropped, and their domain understood from the context of usage.

120

(sm|=8) V(sm=h), where g and h are propositions.

Example 3.8

Som I= (apao A aPpo N apr) \ (apbO A aPq0 A apr)

The above can be defined correspondingly in ITF domain as :

Sor I= (apa N ap, N apy) V (apy, N\ apg A\ apy).

We consider the disjunction of conjunctions (disjunctive normal form) as shown above, in

the model-checker algorithm of Chapter-4, that checks one conjunction at a time.

3.6.1.4 Complement of a proposition

Sm [= g iff

(s, |= g) where g is a proposition, * is the negation operator.
Example3d

Som I= ~(@pwo /\ apq0 N\ apyo);

The mapping of the above formula in ITF domain is:

sor [= ~(apy /\ apq A apy).
3.6.1.5 Proposition with Implication

sm I= (g = h) iff:

Sy |= (*g V h) where g and h are propositions.

This proposition often is used along with modal and branching operators (to be defined)
qualifying the proposition, h. When g is an atomic proposition or a conjunction of atomic
propositions, it automatically defines the states to be satisfied, and so the satisfiability
operator, |= along with s, can be skipped. Thus often, implication propositions are univer-
sal in the sense that they express satisfiability over all the states (as g either holds or not
holds). When a proposition/formula is satisfied by all the states, it is called a valid propo-

sition/formulae.

|= (g => h) is a valid formula, satisfied by all the states of the system.

Example 3.10

I= (apgo => apyo) -

121

This is the case since dg = uy due to simultaneity. In this case, due to symmetry, the con-

verse of the implication is true as well or in other words, equivalence holds.

3.6.1.6 Propositions versus Predicates of CML

A CML proposition is formed by atomic propositions combined by boolean operators as
defined above, viz., conjunction, disjunction, complementation and implication.

A proposition is often used with modal and branching operators (in time and space) qual-
ifying and quantifying the proposition respectively, to define various CML predicates,
which will be defined in the following section.

3.7 Modal and Branching Operators of Propositions

Within the framework of a temporal logic, the propositions as defined above can be
enhanced by qualifying them with modal operators that are typical of a conventional tem-

poral logic.

If the states of the model of the logic are simply formed as a disjoint set of sequences, there
are no more operators needed other than the modal operators above to quantify the states

of the model, and the resulting logic is called a linear time logic.

Alternatively, the states of the model could be formed into a tree with its conflict points
representing the (true) choices made by the system sourcing the different branches in time
that represent different runs of the system. Then, in addition to the modal operators, uni-
versal and existential run operators are incorporated to quantify the runs in which the

specified states are reached. The associated logic is called a branching time logic.

In the model TM, which essentially (by generating TIM) supports CML, the states are
formed as a disjoint set of trees. The branches within each tree represent conflicts and so
branches in time. In addition, the trees are tied at representative states called synchronous
output states called synchronization points. These representatives source the different
branches in space due to strong concurrency-simultaneity, subsequently causing multiple
interleavings due to possible concurrent states reached asynchronous of each other, as
explained in a few contexts before. This makes CML, a branching space as well as a

branching time logic (branching space-time logic). This is how we get both the run oper-

122

ators corresponding to branches of time, and interleaving operators corresponding to

branches of space.

3.8 Formal Definition of CML

3.8.1 CML Structures

Definition 3.3 The CML structure can be defined with respect to the product machine of
CFsms as a triple:CML i = (S, ps Rg) and,

with respect to the product machine of CMpms as the triple: CML 1pv == (Sm Pms Rn)-
Both CML jr , CMLqy are referred to as total-ordered structures since Ry and Ry, are
respectively fotal among Sgand S,

Definition 3.4 The CML structure with respect to a sum machine <M can be defined as a
triple: CMLxM = (ZSmi. ZPmi» <), Where < is the causal dependency-order among
Mpm-states. It is partial-order structure since < is a PO among the Mpm-states S;;.

CML5 v is a propositional logic over Mpm-states.

3.8.1.1 From Partial to Total Order Structure

Definition 3.5 The CML structure CML‘;M = (Fsv(Cset), Pm. < succ) is an extended
structure of CMLy and is defined with respect to the extended sum machine M which
is an enrichment of sum machine with configurations and final state vectors defined in
Chapter-2.

To recall from Chapter-2,
Cset C P(ZS,,) where P(ZSy;) is the powerset of ZSp; ,

Fsv: Cset--—> S, X Spma X ... X Sppand,

< quce Trefers to the successor relation among the (final state) vectors (extended from <

the causal order) of the set of all configurations, Cset :

ie.C c C' <=> (Fsv(C) '<succ Fsv(C")

! When there is no confusion of this relation with the causality among Mpm-states. the subscript succ may
be skipped.

123

Lemma 3.1 The CML structure with respect to the extended sum machine, CML s and
the CML structure with respect to the product machine CML rpy are equivalent up 1o the
reachability of their global-states, as well as the structures CML pr and CML [py where,
B: [ITM — IIF.

Proof: The proof follows from the results proved in Chapter-2 as quoted below:
Equivalence of CMLm.and CMLym 2

Fsv(Cset) = S, and R, among S, is same as < 5,.c among Fsv(Cset) from the Equiva-
lence Theorem I (Theorem 2.5) of Chapter-2.

The only difference between the two structures is that <5, among Fsv(Cset) is not

explicitin ZM unlike the relation Ry, among Sp, in M.

By the above theorem, the fotal-order structure of CML s becomes an extended partial-
order structure of CMLsym and vice versa. By virtue of this equivalence, we derive the
merits of both the structures at once. This is exploited in the model-checker algorithm of

Chapter-4.

Eguivalence of CMLmand CMLng2

The structures (Sg, pe» Rg) and (S, P R/ are equivalent by virtue of the mapping B,
given that, B: TIM —> [IF according to the Equivalence Theorem II at Theorem 2.10 of
Chapter-2.

The above structures of state-based logic CML define the reachability of the local and

global vectors of Mpm-states over interleavings and runs through its formulae.

3.8.2 The Modal operators
Definition 3.6 CML defines the following modal operators:

X - ‘next-state’ operator
F- ‘sometime in future’ operator
G - ‘always in future’ operator

until - (binary) left proposition is frue until the right proposition becomes true.

124

For instance,

Sm |= X g, means that: nexi state of Sm satisfies the proposition 8m in the product machine,
M.

Similarly, s¢|= X gr means that: nexs siate of s satisfies the proposition grin I1F.

The operators X, F, G and until are associated with the Juture modality in the sense that
they imply propositions that will hold in the future, with respect to the states satisfying
them. The corresponding past operators can be similarly defined with an underlined deno-
tation of the corresponding operators.

For example, s |= X g

means that: predecessor state of sr(in the order R) satisfies the proposition gy in ITF.

and, s¢ |= (g¢ until hy) means that g¢is true until the proposition h¢ is true as well.
Similarly, since is the corresponding past operator of until, meaning that the left proposi-

tion of the operator is true ever since the right is true.

3.8.3 The Branching Operators - Space & Time

In the last section above, the meaning of s¢ |= X g was defined as- nexr state of sy, satisfy-
ing g. From the definition, it is not clear whether it refers to some next state or a// next
states of s that satisfy g, More specifically, whether it is a next state of some interleaving

of some run or a next state of all interleavings of all runs or any of the other two combina-
tions of interleaving and run quantifiers.

In order to aid the interpretation of the modal operators without any ambiguity and thus

MWMM&@MWW all the above modal

Operators are quantified by the branching operators that are: run operators corresponding
to branching time, and the interleaving operators corresponding to dranching space,

denoted as follows:

Ary, - Universal run operator/quantifier;
Em - Existential run operator;

Apm - Universal interleaving operator;

Ejm - Existential interleaving operator/quantifier.

125

All the above operators are in [TM domain. Corresponding operators in [1F domain viz.,
A, Erp, Ay, Eqr can be defined as well!. The precise syntax of these operators will be
defined in the following section.

Every run of CML formula refers to a conflict-free product machine Ilr in [IM domain
and a maximal configuration C,. in M domain. Every interleaving refers to a path of
I[1r in [IM domain and a succession of configurations leading to C,pa in £M domain
(this is actually reflected in the causal dependency among the components of Fsv(C,pay)
due to the fact that the set C,,,, is insensitive to the order in which its members are

reached).
3.8.4 Syntax of CML 4/ CML ;r Language
3.8.4.1 State, interleaving (Path), Run Formulae

This section and the following section adopt the style of definitions from [5]:

Given below is the formal definition of the syntax of the language CML y/CML . The
language is an enrichment of CTL[1] and F(B)[2] and provides an expressive framework
for specifying the properties of the input CFsm system. This framework is instrumental in
the efficiency of model-checking algorithm in Chapter-4.

We start with the set of atomic propositions £ Apni/ ZApg and inductively define a set of
primitive state formulae and a set of interleaving/path formulae, run formulae as well as ,
monadic, third-order state formulae that are non-primitive and the higher-order ones of all

the above categories mentioned due to inductive nesting.

Definition 3.7
. Each atomic proposition is a (primitive) state formula.
. If g, h are state formulae then so are (g /\ h), *f. The conjunction of atomic

propositions is called a primitive conjunction.

. If g is a state formula, then Fg and Xh are interleaving/path formulae.

! Whenever there is no confusion, the operators A, Ay are denoted with the subscripts viz., m or f
dropped, and their domain understood from the context of usage.

126

. If g is an interleaving formula, then E; g and Ag are run formulae.

. If g is a run formula, then E.g and A.g are (non-primitive) state formulae.
. If g, h are state formulae then (g until h) is an interleaving formula.
. If g, h are state formulae, (g pos-wait-for h), (g must-wait-for h), (g pos-

co-wait h), (g must-co-wait h) are run formulae.

. If g, h are either interleaving or run formulae, then so are (g A h) and g,

as the case may be.

The formulae with other boolean combinations with disjunctive operator etc., can be
derived from the basic ones of conjunctions and negation such as: (g V h) = ~(“g A\ ~h) and
so on; The modal operator G is derivable as Gg = "F"g.

The past operators corresponding to the future ones X, F, G and until are respectively X ,
F ., G and since; these can be substituted in places of their corresponding past operators

as well and similarly defined.

3.8.5 Syntax of CMLsm / CML M Language

CMLy is a simple propositional logic over which first and higher-order formulae are
built in the extended model T M. CML) consists of the set of atomic propositions

Z Ap,,; each of which is an Mpm-state formula.

3.8.5.1 Global-state, Succession and Configuration Formulae

Given the Mpm-state formulae of CML s, we then inductively define a set of global-state

Jormulae (corresponding to state formulae of CML) and a set of succession and config-

uration formulae (corresponding to interleaving and run formulae of CML p respec-
tively) to build the extension, CML*ZM. It can be easily seen that global-state formulae.

. Every Mpm-state formula is a (primitive) global-state formula.

127

. If g, h are global-state formulae , so are (g A\ h) and ~f. If g, h are primi-
tive, so are (g \ h) and ~f.

. If g is a global-state formula, Fg, Xg are succession (of configurations/
global-states) formulae. X and F could be replaced by the corresponding
past operators X ,F .

. If g is a succession formula, Eic,g, Aic:g are configuration formulae.

. If g is a configuration formula, Ec.g, Acg are (non-primitive i.e.,
monadic, third-order) global-state formulae.

. If g, h are state formulae then (g until h) is a succession formula and so is
(g since h).
. If g, h are global-state formulae, (g pos-wail-for h), (g must-wait-for h),

(g pos-co-wait h), (g must-co-wait h) are configuration formulae.

3.8.6 Models and Semantics of CML

CML structures define the reachability of states. CML models link the reachability with

the satisfiability of formulae in these states.

3.8.6.1 Total and Partial Order Models

Definition 3.9 A Total-Order model is a structure TM = (S, L, R) such that: for all states
s € S, and a function L from states to formulae(primitive and non-primitive), R is a total
binary relation among states of S, and formula g is satisfied in TM denoted: <TM, s> |=p
iff g € L(s) where |= refers to the satisfiability relation.

Definition 3.10 If R is partial in the above definition, then PM = (S, L, R) is referred to

as a Partial-Order model, the rest of the definition remaining the same.

From the above definitions, we see that the structure CML p = (Sy, Pm, R) is @ Total-
Order model (and so is CML pr == (S, pg, Rp)) and the structure CMLzyM = (X Spyi, 2 ppy;.
<)is a Partial-Order model.

CMLsMm = (Fsv(Cset), P < suce)s an Extended Partial Order model (EPM) (since it is

extended from CMLy) that is proved equivalent to the Total-Order model CML 1py. We

128

note that this idea is consistent with the mathematical fact that a roral-order can be consid-

ered as an extension of a partial-order or the latter as a restriction of the former.

3.8.6.2 Semantics of CML ;,, a Total-order Model

Given a model CML 1 := (S, P> Rpy) or CML e == (Sy, pr, R¢) we define the notion of
truth in it through the relation [=. Given a state s, , an interleaving I and a run rr! . and

correspondingly, a state formula g, interleaving formula g' and run formula g", we write:
<CML - S 1= 8, <CML [, I> I= &' and CML . IIr |= g"

which means that g is rrwe at state s, g' is true of the interleaving 1, and g" is true of the
run Ir.

[= 1s inductively defined as follows:

Definition 3.11

TM 1: State Formula

For a (primitive) state formula g that is an atomic proposition, <CML v , s> = g iff g €
Pm(Sm)-

IM2: If g, h are state formulae, <CMLy , 55> |= (g A h) iff : <CML py , s> = g and
<CML M, S>> = h; <CML 1y, 5™ =g iff: (<CML v, 5™ = 8)-

IM.3: Interleaving Formula

If g,h are state formulae and I, = (S, Sam,---Skme---) 1S @ Sequence of states or an interleav-
inglpath (of a run [Ir), then

<CML v , I> [=Fg iff: for some sy on I, <CML vy 5 Skm™ 1= 85

<CMLpm . [> = Xg iff: <CML v, Som™ = 8-

Similar definition of the past operators X , F can be made as well in a symmetric manner.

IM.4: Run Formula

If g, h are interleaving formulae and Ir C TIM is a run, then,

! When we define formulae at state sm. We let I and I1r denote interleavings and runs emanating from that
state as opposed to the original denotations of the interleavings and runs from sgq,, the initial state.

129

<CML py , [Ir> [= Ey, g iff: for some interleaving 1, of Tlr, <CMLpy . > = 8
<CMLpy , 1> |= Ay, g iff: for all interleavings I, of Ilr, <CMLpy , I~ [F &

TM.5: Monadic. Third-order, State Formula

If g, h are run formulae and s, € S, is a state, then,

<CML [y, $m™> I= E; g iff: for some run TIr < 1M, <CMLpy, N> |=g
<CML vy, sm™ |5 A, giff: for all runs TIr © TIM, <CMLy, IIr> =g

IM.6: Until . Since Operators [2]
If g, h are state formulae, then,
<CML 1py . I> |= (g until h) iff: for some interleaving 1. = (Sym,---Skms <) -

<CMLpy » Skm™ I= (g Ah) and forall 1< i< k, <CMLpy, Sim™ [= 8-

<CML v , I> |= (g since h) iff: for some interleaving 1, = (Sym.S(t-1)m» ----) such that:
I, is a continuation of I'y == (Si1, Sam, ---Skm) @nd,

<CML v, sim> I=(gAh)andforall 1 < i< k,<CMLpy , sim> [F &

=W -

This operator is fense free and so, either until or since operator can imply it. It is non-spe-
cific of an interleaving consistent to its tense-free characteristic and so is a run formula. It
is in contrast to a formula with until since operator which is an interleaving formula by

virtue of the specificity of fense in the operator.

If g, h are state formulae and I1r < [IM s a run, then,

<CML 1py , [1r> |= (g pos-wait-for h) iff: for some interleaving 1, of Ilr,
<CML v , I> |= ((g until h) V (g since h)).

TM 8 musr-wait-for Operator

If g, h are state formulae and It < IIM s a run, then,

! We assume as in [2], that g continues to hold until and inclusive of the instant when h becomes true, as
opposed to some conventions where the inclusive aspect is not guaranteed and hence the conjunction. Simi-
lar assumption for r/e operator since is made also.

130

<CML py , [Ir> |= (g must-wait-for h) iff. for all interleavings 1. of Ir,
<CML py , I I= ((g until h) V (g since h)).
IM.9: pos-co-wair Operator
If g, h are state formulae and IIr < IIM is a run, then,
<CML 1py , [Ir> |= (g pos-co-wail h) iff:
<CMLpy . Hr>[=((g pos-wait-for h) V (h pos-wait-for g)).
IM.10: must-co-wait Operator
If g, h are state formulae and IIr C IIM is a run, then,
<CML py , [Ir> |= (g must-co-wait h) iff:

<CML 1y , [1r> |= (g must-wait-for h) V (h must-wait-for g).

IM.11: If g, h are interleaving formulae, <CML py , 1> [= (g A h) iff :
<CMLm,1 . I,> [= g A\ <CN[LHM R Ir> |= h and,
<CMLp, > =g iff: (<CMLpy , [> |- 8)

IM.12: If g and h are run formulae, <CML p , [Ir> |= (g A h) iff :
<CMLpy, [Ir> [= g A <CML py , [Ir> [=h and,
<CMLpy , [Ir> |= g iff: (<CMLpy, [Ir> |=g)

3.8.6.3 Semantics of CML*sM , the Extended Partial-order Mode!

Given the model CMLyy = (£S5, ZPmi» <), We define the notion of rruth in the
extended model CM]..*L-M = (Fsv(Cset), Pm» < succ) through the relation |=.

Given an Mpm-state s_;, a global-state s, a succession of (configurations) I, and a con-
Sfiguration C, , as well as an Mpm-state formula, a global-state formula g;, a succession

Jormula g' and a configuration formula g", we write:
<CMLEM, S |= 8. <CML"£M, s> I= 8 , <CMLppy, Ie,> = g' and

<CML py, C;> |= g" which mean that :

131

g; is true at Mpm-state s, g; is also true at global-state s, and g' is true for the succes-
sion I, and lastly, g" s true for the configuration C,, where C, is the maximal configura-

tion corresponding to run Ilr.

Satisfiability (|=) over CML*XM is inductively defined as follows:

Defipition 3.12

EPM |- Global-state Formula

For an Mpm-state-formula that is an atomic proposition g;, <CMLzM, s> [= g; iff g; =
Pmi(Smi) which is also a global-state formula in CIV[L*EM as follows:

For a (primitive) global-state formula that is an atomic-proposition, <CML*);M, Sm” |= 8;
iff gi € pmlSm)-

EPM.2: If g, h are global-state formulae, <CML*ZM, s> |= (g A h) iff : <CML g M, Sm>
= g and <CML" s M, 5> |= h; <CML" g M, 50> |= *g iff: (<CML"sM, s> [= 2).

If g is a global-state formula, C, < Cset is a configuration (corresponding to arun [r C
[IM), and I, =(C l,, C% Cl‘r) is a succession of configurations, all contained in C,
(corresponding to the interleaving or succession of Fsvs I = (F sv(CL), Fsv(C%),--.Fs-
v(Ckr)= (slmh szm,,...,skm,,...), simr € S, of the run ITr), then,

<CML’zM, Ie> = Xg iff <CML" zM, Fsv(C;)> [= g and,

<CML’sM, Ic> [= Fg iff <CML "z, Fsv(CS)> = g.

The succession formulae defined above are modal predicates , to be quantified by succes-
sion quantifiers, in the next definition.

f Similarly, succession formulae with past modalities viz., X | F can be defined.

EPM 4' Configuration Formula
If g is an interleaving formula, C. is a configuration and I, is a succession,

<CML*2 M> C> |= Ei¢, g iff: for some succession I, of Ilr, <CML*2M, Icm =g

'IncMmL *s M. succession of configurations and that of their Fsvs can be interchangeably used where there
1s no confusion even though only the latter is identical to an interleaving I, of CML .

132

<CML‘);M, C> |= Ay, g iff: for all successions I¢, of Ir, <CML'ZM, IcmFg

EPM.S: Monadic, Third-order Global-state Formula:

If Fsv(C) is a global-state of 3 *M and g is a configuration formula, then,

<CML');M, Fsv(C)> |= Ec,g iff: for some continuation C, of C such that: C < C, (corre-
sponding toa run Ir < [IM), <CML* s\, C> = 8.

<CML‘2M, Fsv(C)> |= Ac,g iff: for all continuations C, of C such that: C < C; (corre-
sponding to a run [1Ir < IIM) <CML‘2M, Co =g

Often, C = C,, the initial configuration where sgy, = Fsv(Cp) in the above.

EPM.6: Until Operator

<CML*ZM , Ic,> |= (g until b) iff: for some global-state formulae g, h and for some suc-
cession Ic, = (C 1,, C‘} ,...,Ck,) .

<CML"sp, Fsv(CX)> |= (g Ah) and forall 1< i< k, <CML gpM, Fsv(Ch)> [=¢.

The definition of satisfiability of g since h, can be made likewise.

IfC, < Csetis a configuration (corresponding toarun [Ir C IIM) and g, h are primitive
global-state formulae, then ,

<CML'2M, C.> |= (g pos-wait-for h) iff: for some succession of configurations (C l,,
C2.....C%) all contained in C;, <CML"gM, Fsw(CX)> |= (g A h) and forall 1 < i<k,
<CML"gM, Fsv(Cl)> = g.

‘for some succession of configurations’ is equivalent to ‘for some interleaving’ but the
former is not explicit because, a configuration which is a set of Mpm-states, is inferleav-

ing independent as shown in Chapter-2.

EPM 8: must-wait-for Operator

If C, < Csetis a configuration (corresponding to arun I[1Ir < I1M) and g, h are primitive
global-state formulae, then, <CML‘ZM, Col=(g must-wait-for' h) iff: for all succes-
sions of configurations (C 1,, C% ,...,Ckr) that are contained in C,, <CML*sM. Fsv(Ckr > =
h)and forall 1 < i< k, <CML"gM, Fsv(C})> = g.

133

EPM 9 Pos-co-wait Operator

IfC, < Csetis a configuration (corresponding to arun Ilr < I1M) and g, h are primitive
global-state formulae, then,

<CMI.‘;M, C;> |= (g pos-co-wait h) iff:

<C1\'IL‘EM, C.> |= ((g pos-wait-for h) V (h pos-wait-for g))

Similarly, must-co-wait can be derived as well.

EPM 10: If g, h are configuration formulae, <CML* zpf, C> |= (g A h) iff:
<CML*sM, C> [EgAN<CML g0, C> [=h
<CML*spM. C> |= " iff: N<CML" 5\, C> = 8).

It is easily seen from the above TM and EPM definitions that, configuration formulae of
CML‘;M are equivalent to run formulae of CML 4 and so are the succession formulae
of the former to interleaving formulae of the latter as well as the global-state formulae of
the former to state formulae of the latter and also there is one-to-one correspondence
between other definitions viz., until, wait-for and co-wait though a couple of them are

skipped in EPM; they can be similarly derived as mentioned.

3.8.7 Equivalence of the Models CML ;z, CML ;,; and CML*x

Lemma 3.1 established the equivalence of the three versions of CML strucrures, up to the
reachability of the global-states in their respective structures. A model is an extension of a
structure with an additional constraint of satisfiability of the formulae in the states reach-
able in the latter. The following theorem establishes the equivalence of the models up 1o

the satisfiability of the formulae of their respective states.

! wait-for operator can also be expressed in terms of both until and since (independent of the rense) in the
model EPM just as in TM and vice versa i.e., TM could have similarly defined waii-for from first principles
just as in EPM.

134

3.8.7.1 Equivalence Theorem lil

Theorem 3.1 The models CML r , CML 1y, CML‘;M are equivalent up to the satisfi-

ability of monadic, third-order state formulae:
(i) <CML 1 , s¢> |- 8 <=

(i) <CML s Sm™ [F 8pm <=

(iii) < CML" g, Fsv(C,)> |= gx *y Where:

sm = Fsv(C,), B(sp) =sg B: [IM —> IIF.
Proof:

Equivalence of (i) and (ii): For every state, run and interleaving of TIM, the correspond-
ing entities of ITF can be mapped onto, by the surjective function B such that, for every

formula over a given entity of I'1M, there is one over the corresponding mapped entity in
ITF.

Equivalence of (ii) and (iii). This follows from the equivalence of the models CML
and CML';M :

From the definitions of a run and interleaving of TIM (from Chapter-2), for every run Ilr
and interleaving I in TIM, there exists a corresponding maximal configuration r = C,.
(Cimax 15 also referred to as C,) and a succession of configurations I¢c, in =*M such that,
the final state vectors of configurations of I, form a sequence identical to a sequence of
states of some interleaving I, in 3 *M. Similarly, for every state s, of [IM, there is a vec-
tor Fsv(C,) in Z*M.

Therefore, every formula over any entity of [IM has a matching formula over the corre-
sponding entity of "M and hence (ii) and (iii) are equivalent.

The equivalence of (i) and (iii) follows transitively from those of (i) and (ii) and (i1) and

(iii).
n

135

3.8.8 Satisfiability of CML formulae and Global-state Reachability

From the above sections, it is clear that when a CML formula (in any of the three equiva-
lent versions) is satisfied at a global-state, that particular state is reachable in some or all

interleavings of some or all runs as quantified in the formula.

3.8.8.1 Primitive Conjunctive Propositions and Global-states

A primitive conjunctive proposition is a conjunction of atomic propositions as defined. By
the bijective definition between atomic propositions and Mpm-states and the definition of
the conjunctive propositions in Section 3.6.1.2, it can be seen that the reachability of a
global-state corresponds to satisfiability of a primitive conjunctive proposition in that
state. Reachability of that global-state in some or all runs and interleavings is quantified

by the run and interleaving operators which quantify that proposition.
3.8.8.2 Polynomial Versus Exponential size of Propositions

Satisfiability of a primitive conjunction of n conjuncts/atomic propositions in [1F domain
corresponds to reachability of a unique global-state by possibly multiple runs and inter-
leavings. A formula in the disjunctive normal form therefore corresponds to checking the
reachability of as many global-states as there are.disjuncts in it. Thus the size of the for-

mula is a polynomial in the number of disjuncts.

Non-determinism in the Conjunctive N | Form:

On the other hand, a CML formula in conjunctive normal form in the following form is a
conjunction of n propositions, where each conjunct is a disjunction of up to m local atomic
propositions. It is possible that every local disjunct can be in conjunction with any of the
Mpms. Therefore, the actual size of the input formula is exponential, with (m ** n) primi-
tive conjunctions which amounts to checking the reachability of that many global states.

The disjunction of m different local atomic propositions as a conjunct is perceived and

characterized here as the non-determinism in the property/formula to be verified.

136

3.8.8.3 Formulae in [TF domain and Cut-off

It is recalled that, any formula in [IM domain can be mapped onto that in ITF domain as
in the definition of X operator below:
<CMLp, s = A E X giff':

VI, < OF, 0L Irg d sgs's e Spe: (5¢Ryg s'p) where:
scl=g,B: [Ir-->Ilrg, and B : [1I--> I1L¢
For example,
<CMLyp, (3, p, x> = A E X (apy)-
If there are two global-states of [TM, both mapping onto the same global-state of ITF,
whatever formula is satisfied by one will be satisfied by the other when projected onto the
[TF plane. This is precisely the reason why one must be the cur-off state of the other,
unless they are in two conflicting paths.
The cut-off states of TIM represent the recurrence of I1F. Though truncated after cut-off
states, [IM essentially remains infinite. The infinite growth of [IM corresponds to the

infinite number of cycles of the finite system I1F.

3.8.8.4 Revisiting the Role of Interleaving operator

It is noted that in a given interleaving of a specific run, there is a unique successor for
every (global) state. So, the meaning of the operator X as ‘next state’ can be interpreted
unambiguously. Without the interleaving operator and with just the run operator there is an

implicit interpretation of ‘some successor’ added on to the operator X.

For example, it can be seen from Fig. 13,

<CML py, (a0, Po, X0)> |= A Efe X (apgo)-

Without the existential interleaving operator Ey, qq is the next state, only if M, is executed
before M, or M. In case Ef, is not added, X has to be interpreted as some or possible next
state of (2, pg, Xg). In other words, in the absence of E;, the reachability of the next state

conveyed explicitly by it has to be implicitly conveyed by X alone; and this causes ambi-

guity or non-deterministic interpretation of the formula.

137

Information from a different perspective will be conveyed by the interleaving operator in
the interpretation of the operator F. The interleaving operator associated with the modality
of F throws more light on the degree of certainty of the qualified proposition as follows:
The existential operator Ej, indicates only the possibility of the proposition i.e., to mean it
could occur at a possibly infinite future after indefinitely many number of cycles of the
system. While the universal interleaving operator Ay, indicates that the predicate must
hold in the definite, near future (necessity), irrespective of how the component machines
are interleaved.

The long wait in the case of Ej; (possible interleaving) comes from having to wait for the
possible chance of a specific execution ordering of Mpms, depending on the predicate,
which could for ever be eluded. The necessity condition in the case of Aj, implicitly
imposes the reachability of the target global-state within the first cycle of the system itself.
For, if it can wait till the second cycle, it can as well be waiting through multiple cycles.

This rules out the indefinitely long wait through multiple cycles of the system.

Thus, possibility is associated with an infinite future and necessity is associated with a

finite one.

Example 3.11 For example, referring to Fig. 13 and Fig. 14 again,

'B(Som) I= E; Er, F (B(apa0 /\ aPgo /\ apo)) <=>

sor [= Er Ei, F (ap, A\ apg A apy).-

Considering the formula in the ITF domain, it states that there exists a run which has some
interleaving in which, a certain future state of the initial state sqr satisfies the conjunction
in the above formula. The conjunction (ap, A ap, /\ ap,) depends on the order in which the
component Fsms are executed. It is possible that in every cycle of the system, (after the
reset back to (a, p, x)) the global state (a, q, x) corresponding to the conjunction (ap, /\ ap,
A\ ap,) is missed if F; or F is always executed before F,, leaving only the theorerical pos-

sibility that the conjunction can occur at some future.

! When clear from the context, the model denotation can be omitted from the left side of the satisfiability
operator, |=.

138

The above fact is captured or depicted by the interleaving operator E, qualifying the con-
juniction. Without this operator, the interpretation is ambiguous as to whether the conjunc-
tion is definite in the future or just a possibility. Accordingly, the model-checker algorithm
to be discussed in Chapter-4 can be designed deterministically.

Example3.12

(co. So» Xo) = E; Ay, (apo until ap,g) where:

apco = Pm1(Co): 3P0 = Pm2(to)-

The boundary condition is that both the Mpm-states corresponding to the atomic proposi-
tions enter simultaneously.

For example,

(Cor S0- X0) I= E Ay (apco until apyg).

The operator since, gives a retrospective perception, as opposed to the futuristic view of

until operator.

Example 3.13 From Fig. 13 and Fig. 14,

<CML . (dg, V1. 20)> |= E; Ay, (ap,p since apyg) <=>

<CML 1, (d, v, 2)> |= E, A}, (ap, since ap,).

The above means that ever since ap,g is true, ap,g 1Is true.

From Fig. 14, we can verify that (d, u, z) is in the pasr of (d, v, z). It is easy to see that (ap,
N ap,) is satisfied at (d, u, z) which is the pasr (in particular, a predecessor) of (d, v, z)

where ap, continues to be true.

3.8.9 Non-monadic CML Formulae

The recursive definition of the language CML as defined in Definition 3.7 and Definition
3.8 does not restrict the operand of the first-order modal operator to be a primitive siate-
formula or a proposition but includes in general a higher order state formula by the induc-

tive nesting of third-order state formulae.

Example 3,14 From Fig. 13,
(20, Po- X0) I= A; Ay, F (E; Ay, (apg until apy)).

139

This is an example of non-monadic formula in which the operand of the modal operator F

is not a proposition, i.e., a primitive state formula but is another third-order state-formula.

The above means that, for all interleavings (Ay;) of all runs (A,), there is an intermediate

state in the future (F) of the state (ag, Pg, Xg), that satisfies (E; Ay, (apco until apy).

The above mentioned intermediate future state satisfies apq, from which there is a run,
(E,) all of whose interleavings (A;;) continue to satisfy ap o until ap,o holds as well. The
state (Cy, Sg, Xo) is one such intermediate state of (ap, po, Xo) satisfying the inner monadic,

third-order state formula as below:

(<o, So» X0) |= E; Ayr (apco until ap)-
(Co, So. Yo), (Co, So, X4) are other possible intermediate states. Theoretically, any number of

levels of nesting is possible. Handling them in practice is beyond the scope of this work.
Example 3.15 From Fig B/C of Appendix for M and Fig. 13 for IIM.

(8- Po» Xo) I= Er (Pm1(ag) pos-waitfor' pua(qo))-

Stated differently, the above formula is:

<CML 1y > [= Pmi(@g) => E; Ei; (Pm1(a0) until prya(qo))

The above is a validity formula, since its specification is independent of states.
It becomes a valid formula, if it is true or satisfied.

<CML v, (a9, Po» X0)> |= E; Eir (Pm1(a0) until pmo(do))

Also,

<CML 1, (do, Ug, 20)> I= E; (Pm3(20) pos-wait-for pma(to)) and,

<CML 1> |= Pm3(20) => E; Egr (Pm3(2o) since pro(to))

Example 3.16

<CML . (b0, Po. X0)> |= E; (Pm1(bo) must-wait-for p(qo)) and,

<CML v, (bo, Po» X0)> [= E; Ayr (Pmi(bo) until pma(do))
Example 3,17 Considering Fig. 13 again,

<CML py, (20, Po. X0)* |= E; (Pm1(bo) pos-co-wait pr(qo))

! Even though the related propositions and hence the states may be causally independent, due to interleaving
of execution, they may still wait for each other in the global time scale.

140

<=>
CML v, (39, Po» X0)> |= E; Eiy ((Pm1(bo) until prx(qo) V ((Pra(qo) until peyy(bo)))
<=>

<CML 1> = (Prni1(bo) => E; Eir (Prn1(bo) until pra(qo))
V' (Pm2(q0) => E; Exr (Pmo(Qo) unttil pryy(bo))
Since by and qq of M; and M, can respectively be entered independent of each other, either
of them can be entered first, and possibly continue to hold till the other is entered.
Example 3.18 (ao, po, Xo) [= Er (Pm1(bo) must-co-wait px(qo)) <=>

<CML s> [= (Pm1(bo) => E; Ay (Pm1(bo) until pma(qo))
V' (Pm2(q0) => E; Ay (Pm2(qo) until pry(bo))
It is easy to see that the concurrency relation co among the Mpm-states is equivalent to
pos-co-wait modality among their respective (atomic)propositions; similarly, the szrong
concurrency relation sync among Mpm-states is equivalent to must-co-wait modality
among their respective propositions.
In the above example,
(Pmi(ao) pos-co-wait pri(qo)) <=> (ag co qo)-
(Pmi(bo) must-co-wait pyi(qo) <=> (bg sync;, qo) and
(Pmi(Co) Must-co-wait py,i(se) <=> (Co SVNCour S0)-
But there are more complex (non-atomic) propositions that co-wait on each other and cor-

respondingly, the relationship among the associated states also is more complex though

there is underlying synchronization involved directly or indirectly relating them.

3.9 CML with respectto =M

CML r structure is based on the product machine of the input CFsms. The function B
(from IIM onto ITF) acts as a window to view the states of ITF through those of ITM,
which in tumn is virtual, and generated dynamically from TM, the sum machine which is

static and real (as opposed to virtual).

141

Specifically, the states of [IM are generated as the Final state vectors of the configura-
tions C of the extended sum machine ="M as explained and proved in Chapter-2. The

essential characteristics of T M are:

Simultaneity due to synchrony is the origin of concurrency and the basis of Minimal pre-

fixes. Minimal prefixes are the basis of the following:

(i) Visiting local Mpm-states corresponding to local branches of time, without losing glo-
bality. This means, branching in space from one Mpm to the other without losing track of
the continuity in time i.e., the current branch of time, is possible.

(i) Deducing the reachability of a global-state in all interleavings from one.

The following set of axioms are consolidation of the above notions, and link the properties
of Mpm-states and final state vectors of configurations of M with those of the states of
M.

3.9.1 Axioms of CML

Following axioms assume a configuration C of M, global-state sp, of ITM, with an ini-
tial configuration C, corresponding to its Fsv/initial global-state sop,.

Axiom 3.1

Fsv(C) = (Sm1> Sm2» - Smn) <>

<ICML" g\, FSVC)> 1= A i=tn (Prni(Srmi)) <=

(Smi €O Sm;), Vi, j=1.n,i<>).

This follows since every state of [IM is virtually generated as a Final state vector of a

configuration of >*M. This axiom links a global state-vector with concurrency among

Mpm-states with conjunction of their respective atomic propositions.
Axiom 3.2
(Sm1 €O S €0...CO Spp) <=>

3C: Fsv(C) = s S = Ni=1.aPmi(Smi)) <=>

Fsv(C) = Ec, (\; ,j=1..n(Pmi(Smi) pos-co-wail pri(Sm)))s i j <=

1 The denotation of this model may be skipped from the left side of the operator |= when it is clear from the
context of usage. Also, it can be replaced with CML) and vice versa since the models are equivalent.

142

<CML" 5y, FSV(C)> I= gy Icr F(A =1 n(Prmi(Smi))) <=>
<CML v, Som™ I= Ex Eir F(A i=1(Prmi(Smi)))
Follows by the definition of pos-co-wait operator in TM.9 and EPM .9 from definitions at

Definition 3.11 and Definition 3.12 respectively. Equivalence of the formulae follows
from the equivalence of the models TM and EPM.

Similarly,

<CML s, Som™ |5 Er (N j=1..0(Pmi(Smi) must-co-wait pri(sm)))s i j <>

Som 1= Er A F\ i=1_o(Pmi(Smi)))

The above follows from the definition of TM.10 .

Axiom 3.3

(Smi SYNC Spyj) <=>

Fsv(Co) I= Ecr (Pmi(Smi) must-co-wait ppi(sy,;)) <=>

Som = E; ((Pmi(Smi) must-co-wait ppi(smi)) <=>

Som = Er Are F (Pmi(Smi) N Pmi(SmjV)

It is noted that the Mpm-states are related by their entry order. One of the synchronous
input states may be entered before the other and the one entered first must wait for the sec-
ond one to be entered, in order to synchronize on the common event. In the case of syn-

chronous output states, they are entered simultaneously, which is a stronger condition, and

so they also obey the following axiom.

Axiom 3.4

(Smi SYNCous Sirj) <=>

Som [= Er Alr (Pmi(Smi) <= Pmj(Smj)) - The operator <=> within the interleaving formula is
used as a boolean connective.

This follows from the simultaneity of entry of synchronous output states.

Axiom 3.5

Sm [= E; Arr Pni(Smi) 4ntil pj(Smj)) <=>

Sm = Pmi(Smi) N Er Agr F(Pmi(Smi) /A Pmij(Smy))

143

This follows from the definition of until. The axiom relates the until operator with con-

Junction in the future.

Sm [= Ex Aty @milSmi) since pmj(smj)) <=>

Sm = Pmi(Smi) NEr A F (Pmii(Smi) /A Pmj(Smj))

This follows from the definition of since, and it relates the since operator with conjunc-

tion in the past.

From the set of axioms and the definitions of TM and EPM, it is clear how concurrency
among Mpm-states and the conjunctive propositions, until, wait-for and co-wait operators
are interconnected along with the interleaving and run quantifiers. It is also clear as to
how the modeling of concurrency aids the interpretation and hence the implementation of

these operators.

3.9.2 inference Rules

Rule 3.1
(Smi < Smj) \(Smj < S'mi) , for some successor s'm; of sp; <=>

Fsv(Cy) |= Ec; (Pmi(Smi) must-wait-for pmj(smj))
If proposition pm;(sm;) has to wait for ppi(spy), it is necessary that sy, is entered before sp;

and also the successor of s, cannot be entered before sy;.

Rule3.2

3 §' i, S'mj € C such that: s'y,; is a successor of sy, $'mj is a successor of sy and,

(Smi < S'mj)) A (Smj < s'mi)) <=> .

Fsv(Cp) I= Ect ((Pmi(Smi) must-co-wait ppi(Sp;))

must-co-wait means that either s; is entered first and waits for s,,; or vice versa. In both

cases it is true that, s, is entered before s',; and sp,; is entered before s'y;.
Rule 3.3

<CMLpy » Som™ I= AlAFg V <CML v , Som™ [FAAFh <=>

<CML M » Som™ 1= A/AF(g V h)

where g and h are primitive conjunctive propositions.

144

This rule is derived as below:

<CML 1 > Som™ I= A;AFg means that there is a future state s, of sqp, satisfying g.

The above implies the reachability of the global-state s,

Similarly, <CML py , Som™ = AAFR,

which implies the reachability of a global-state s',, satisfying h, in the future of sqp,.
<CMLpy , Som™ I= A:ALF(g V h).

The above formula implies the reachability of some global-state s",, satisfying g or h, in
the future of sgp,.

Hence, the validity of the rule is established.

The above rule will not hold for conjunctive operator between g and h since s, and s',
may not be reachable ar the same instant of future if both g and h have n conjuncts (as
opposed to less than n) since there can only be one global-state reachable at a given time

which can satisfy only one primitive conjunction at that time.
Rule 3.4

The following inference rule is stated as a theorem below and proved.

Som = Er I:—'Ir F (/\i=l..n(pmi(smi) A (A ij=l..n (pmi(smi) musi-co-wait pmj(smj)), 1 <>j

<=>
SOm |= Er AIr F (A i=l..n(pmi(smi))
3.9.2.1 Interleaving Theorem

Theorem 3.2 If a conjunction of atomic propositions referred to as primitive conjunctive
proposition is satisfied by some interleaving of a given run, and if all the pairs of local
propositions necessarily co-wait (as defined) for each other, then the conjunction is satis-

fied by all interleavings of that run.
Proof: => part:
Let Fsv(C) = s, where C < Zr corresponding to a run Ir, and

let C be reached by adding its members arbitrarily corresponding to some interleaving 1,
of Ir.

145

=> s.;, i=1..n, are reachable by sum-machine corresponding to every interleaving, i=1..n,

by the definition of an interleaving and interleaving insensitivity at Property 2.7 in Chap-
ter-2.

(Smi= Fsvi(C) must-co-wait s,;= Fsv;(C)), Vi, j=l.n,i<j, whichis given.

=> |= (i == E; At F (N j=1_o(Pmi(Smi)))) , by the definition of must-co-wait,..... (2)

(1) and (2) => soi = E; A F (A =1 n(Prni(Smi)) -

The proof essentially claims that every local Mpm-state corresponding to the local propo-
sition is reachable irrespective of the interleaving. Whichever state reaches first waits for
the others in that order, which will eventually be reached .

<= part -

Follows trivially from the definition of must-co-wait and Ay,

Hence the theorem is proved or the rule established.

u
This theorem and the preceding axioms and inference rule are directly applied in imple-
menting the verification algorithms of the model-checker to check whether a given CML
formula is modeled by CMpms; in particular, satisfied with respect to 3 *M and hence
with respect to [IM and ITF; and also in claiming the alleviation of exponential complex-

ity due to enumeration of global states (all runs and all interleavings).

These are explained in the next chapter.

3.10 Summary of CML

The Fsm states of every F;, i=1..n of the input CFsm system is assumed to be associated
with atomic propositions as defined by the bijection, pg. This is used to generate the bijec-
tion p.;, along with the Mpm-states of M;, i=1..n generated in the CMpm system.

The atomic propositions are extended to general ones using the logical operators A\, V, =>,
~ etc., to form respectively conjunction, disjunction, implication and complementation.
Any combination of these operators along with the modal and branching operators

defined later can be used to build the monadic, third-order CML formulae.

146

A modal operator consists of a ‘next state’ (X), ‘some future state’ (F) and ‘all future
states’ (G) operators qualifying the future of the qualified state and the corresponding
operators to qualify its past. In order to take away the ambiguity or the non-determinism
conveyed only by modal operators in the specification of the reachability of states, we
introduce additional pairs of branching operators, one to quantify the interleaving that
specifies the path(s) containing those states, and the other to quantify the run which con-
tains the specified interleaving(s). This leads to monadic, third-order state formulae in
CML.

Equivalence theorem IIT shows how the satisfiability of a CML formula in ITF domain is
equivalent to that in [IM domain which in tum is equivalent to the formulae in T*M
domain.

The interleaving operator is a novel aspect in CML. It not only helps to deterministically
specify the reachability, but also to define the must-co-wait and pos-co-wait operators cor-
responding to strong concurrency and concurrency (the degrees of concurrency) respec-
tively. These are the symmetric extensions of wait-for operators, that correspond to fense-
free versions of until and since operators.

The above and the other properties of ¥ *M used in the verification are stated as axioms
and inference rules. Although it is possible to state more inference rules, only the ones to

be applied in the next chapter on verification are stated.

147

TABLE 2

The Logics CTL Versus CML

CTL is a monadic CML is a monadic
second-order logic. third-order logic.

CTL model is a TM, CML 5 is an EPM,
defined over a blend of defined over labelled
runs and interleavings, partial-orders formed
(the latter considered as | as sets of paths of n dis-

runs as well) that are
formed as paths of a sin-
gle tree.

tinct state-trees. By vir-
tue of its equivalence
with the Total-Order
model CML g, the origi-
nal CTL formulae can be
easily extended to
CML pyf formulae.
enjoying all the advan-
tages of the EPM.

CTL therefore does not
cover partial-order
semantics correspond-
ing to concurrency, nor
branching-time seman-
tics that must be due
purely to conflicts only.

CML combines both the
PO as well as branching-
time semantics, and is
implementable concretely
by the equivalence of all
the three versions of its
models.

148

Chapter 4
System Verification with CMpms and CML

Having introduced the theory of CMpms with respect to a given input system of CFsms,
and the three versions of the branching space-time logic CML, we are now in a position to
introduce the verification of the properties of the input system. The verification algorithm
is designed to check if the safety and liveness properties of the set of CFsms, specified as
the CML jr formulae are frve. The CML pr formulae are transformed to the equivalent
version of CMLI-M/CML‘;;M formulae and their satisfiability are verified. The verifica-
tion process consists in checking the recognizability of the formulae by the sum machine
of CMpms generated with respect to the input CFsms.

In practice, a verification algorithm determines the reachability of a set of states (possibly
a singleton) over the disjoint state-trees of M as expressed by the CMLEM formula
(corresponding to the input CML [y formula according tb the Equivalence Theorem III of
Chapter-3). If this mechanical checking is successful, it is decided that the CMLE;M for-
mula and hence its equivalent original CML r formula is frwe. This algorithm is referred
to as model-checking since the procedure checks the satisfiability of the formula within

the model CML‘zM and hence within the model CML .

4.1 Minimal prefix and Orthogonal branching in Space & Time

It may be recalled that in the Minimal prefix (Mp) of a state, the state represents its present
and each of the other (n-1) components represents either its past or present. The concept
of Minimal prefix therefore imparts the following: Every Mpm is generated as if it is the
primary engine to execute its local events, and the rest of the Mpms are considered as the
secondary machines with respect to the former; these secondary Mpms are driven only to
execute those of their local events necessary to participate in the synchronization with the
primary Mpm and thus enable the latter’s subsequent progress. This perspective is appli-
cable symmetrically to every Mpm. With this recall of the concept, we assert the following

significance of Mp while branching in space:

When a secondary Mpm becomes a primary one, the dranching in space is said to occur

from the previous primary Mpm to the current one. By definition, Mp-vector Mp;(sy,;) of a

149

state s.;, is the smallest (in the order < among vectors) in the equivalence class
[Mpi(sm;)]m\,lpi such that each non-local component is necessarily entered before or in
partnership with s.,;. This condition ensures the fact that upon switching the primary Mpm
from M; to M; and continuing the traversal from sp; = Mp;(5m;)(), we maintain the current
branch of time chosen by a local branch of M;. The condition also ensures that all the
states in M; that are concurrent with sp; are reachable because M;i(Sm;) is the smallest of
such concurrent vectors, and we are continuing from one of its non-local components that
is asynchronous to sp;. This does not rule out the states of M; that are reachable in syn-
chrony with s_;. But our main goal is to maintain s; as the destination state once the local
atomic proposition of M; is reached. This will be explained further in the following sec-

tions.

4.2 Monadic Third-Order CML Formulae handled by the Model-checker

We consider monadic third-order formulae of CML.

A monadic (third-order) formula is a state formula, which consists of a run operator quan-
tifier followed by a run formula, which is again a monadic second-order formula consist-
ing of an interleaving quantifier followed by an interleaving formula, which is a first-
order formula, consisting of a modal operator followed by a proposition.

We consider only propositions in disjunctive normal form and so formulae of the follow-
ing form:

<run opr><interleaving opr><modal opr> (g, V g2V ...V go) for some q >1 where:
<modal opr> is a modal operator such as X, F, G (until is expressible in terms of F) or
their corresponding pas? operators and,

each g; is a primitive conjunction which is a conjunction of atomic propositions, (as
defined in Chapter-3) such as:

g = (apn N\ app A\....A apg), in TTF domain, wherek< n,i=1.q.

It is to be noted that the complements of atomic propositions are excluded from consider-
ation in the primitive conjunction for the same reason as their disjunction (as in the con-
Jjunctive normal form) as explained in Chapter-3. It may be recalled that checking of the

satisfiability of a proposition consists in searching for a state that satisfies the proposition.

150

The negation of an atomic proposition is satisfied by much more states than by its asser-
tion that is specifically satisfied by only certain target Mpm-states holding their respective
atomic propositions. Therefore, checking for negation of a proposition is non-determinis-
tic as well as a disjunction of multiple atomic propositions and may involve the checking
of the reachability of combinatorial number of global-states, at the worst. But in practice,
formulae involving disjunctions and complements are equally decidable and tractable so
long as they are not exponential in size, as explained in Chapter-3 which is reiterated in

the following section for emphasis.

4.2.1 Choice of Propositions handled by the Model-checker

The fact that the satisfiability of a CML formula with a primitive conjunction qualified
and quantified by the modal and branching operators respectively, corresponds to the
reachability of global-state(s) was noted in Chapter-3. The conjunction among atomic
propositions imposes concurrency/strong concurrency among (non-local) Mpm-states and
hence involves possible necessary wait-for operator or the until since operator as shown
in Axiom 3.5 of Chapter-3. Thus, the primitive conjunction thus seems to be the most non-
trivial element of CML formulae that are checkable, as it requires branching-off/switching
of Mpms as many times as the number of conjuncts. The following section reinforces this

idea.

4.2.1.1 Polynomial Versus Exponential size of input CML formulae Checked

Interpreted in I1F domain, satisfiability of a primitive conjunction of n conjuncts corre-
sponds to reachability of a unique global-state by possibly multiple runs and interleavings.
Verifying the satisfiability of a CML formula in the disjunctive normal form therefore cor-
responds to checking the reachability of as many global-states as there are disjuncts and
thus the complexity of the formula is polynomial in the number of disjuncts.

On the other hand, let us suppose that we want to check the satisfiability of a CML for-
mula in conjunctive normal form having n conjuncts, where each conjunct is a disjunction
of up to m local atomic propositions. With every local disjunct, it is possible that any of
the m non-local disjuncts can be in conjunction due to asynchrony/concurrency among the

local states. Consequently, the actual size of the input formula is exponential with (m ** n)

151

primitive conjunctions. This amounts to checking for the reachability of that many global
states and leads to exponential complexity of the formula checked.

In the worst case, checking for the reachability of one global-state itself may involve
exploring all interleavings of all runs. So, it seems reasonable to confine ourselves to
primitive conjunctions which are reasonably complex; specifically, they are equivalent in
power and so can substitute the formulae with wait-for/until operators that are considered
to represent the most complex of all formulae in CTL[1].

The complementation operator amounts to a disjunction of a large number of local atomic
predicates. We do not consider formulae with complementation nor disjunction of atomic
propositions, in the conjunction. This does not mean that the CML formulae with con-
juncts involving disjunction or complementation can not be checked. The methodology
that we discuss can be applied as long as the input size of the formula is not exponentially

high.

4.2.2 Translation of CML . to CML*x) Formulae

Checking the satisfiability of a CML formula involves, finding the interleaved path(s)

within one or more run(s) in which the state s¢can be reached in I1F such that:
<CML [,5¢> I= (appy N app /... apy,) where,
pa(sg) = apg, forall i =1. k.

The above satisfiability-checking is equivalent to finding the corresponding interleaved
paths within the run(s) of TIM in which s, can be reached such that:

<CMLpv » Sm™ [= (@8Pmi/\ 8Pz A\ apmi) Where,

Pmi(Smi) = @8Pmi» for all i =1.j and,

B(sm) =g

Bj(apmi) = apg., i=1.§,

B(I1l,) = MIand,

B(ITr) = rq.

The CML r formula, <CML r , sor™ [= A Eyr F (apssi Napgg N apgg))

where apgg, aps; and apgy, are the atomic propositions of F;, F; and Fy respectively is

equivalent to the following CML p formula:
<CIVH-’I‘IM » Som™ [= A¢ EIr F (apsmi A\ 2Psmj N apsmk) -------- (ii)

152

where apg;, aPsmj and apsmy are the atomic propositions of M;, M and M respectively by
virtue of the functions B, and £B;, i=1..n., and by the Equivalence theorem III viz., Theo-
rem 3.2 of Chapter-3.

The reachability of a state s, in the future of sq, in formula (i) above, satisfying the con-
junctive proposition (apsm;i /\ aPsmj A 8Psmy) in tum consists in finding a configuration C in
3 *M corresponding to ITM such that :

C < Zr, corresponding to I'lr where Fsv(C) =s,,.

The following CML‘;M formula in "M domain is equivalent to the formulae (i) and
(ii), again by virtue of Theorem 3.2, and the definition of the function p,; of Chapter-3:

<CML" s\, Fsv(Co)> = A, Eg, F (Pri(Fsvi(C) A pyFsvi(C) A proicFsvil(C))(id)
where,

Fsv(Co) = sory and Fsv(C) = s, Pmi(FsVi(C)) = apgmi .

The other combinations of branching operators are handled similarly .

A proposition in disjunctive normal form is a disjunction of above conjunctions in which
case, the checker algorithm is repeated as many times as there are disjuncts; this follows
from Rule 3.3 of Chapter-3.

This is how the formulae (i), (ii) and (iii) in CML are linked with each other in all three
domains of ITF, [IM and =M respectively. Since the configurations in £ *M domain are
generated independent of their interleavings, the corresponding runs in 1M domain are
also generated independent of their interleavings. In contrast, if the product machines [TM
and TIF were to be directly generated, interleavings and runs can not be distinguished
since the non-deterministic choices due to interleavings are intertwined with the choices
due to conflicts among the runs. In these product machines, both the non-deterministic and
true choice entities merge and all of them are treated as runs themselves, in these product

machines.

The model-checker algorithm checks the CML*y)\q formula upon the extended sum
machine ="M by generating the required configurations as needed by the formula while
traversing the basic sum-machine TM.All the general runs are generated from the local
runs by associating them with general and local configurations respectively according to

Summation Lemma (Lemma 2.9) of Chapter-2.

153

4.3 Definitions of Keywords used in Model-checking

Following are the definitions, possibly repetitions, that are useful to recall here for the

benefit of the rest of the discussion on model-checking:

Primitive conjunctive propesition: The conjunction of up to n atomic propositions

of the n Mpms of app,; , i=1..n, is a primitive conjunctive proposition.

Current _configuration: The current configuration is a configuration C of XM,
which is the union of local configurations of all the Mpm-states visited thus far

corresponding to a run [Ir ¢ TIM such that: C ¢ Xr, the latter being a conflict-
free sum-machine corresponding to Ilr. At the beginning of the algorithm, C is set

to C,, the initial configuration of ZM.

Primary and Secondary Mpms: The Mpm M;, whose state-tree is being traversed

from the current configuration in a depth-first manner to cover the paths of the
state-tree, that belong to different local configurations corresponding to local runs.
The traversal branches in time at every conflict point, as dictated by conf;, until the
local atomic proposition apy; is encountered. The rest of the non-local Mpms M;, j

< > are the secondary Mpms encountered while traversing M;.

Local continuations: All the configurations C' = C U Ci(s'y;) such that: C is the
current configuration and s';; are the descendents of s.,;=Fsv;(C), that are config-

urable with C are called local continuations.

Switching configuration: The current configuration C at the time of branching in
space or switching from the current primary Mpm M; upon reaching sy, satisfying
8Pmi = Pmi(Smi), to a secondary Mpm M; (the next primary Mpm) to check for apy,;.
is called the switching configuration.

Handle-state: When the switching of primary Mpm takes place from M; to M;, if
the switching configuration is C, then sp; = Fsv;(C); that is, the j‘h component of
the final state vector of C is the handle-state. This is the state from which the tra-

versal of M; begins rather than from its initial state.

154

» TIraversal and Visit: An Mpm-state is said to be visited and the visits of a set of
Mpm-states, say, a configuration is collectively said to be mraversed during the
nested, depth-first search of Mpm-trees.

4.4 Outline of Model-checking

4.4.1 Distributed, Nested Depth First Search
The model-checking algorithm works over M to verify the properties of ITF.

It involves the recursive, depth-first search of state-trees of M;, i=1..n in a distributed,

nested fashion; that is, the depth of traversal within one state-tree is carried over to the

next tree in T M. The
This aids in branching from one Mpm-tree to the next one as a continuation of the same
run once the local atomic proposition is reached, as explained in previous subsections.
For instance, when the local conjunct ap,; is found in M;, we switch to M; as the next pri-
mary Mpm to check through its local continuations of the switching configuration C for
the next Jocal conjunct apq;, using Fsv;(C) as the handle state.

For every switching configuration reached at a local Mpm, there are multiple continua-
tions to be traversed and checked at the next Mpm from the handle-state. This process is
continued until all the conjuncts are satisfied. This may mean traversal of the same Mpm-
tree more than once, in cases when the satisfied conjunct no more holds due to synchroni-
zation requirements of the local Mpm with non-local ones. However, since the traversal is
continuous in time, no Mpm-state is visited more than once as a member of the primary
Mpm-tree. However, as a member of two conflicting local-configurations of a given non-
local, primary Mpm, a state of a secondary Mpm may be visited more than once which is
accounted for in the visitation of the entire configuration of every traversed state of the
primary Mpm.

The above procedure is referred to as the distributed nested, depth-first traversal, as the

entire depth of one single time continuum is broken up across multiple Mpm-irees.

155

4.4.2 Disjointness of the Search

As proved in the Monotonicity theorem of Chapter-2, the recursive, depth-first search is
suitable for traversing the configuration that grows monotonically with the local transi-
tions of XR,; corresponding to every run IIr of [IM. The general configuration that is
the union of local configurations of the Mpm-states belonging to a given run is maintained
as the current configuration C, by the Summation Lemma of Chapter-2.

XM as shown in Fig. B of Appendix represents the global, causal dependency-order < |,
running across all Mpms through the synchronization points (the synchronous output
states) represented explicitly. In this case, every local configuration has to be formed by
backtracking across all the synchronization points and states of all Mpms from a given
state, thus building its upward closure literally as dictated by its definition in Definition
2.17.

Fig. C and Fig.D of Appendix represent M,,i =1..3 in disjoint form, without showing the
synchronization points explicitly as in Fig. B. Instead, Mp-vector of every state is stored in
its node in Fig. C or separately as a table in Fig. D. Minimal prefixes are the derivatives of

synchronization points according to Mp-lemma at Lemma 2.2.

By storing the Minimal prefixes, a local configuration can be formed as a disjoint union of
n conflict-free paths according to disjointness theorem of Chapter-2 rather than as an
upward closure using directly the synchronization points. The former view of a configura-
tion is more efficient and useful for the checking of configurability by applying the config-
urability theorem of Theorem 2 4. This is because, the checking is divided into a fixed set
of n disjoint, paths (untangled) in the latter, as opposed to the non-disjoint (tangled), over-
lapped paths without any structure in the case of the of the former. But it takes n times
more space to store the Mp-labels explicitly in the representation of Fig. C & Fig. D. This

issue will be illustrated with an example in one of the following sections.
4.4.2.1 Conservation of Visits in the Recursive Search

The strategy of depth-first search is quite appropriate since the membership of a'state is
conserved among the successive set of configurations. Thus we minimize the number of
visits necessary to cover any succession of configurations during the traversal of ZM.

Once an Mpm-state is visited as a member of the current configuration C, it continues to

156

be retained as a member of all the continuations C' of C such that C < C' until the cur-off

point of each continuation. It is described with the following illustration:

Example4.]

From Fig.C of Appendix, considering M,, the Mpm-states pg through to and their respec-
tive local configurations (and thus paths of other Mpms M, and M3;) will be retained by all
the configurations up to the maximal, cut-off configurations leading to the cut-off states
-, p; and s; respectively, and also by all the non-local continuations, continued from the
handle-states. In this example, there is no such non-local continuation since the cut-off
states of M viz., X», X; and x; are already contained in the cut-off configurations of p,, p;
and s, respectively of M.

Similarly, the state uy of M, is retained by the configurations of v, p» and vo, p; in a
cumulative fashion, as well as the non-local continuations of these configurations, #// the
time when uy is unvisited when the search backtracks and then continues from the sibling
rg, of ug.

The above is true for all Mpms, primary and secondary together, the latter through the Mp
vectors of primary Mpm-states. This is how the number of visits of Mpm-states are mini-

mized.

4.4.3 Localized Search implies Global — Non-enumeration of Runs

The conflicts originate locally, which alone are propagated globally. Therefore, it is possi-
ble to check for a primitive conjunction by focussing on a single Mpm as a primary one,
and checking only its local configurations till the local conjunct is satisfied, as though it is
the only state-tree to be traversed. During this primary traversal, the paths traversed in the
secondary Mpms are monitored as well by the Mp-labels.

The run quantifier A, or the configuration quantifier Ac, of CML corresponds to conflict
points handled by the distributed, local conflicts represented by Zconf,. This disjoint
union of local conflicts lead to local configurations that are in conflict. They also account
for the general conf relation automatically when the local configurations are formed as the
upward closure of Mpm-states. The inheritance propagated by the causal dependency-

order < accounts for the difference, (conf — Zconf). The set of local configurations

157

2 Ci(s;), for all sy in Sy, i=1..n splits all the states T S; into conflict-free sets. As local
continuations are traversed in one Mpm M;, as formed by conf,, the non-local continua-
tions due to conf,, j<i are traversed as well as dictated by the causality < and monitored
by Mp-labels of the function Mp;.

In practice, as we traverse the states and events of any one Mpm M, primarily, we are tra-
versing different branches of time as decided by the conflict points due to conf; of M;, and
in space associated with M;. When another Mpm M; is chosen to be a primary one, the
branching in space takes place from M; to M;. Upon doing so, the current branch of time
as decided in M; can be maintained in M; by continuing its local traversal from sp; =
Fsv;(C) (where C is the switching configuration) rather than beginning the traversal of M;
right from the /nitial state sy;.

These ideas were formally expressed as Complexity Lemma at Lemma 2.14.
Example 42 InFig B & Fig. C of Appendix, after traversing M up to vy, let us say that
we branch-off in space to Ms. Since Mpa(v;) = (dg, V1. Zo), the traversal of M; has to be
continued from z,. By traversing M, up to v;, we have also traversed M, up to dy and M;
up to z, thus maintaining the current branch of fime across all the non-local Mpms as

well.

The above phenomenon is quite advantageous because, it was noted in Chapter-2, that the
union of local conflicts X conf, in £M is much smaller compared to conf, of [IM. In addi-
tion, we now see that by covering the local conflicts conf, of one Mpm M;, we are also
covering in parallel, conf;, j<>i through the medium of Minimal prefixes, without the need
for exhaustively traversing M from the initial state. This issue is addressed as non-enu-
meration of runs, for runs are the entities caused by conflicts. The resulting complexity

savings will be elaborated in a future section.

Furthermore, during the traversal of M; after that of M; i<>j, there is a subset of local con-
tinuations due to conf;, that will not be the continuations of the switching configuration C

as explained in what follows.

158

4.4.4 Secondary Mpms, Continuations and Configurability

If Mpm M,; is chosen to be a primary one after the local traversal of M;, and the traversal
continued from the jth component of Mp;(s,;), we branch-off in space. Since we are con-
tinuing the traversal in time from the past of sp,; (possibly from its present itself if sy is a
synchronous output partner of sy;), it is possible that some of the local future states of sp;
may be in conflict with sp;; this possibility arises from the definition of the Minimal prefix
and the fact that s; is possibly a furture state of sp;.

Therefore, with every switching of the primary Mpm, the number of local continuations to
be considered will become progressively smaller than |conf,|, where My, is the switched
primary Mpm.

Example 4.3 _Let us consider the same example in Fig. C, where Mpa(vy) = (dg, v1, Zg)-
After traversing M5 up to v, let us say that we branch-off in space to M and continue the
traversal from z, on M;. Now, even though h is a successor (and hence a possible future)
of z, since the current state (i.e., the present) is at v, and it is in conflict with hg (as shown
by the implication below), it can not be a future of v,. Therefore, the traversal in time up

to v, (in Ms’s space) can not be continued to visit hg (in M3’s space).
The above is the consequence of conflict inheritance:

(ug confa 1o) A\ (v > ug) N\ (ho = 10) => (v; confhy).
The state hy lies at a different branch of time that conflicts with v,.

Instead of visiting v; at M», vg could have been traversed with Mpa(vp) = (dg Vo 8o)- In that
case, when we branch-off in space to Mj, the traversal will be continued from gy which is

in local conflict with hy. This is another branch of time from the one discussed above.

The above example illustrates that, upon branching-off in space from one Mpm M,; to the
other M;, some of the local successors of the latter may not be continued as branches of
time, as they are in conflict with the current branch of time originated at a conflict point of
M;.

This is because, the traversal in M; starts possibly from the past of sp;, such that: (sp; <
Smi)- In particular, sy, could have a successor s'n; such that: (', conf sy,). Consequently,

$'mj Will not be configurable with the switching configuration C.

159

Referring to Fig. 15 below, let us say that the traversal begins at M, and then switches to
M, upon reaching the state s'y,;. This is when the current configuration C = Cy(s') is

reached such that,

Fig. 15 Configurability of Local ones to derive General Configurations

Som1 Som2 Somn

Fsv(C) = Mp;(s'y;), shown by the vector s'm-Sm,. After branching off to Mpm-tree M.,
there are two successors for Sy, Viz., S'mn and s"m,. The n paths of Cy(s';) and those of
C,(S'my) form a conflict-free union of their respective n paths, to form a new configuration
containing the two of them. We say that ', is configurable with C. 5", is not config-
urable with C because, C,(s",) contains path P'; which is in conflict with P, of C.

This phenomenon cuts down the complexity of traversal further more, in addition to the

savings discussed in the previous section.

4.4.5 Cyclicity Theorem

The cyclicity theorem to be stated below, is applied to terminate the model-checking algo-
rithms after partially traversing the current run, to decide on the falsity of a given formula
checked.

160 -

Theorem 4.1 If a cut-off state is reached during the traversal of M without satisfying a
conjunctive proposition, then there is at least one run in which the proposition and hence

the formula is not satisfied.

Proof: The proof follows from the definition of the cur-off state. It is recalled that from a
cut-off state, there is a recurrence of the past of global states with respect to ITF.

In particular, the recurrence of the exact path (in ITF domain) that led to the given cut-off
state is possible infinitely. Therefore, if the first cycle of states till cutoff was reached
without the success of satisfying the required conjunction, the same will be the case with

all subsequent cycles of recurrences. Hence the result.

Example4.4

Fig. 16 A conflict-free sum-machine 2 r corresponding to a run.

-t
—
1!
-
w

29 Po Xo B0 Po Xo
5 0
H ¥
e
'§" Ay g Ao
¥ B,
M

161

In the conflict-free sum-machine of the above figure, s, is a cut-off state in M,, the cuz-off
vector being Mpa(s;) = (co, S1, X3), With a corresponding basis vector Mpa(sy) = (co. So»
Xo). Suppose we check for the formula, so¢ |= E, Ej F (ap. A\ apg). Upon reaching c, at M,
we switch to M using sq as the handle state. When s, is reached, since it is a cut-off state,
we can be assured that there is at least one run, viz., the retrace of what was thus far cov-
ered, leading to infinite number of cycles without reaching any occurrence of local Mpm-
state: (g, occ#) satisfying (ap,_occ) such that: B(apy occt) = apg- If the local conjunct is not

satisfied, the whole conjunction can not be satisfied either.

4.5 Fairness among Mpms and Model-checking

Faimess has been dealt with in Chapter-2 at some length.

The advantage of ZM is that the recognition of unfairness is quite easy because of the
maintenance of identity.locality of the processes represented by individual Mpms.

Every path of the state-tree of an Mpm is associated with at least one distinct run, as can
be seen without proof. So, considering only fair runs with respect to a given Mpm is
equivalent to considering all the paths or branches of the state-tree so long as the config-
urability is not violated after branching in space from a previous primary Mpm to the cur-
rent one.

The above source of unfairness just like local conflicts propagates to the non-local Mpms
through synchronization causality. In fact, it turns out that this propagated unfaimess is
easier to detect rather than within the original source of occurrence within a given Mpm.
Also, often we are more interested in one or more processes corresponding to non-local
Mpms starving a local process/Mpm under consideration (rather than local runs within
that Mpm knocking out each other); we say that the (CMpm) system is unfair 1o the given
process/Mpm. The source of this unfairness is contributed by the asynchronous, non-local
conflicts defined in Definition 2.37 of Chapter-2. This is more precisely stated by the

unfairness theorem below.

4.5.1 Unfairness Theorem

This theorem is applied in detecting the termination of model-checking algorithm with

universal run operator, whenever the assumption that runs need not be fair holds good.

162

The definition of asynchronous, non-local conflict denoted: ani-conf stated at Definition
2.33 of Chapter-2 is recalled and applied in this theorem.

Theorem 4.2 If a synchronous output state is in asynchronous, non-local conflict with a
cut-off state, then there is ar least one run in which neither that state nor any of its local

descendents (with respect to the order R.;;) will be reached in the future.

Proof: It follows from the definition of asynchronous non-local conflict and unfairness

lemma (Lemma 2.13) of Chapter-2 and the cyclicity theorem Theorem 4.1 in the last sec-

tion.

Let (Smi_out AM-CONf Sy cutofr) Where S cutofr is @ cut-off state.

Let also sy o bea synchronous output state with a corresponding input state, Spm; in

The above means that there is a run in which, while sp; , of M; is waiting for its partner
input state Spy; in Of M , S cuofr in conflict with sy o, is entered instead. Since sy cutofr
is a cut-off state, by cyclicity theorem, the recurrence of the same sequence of past states
(with respect to ITF) of sy cyof Can take place infinitely; hence sy oy is never entered
nor is its partner output-state Sp; ou-

Thus, the entry of sy oy is prevented infinitely by non-local states, and so if the local
atomic proposition ap,; is not satisfied in some partial run (configuration) before the entry
of smi out there is no possibility of it being satisfied henceforth in that particular run
(which is unfair) with sp; oy init.

Hence the result is proved for all states s; ;, satisfying the above condition.
-

If the local proposition cannot be satisfied, any conjunction with the local proposition as a
component conjunct cannot be satisfied either. So, this theorem is useful in pre-terminat-
ing the checking of a primitive conjunctive proposition qualified by the universal run (A;)
operator even without exhaustively traversing all the Mpms including the current one
whose local propositions are the component conjuncts. This pre-termination of the model-
checking/verification algorithm is done with the assumption that unfair runs are allowed.

On the other hand, if we consider only fair runs, we disregard all the states that are in

asynchronous, non-local conflict with cut-off states while the current run/configuration is

163

being traversed. In that case, we would be considering all the processes in a fair manner,
in other words, only the fair runs would be considered.

This can be easily taken into account in the model-checker algorithm, by toggling between
checking and not checking for cut-off states in asynchronous, non-local conflict with the
synchronous output states encountered during traversal. The propagation of non-local con-

flict is always through synchronization points as it follows from theory of CMpms. Zhis is

Example 4.5 __We consider the formula so¢ |= AEE F (dAu/2).

In checkiﬁg this formula from Fig. C of Appendix, when d, is reached in M;, we have the
information that (d, an/-conf's;) where s, is a cut-off state. By unfairness theorem, neither
d, nor its successors are reachable in the unfair run with s, as its cut-off state. So, the for-
mula is false.

On the other hand, if we consider only fair runs, we ignore the above ani-confbetween dg
and s;, which means that we disregard the unfair run that starves dy. So, the formula is
true, when we assume that the unfair runs are disallowed ruled out.

Thus, the handling of unfairess is quite simple in M. This is another result of distrib-
uted storing of only local states and their continuations as well as state-based causality

through the synchronization points.

4.5.2 Non-monadic, Nested CML formulae and Labeling Algorithms

It is recalled that if a monadic, third-order state formula is treated in place of a primitive
state formula and treated as an operand of a modal operator to get an interleaving formula
followed by a run formula and so forth inductively according to the original definition of
syntax of CML in Chapter-3, what results is a nested, non-monadic formula of higher-
order than the third.

The model-checker discussed so far, for the monadic CML formulae does not use any
labeling procedures, as the nested, depth first search does the checking of the primitive

conjunction accounting for all the runs and/or interleavings with a single pass algorithm,

164

without breaking-up /splitting the formula into sub-formulae as by the traditional proce-
dures [1].

The extension of the model-checker for non-monadic formulae seems quite feasible if
suitable labeling strategies are adopted. This is left for future-work, which we believe is a
question of extending the implementation, without necessitating any drastic change in the

theory.

4.6 System Invariants and Deadlocks Detection

Definition 4.1 System Invariant is defined as a property of the system, which is true for
all states of the system, starting from its initiation. Conventionally, it is also defined as a
condition which when satisfied (or true) is true for ever. It is a safery property of the sys-
tem and is associated with a stable predicate, which often corresponds pragmatically to a
condition when, there is no local progress of the system with respect to a subset of compo-

nent Mpms after the condition is satisfied.

System invariant usually involves a basic proposition of implication. It takes the form of a
proposition h with the modal operator G such that when h becomes true, it remains true for
ever: a stable property.

|=(=>E A, Gh), Vs; € Spof ITF

The above is a specification of a validity formula as the implication operator makes it state
independent. This is because, every state either satisfies or not satisfy h. The implication
operator suffices to express that all the future states of those states satisfying h should also
satisfy h.

Example 4,6 From Fig. 16 on page 161,

=(co=> E, Ay Gcy), Vs, € Sy of [IM.

i.e., If ¢y is satisfied by some state, it is implied that it will be satisfied by all its future
states belonging to all interleavings of some run.

The above is an expression of a validity formula, as it is state-independent.

165

4.6.1 Deadlocks

Deadlock is a condition when there is no progress in the system. Deadlock freedom is
again a safery property.
Dead state is an Mpm-state which does not have any successors nor is a cut-off state.

4.6.1.1 Deadlocks Detection

Detecting a deadlock consists in reaching a global-state Fsv(C) in which, every compo-
nent Fsvy(C) is a dead state or, does not have a local continuation that is configurable with
C. It can be checked similar to any primitive conjunctive proposition, posed as the follow-
ing deadlock-detection formula:

Som I= Er Eir F (\i=1_n Pmi(Smi)), Where s, is a dead-state or devoid of a local continuation,
for all i=1..n.

The formula above can be checked by the model checker algorithm , with a minimal vari-
ation as follows:

All Mpms M;, i=1..n are traversed in some arbitrary order until a state sp; which is a dead
state or does not have a local continuation of the current configuration C is encountered.
Upon reaching it, using its handle-state sp; = Fsvi(C),] < i, switching/branching off (in
space) from M; to M; is made as the next primary Mpm, and traversal among the latter’s
local continuations carried out in the same manner as in M;, for all j <> i.

During the traversal of M;, i=1..n, if a cur-off state is reached, there is no dead-lock in the
corresponding run and branching-off in time to another run (by visiting a sibling state) in
the depth-first search is made within the Mpm-tree traversed.

It is interesting to observe the following result posed as a theorem:

Theorem 4.3 A deadlock detected for some interleaving is satisfied by all interleavings.
i.e., Som |= E; Eir F (M=} _n Pmi(Smi)). Where sp, is a dead-locked state.

<=> som [= E¢ Agr F (Nici_n Pmi(Smi))

If s,; can be reached in one interleaving, it is reachable by all interleavings, by the inter-
leaving insensitivity property (Property 2.7) stated in Chapter-2. sj,;i=1..n is either a dead-
state or does not have a local continuation, from the assumption that s, is a deadlocked

state. s,,; reached by some interleaving, carries its property to other interleavings.

166

This is because,

(i) Successors are independent of interleavings and so, if there is no successor for sp; in
one interleaving, it is the case when it is reached by other interleavings as well.

(ii) The conflicts are preserved across interleavings since they relate local states only, and
so its configurability with a successor remains the same if there is one for sp;.

Therefore once sp; is reached, it remains there for ever and so cannot but wait for other

components S, j<1 to be reached in every interleaving. Hence the result follows.

4.7 Sum machine Generator & Model-checker Algorithms

The model-checking involves one-time generation of the sum-machine M that is used
for checking/verifying all the CML formulae by the model-checker. A straightforward
version of the generator algorithm is presented first, that has an exponential complexity.
This is followed by the presentation of a modified algorithm that avoids the exponential
complexity by eliminating the repeated visits of the already generated states. After analyz-
ing these complexities, we present the model-checker algorithm and its complexity analy-
sis.

The algorithms are presented in pseudo code, more or less in the style of those of (1] and

[3].

167

4.7.1 ZM Generator Algorithm (i)

Input

Output

Main data-structures:
sm

Mpm_state, s;,;;

Mp;(Smi)
g € Pis

Mtmi € Rimi

wait_stack

partners_list

visited(B(Mp;(Sm;)))

A set of n CFsms F;,i =1..n with synchronous events and
their partner Fsms as shown in Fig.A of Appendix .

A set of n CMpms M;i=1..n (and hence ZXM)
corresponding to the input CFsm system along with the
functions B,,i=1..n (and so B).

Global Mpm-state vector

{sg, occ#}, where sg is the Fsm-state and occ# is to
make the Mpme-state unique, as generated by the
auxiliary functions f;, foyncij-

Minimal prefix vector of the state, s,;.

Transitions of Fsm, F;.

Transitions of Mpm, M;.

This is a stack, that stores the pairs <i, ry;> that are
waiting to synchronize with their partners. When M;
waits for Mj, it pushes its entry into wait_stack and
inputs it to M;. If M; has to wait for My, it appends its
entry <j, rg> into the wait_stack and passes it on to M
and so on. When wait_stack = Null, it means M; the

currently generated Mpm is not waiting for any partner.

List of ordered pairs <Sy; in, > that form the input partner
state and partner Fsm transition (to be simulated) of Sy in,
r,; of the waiting Mpm M; respectively, synchronizing on

-6 = rtﬁ .ej .

Boolean fiag to keep track of visited Fsm-giobal-state
corresponding to Minimal-prefixes of Mpm-states to detect
the cut-off states. Set to true when first visiting an Mpm-

state s,,; and remains true during the visits of all its

168

continuations (local and non-local alike). Set to false when
Sm; is o more contained by the currently generated state’'s

local configuration.

169

global F;, B;, i=1..n, M, sp,, wait_stack

procedure generate_all_Mpms()

{
Somi := (Sof» foi(NUll, fow))s Bi(Somi) = Sogi» for i=1..n; /*B; for initial states generated*/
foralli=1..n
{
Store Sg; ; store Mpi(Som;) := (Som1» Som2s---» Somn)
Coi = Ci(Somi) == {Somk | k= 1..n};
generate_Mpm(M;, Sonm):
}
}

/*generate_all_Mpms*/

procedure generate_Mpm(M;, S,)
{
if visited(B(Mp;(Smi)))
{
cutoff(s) := true; /* Mark s,; as a cur-off state since it has a basis vector as
an ancestor in CFsm domain.*/
return;
}
visited(B(Mp;(Sy;))) := true; /* B(sy,) is derived as (B;(Sm1), B>(Sm2):---1Bnl(Smn)) /
/* Generate all the successors of s.;; and their Mp-vectors in depth-first fashion */
for (all fy; = (Sg_ins ©5» Sti_ow) OF Ry SUCh that: By(spy) = Sg_jn) do
{
Sm_succ *= Sm; /"initialize successor state-vector to be used by the next level of
recursion®/
if (e4; is local event)
{
Smi_out = (sﬁ_ouv fi(smi_inv fei)) 5
Bi(Smi_out) = Sfi_ous /~ AN element of B; is generated */
Sm_sucell) i= Smi_ouns /7SUCCESSOT VECtor is thus updated*/
compute_and_storeMp(Spm;_out» MPi(Smi)); /"generate and store Mp;(Smi_ou)
using Mp;(s,;) as the boundary*/
generate_Mpm(M;, S succ); /* recursive call to generate its successor
state”/

}
else if (ey; is synchronous between F; and F))

170

if <j, eg; > is at wait-stack /"M is waiting to synch. with M;*/
add <Sp,; in, [yi> to partners_list; /* sy ;, is input partner of Sp; ;i 7/
else if <j, e> is at wait-stack such that: e <> ey skip outer
else loop; /* since M; is waiting for some other synch. event */
else /*M; needs to invoke M; to find the matching partners®/

{
push <i, eg> in wait-stack;
partners_list := generate_Mpm(M;, sy,);
/*invoke and wait for secondary Mpm M; to generate
all possible choices of partners of synchronous event eg.”/
pop <i, eg5> from wait-stack;
for all <sp; in, fg> in partners_list /*containing the matched pairs*/
{
Smi_out = (Sﬁ_outv fwncij(smi_in’ Mtfir Smj_ins rtﬁ));
smj_out = (stj_outr fsyncij(smj_in' legj Smi__in' rtﬁ));
Add (Smi_out + Smj_ow) 10 SYNCoyy Felation;
compute_and_storeMp(Spmi_outs MPi(Smi)); /"generate and store”/
compute_and_storeMp(Spm; outs MPi(Smy)); /* partner states™/
Sm_suce(l) = Smi_out) Sm_succ(l) *= Smj_our /"update successor vector®/
generate_Mpm(M;, Sy, suce)
y*for/)
Yrelse*/

}
visited(B(Mp;(Syi)) := false;

/*All successors of s,,; are generated and so reset the flag so that the same gobal
state traversed by other configurations in backward conflictis not mistaken as the cut-off
vector on the basis of B(Mp;(s,;)) as the ancestor, which is not the case. */

y*generate_Mpm()*/

procedure compute_and_storeMp(Sp; _out:MPi(Smi))

{

/* The Mp-vector of state Sy; g IS computed using the Mp of its predecessor/
if Mpi(Smi_out) is stored already skip;
Backtrack from sy,; o locally through state-tree M, as well as non-locally through
M;, j<>i across synch. points until Mp;i(sm;)(i) , i=1..n are reached respectively;
MPi(Smi_ou)(i) := Maximal state w.r.t Ry; ,i=1..n among all visited/backtracked;
store Mpi(smi_out);

171

/* The non-local states of Mp;(Sm;_our) Will be synchronous output states generated
just sufficient (and necessary) to enable M;’s progress®/

y*compute_and_storeMp()*/

The above is a simple version of the algorithm to implement the generation of Mpms and
hence the sum machine.
Every Mpm is generated as a primary one with the rest (n-1) of them making only a.sec-

ondary progress to satisfy the former's synchronization constraints directly or indirectly.

4.7.2 Tools for Complexity Analysis

Lemma 4.1 The maximum size of a maximal configuration is O(n*logN), where N =
ISl i=1..n, is the maximum number of states of the state-tree of any Mpm M; i=1..n, with

the assumption that each tree is balanced.

Proof: This follows from the disjointness theorem of Chapter-2 that any configuration is a
disjoint set of n paths of n Mpm-trees respectively. The maximum length of any path is the
height of the tree which is logN for a dalanced tree. A maximal configuration has at least
one cut-off state forming a leaf node of the tree and therefore has at least one path that is of
maximal length equal to logN. There are n paths in any configuration. The non-local paths
are not necessarily of maximal length i.e., the height of the tree, in their respective trees.
Therefore the maximum size of a maximal configuration is O(nlogN). -
In the case of unbalanced trees, logN is to be replaced by N in the above, and through out
the analyses in the sequel.

Lemma 4.2 The size of the sum machine M is (n*N) where N = [S_ ;| , the maximum
size of any one Mpm-tree M;, which is the same as the cardinality of the Minimal prefixes,
|Mp;| as well as that of local configurations, |C;| which vary monotonically with the cardi-

nality of the sync relation |sync| such that:

[Mp;| and so N is free of the exponential factor associated with the enumeration of global-

states due to all possible runs and interleavings, as allowed by the specification.

Proof:

172

The first part of the lemma follows from the definitions of Mp; and local configuration C;
as one-to-one functions of Mpm-states of a state-tree (a tree has equal number of states
and events), and the fact that every Mp-vector of a state is formed by the sync,,, states for
all its non-local components. So, the more the interaction or the degree of coupling among
Mpms, the more is the size of |sync|, the more the size of [Mp;| and the corresponding size
of its domain, |Sp;l.

The ‘such that* part follows from the definition of the equivalence relations, RMp; at Def-
inition 2.27 and the locality of conflicts & Summation Lemma discussed in Chapter-2.
Each Mp-vector is a representative of all the global-states formed by the asynchronous
local states reachable from the non-local synchronous components of an Mp-vector thus
defining its equivalence class, [Mpi]RMpi. It is these asynchronous combinations in all pos-
sible manner, that give rise to non-deterministic interleaving in an otherwise fotal-order
model. Therefore, the set of Mp-vectors being the minimal set of global-states to generate
the rest is interleaving exponential-free, in the above sense. The Mp vectors are to global-
states as local configurations are to general configurations.runs.

The above fact is associated with locality of conflicts and Summation Lemma since the
general configurations are generated as the union of /local configurations and hence the
former need not be enumerated, corresponding to all the runs.

Thus, non-enumeration of global states is associated with non-enumeration of both the
runs as well as interleavings at once.

‘As allowed by the specification’ is explained as follows:

But, due to strong degree of coupling, there could be a degenerate case when every equiv-
alence class is just a singleton set or in other words, the causal order < degenerates to a
total-order in which case, there is no possibility of avoiding the enumeration of interleav-

ings using the representative Mp-vectors, since the latter do not make any difference.

When the above factor is combined with non-deterministic synchronization of local con-
flicts as explained in Section 2.12.4, the scope or the room to utilize the non-enumeration

of runs also increasingly disappears with the mentioned factor.

The degenerate cases are discussed in the sequel at few more places.

173

4.7.2.1 Complexity of Generator Algorithm (i)

In the worst case, the generation of every synchronous output staté Smi_out of a primary
Mpm M; involves the generation of all the paths of the secondary Mpms M;, j<i starting
from Mp;(Smi_in) Where sq; iq is the corresponding synchronous input state. This is neces-
sary in order to explore all possible partners from the synchronizing Mpm, by the recur-
sive calls to generate_Mpm().

The generation of a path of the primary Mpm M involves the generation of all the paths
of a secondary Mpm M;, each of which may involve the generation of paths of another
secondary Mpm and so on until all n Mpms are exhausted. This leads to an exponential
time complexity, O(n(N)"), where N is the maximum number of Mpm-states in a state-

Iree.

4.7.3 An Efficient Alternative of Algorithm (i)

Fortunately, the fact that there are only a fixed number of processes with defined identities
and that every synchronous event is associated with the known identities of the partners
can be exploited to improve the algorithm. The data-structure requiring only a polynomial
amount of additional space is improvised so that the algorithm operating on this data-
structure is enriched with the advantage of the polynomial time complexity.

While exploring the secondary Mpm M; for a partner state s for the synchronous inpuz
state sg; of the primary Mpm M,;, all the synch. input states s'y,; (synchronizing with differ-
ent synch. events of M;) encountered in many different paths before reaching s, are
recorded. These states s'y; are potential input partners of s'n; to be visited and processed
later in M;. By maintaining s'y;, we avoid repeated searching of the same path(s) during
the processing of different synchronous transitions.

The concept of Minimal prefix (Mp) is applied again here. When s,;;, a synchronous input
state is reached in M; waiting to synchronize with M;, sy; = Mp;(s,;)(i) represents the min-
imal state from which M; has to be explored in order to find a parter for sp,;. During this
course, any synchronous input state s'; (synchronizing on a different event with M; or any

Mpm waiting in wail_stack defined similar to Algorithm (i)) encountered is a potential

174

partner state that will be reached in the future by re-exploring the same path(s) from the
state Mp;(sp;)(j)) or its descendents such that: Mpi(s'mi)G) > Mpi(s1,;)()). Then, S'm; and
S'mj are partner states and unless S'mj Is recorded now while processing s,,; with reference to

the state Mp;(s5;)(j), Smj would be a state of re-exploration at a later point of time.

4.7.3.1 Description of Modification in Algorithm (ii)

We assume that M is being explored to find the parter input state sy; of sy,; synchroniz-
ing on event eg. All the other synchronous input states S'mj Synchronizing on event e'g
encountered are recorded in the following data structure, which is a /ist to record multiple
partners for the same synchronous event in the case of non-determinist ¢ synchronization:
partners_list[e'g, Mpi(s';)(j)] in which S'mj IS stored,
where €'; denotes the synchronous event on which $'mj is ready to synchronize with

nthe state s',; of M; |
MDp;(s'mi)(j) stands for the synchronous output state such that :
Smj > Mpi(s'mi)() > Mpi(s;)(j) , from which re-exploration may be required later in M;.
The condition s'y; > Mpy(s',)() > Mp;(sm;)(j) defines the range of the synchronization
points Mp;(s'y;)(j) depending on, state S'mi at which state M; needs to synchronize with
M.
Since s'y; is not known a priori, for a given €', there is a partners_list created for every
synchronization point within that range: (Mpi(smi)(j), s'm;), where s, S'mj are current
states of M; and M, being generated.
The explored states are marked by an array of boolean flags. There is one flag,
explored[Mp;(s,;)(j)] for every non-local component of the Mp-vector of the synchronous
input states sp; of the Mpms M., i=1..n (that are in wait-stack).
As a result of the above, all the paths of every Mpm are explored only once, without
repeating the search of any path except in the following: to traverse at most the depth of
the state-tree of M; while backtracking from the current state S'mj Up to Mp;(smi)(j) of the
range: (Mp;(sm)(), S'mj)s to create the partners_list.
The algorithm with the additional data-structure follows. The exploitation of these data-

structure in the algorithm are emphasized with an underline.

175

4.7.4 =M Generator Algorithm (ii)

Data-structures:

Sm Global Mpm-state vector

Smi Mpm-state of M;.

wait-stack Stack of Mpm-ids waiting to synchronize with partners.
The event waited for is not stacked as in the first version of
the algorithm because, partners for every synch. event are
going to be added to parners_list any way, for immediate or
future reference.

expiored[Mpi(smi) ()] Boolean flag to indicate if the paths of M; reachable

asynchronously of sp; (i.e., when M; is waiting in stack)
from s = Mpi(Smi)(i) are explored.

partners_list[ey,

Mpi(Smi) ()] List of the ordered pairs <partner input Mpm-states, Fsm-
transition> reached in M; asynchronous to state sm; for the
synchronous event ey while M; is stacked.

global =M, F;, B;, i =1..n, wait-stack;
procedure generate_all_Mpms()
{
fori=1..n
{
Somi = (Sog-foi(NUll, Toi5)); Bi(Somi) := Sofi: /"NOW, Som = Sm 7/
Store Spoin MPi(Somi) = (Smo1: Smo2++++» Smon);
explored[som;] ;= false; /*initialize all flags and
partner lists*/
partners_list[eg, Somil := Null, for all synch. events ey; in Eg;
for all s, stored where: explored sml := false
generate Mpm(M, s,):/*only those leaf nodes of partial state-trees of
thus far secondary Mpms (not explored previously) are explored in this

algorithm*/

176

}/*generate_all_Mpms~/

procedure generate_Mpm(M;, s,)
{
if visited(B(Mp;(Smi)))
{
cutoff(sm;) := true; /"Mark sy, as a cut-off state™/
return;
}
visited(B(Mp;(Sy;))):= true;
for (all g = (56 _in» ©fi» Sfi_out) Of Refi such that: B;(Sm;) = Sg_in) dO

{

Sm_succ = Sm:
if (ef; is local event of F;)

{
Smi_out = (Si_outr fi(Smi_in» efi));
Bi(Smi_out) = Sti_outs /* Build the next level successor of state-tree of M; */

compute_and__ storeMp(Sy; out: Mp;(Smi)):
Sm_succ(i) = Smi_outs

generate_Mpm(M;, Sp; succ);

}
else if (eg is synchronous between F;and F))
{
if (j is at wait-stack) add <Sn;. Ii> to ali the partners listleg. Smi_out
such that; (Smi > Smi ot 2 Mpy(Sm)(i)) and (Sm; ou IS synchronois
oulpul state))

/™ If M is waiting, <Sm;, N> is one of the partners (possibly more in case of
non-deterministic synchronization) of the event e;; = e, possibly
synchronizing with any of the states Smi_out™/
else /"M; is not waiting in stack for any other Mpm */
{
if not explored[MD(Sm()]
{
Push <i> to wait-stack;
generate_Mpm(M,, s); /"explore secondary Mpm M;"/
explored[Mpi(Smi)J) :=true:

pop <i> from wait-stack;

177

}

/*if M; from Mpi(spy;)(i) is already explored, process the possibly
multiple (due to non-determinism) partners for ey stored during
exploration */

for all <8y jn L= in partners listf eg=ey, MDi(Smid()]

{

Smi_out -= (sﬁ_outv fsyncij(smi_inv Mifir Smj_ins rtfj));

Smj_out *= (Sﬁ_outv fsyncij(smj_in' I Smi_ins rtﬁ));

Add (Sp,; out + Smj_our) 10 SYNCyyy relation;

/*we store and use only the syncy relation */
compute_and_storeMp(Sm;_out: MPi(Smi));
compute_and_storeMp(Smj_outs ij(smj));

explored[Sm; out] = explored[Smj outl := false; /*initialization*/
Sm_succ(l) *= Smi_outs Smj_succll) = Smj_out:
generate_Mpm(M;, Sy suce);

}

Yelse/
Y *outer else*/
y*for */
¥*generate_Mpm*/

178

Fig. 17 Stages of Generation of Mpms according to Generator Algorithm (ii)

M
M[Mz 3

stage (1)

M, M M;

M;

179

&
o
S

»
1<)

o
.~
o

&

IS

allll
>

.‘%i’ B ros

180

181

2y Qo Xo
¥ A
} B
' 0
'0‘Go

182

183

4.7.5 Steps of generation of Mpms from CFsms

The various stages of generation of CMpms from CFsms of Fig. A of Appendix are shown
abovein Fig. 17:

Stage (i): The three initial states of M;, M, and M; are generated. The primary Mpm is
chosen to be M, and so the states of M, are chosen to be generated first.

Stage (ii): M, waits for M, to simulate the synchronous Fsm transition (b, A, c) at bg.
Stage (iii): In the process of exploring M, for a match of occurrence(s) of A, qo of M
(from py) is generated followed by the synchronous output states ¢y and sq. There is no
other path to be explored in M, for a match of an instance of A.

Stage (iv): M, waits to simulate the synchronous event C at ¢y. M5 in tum waits for M to
simulate occurrences of B. There is one path in M; from x; to x4 which terminates in a
cut-off and another path leading to the input partner y, followed by z,, after performing
By. M, reaches t; after performing By,

Stage (v): Having performed Bj, M, continues to match for an occurrence of C. States d,
ug of M; and M, are reached respectively. The path of M, with E, followed by Gy is gen-
erated (and hence a matching path in M3) resulting in cut-off states s, and x3 respectively
of M, and M3, in an attempt to find all matching occurrences of C in M, to synchronize
with the primary Mpm M;.

In the secondary progress, while looking for the match of E in Mj to synchronize with M,
there is a path with synchronous event D with M,, but since M, is waiting in stack, <z,
(z.D,g)> is put in the partners_list[D, z;=Mp1(t)(3)], to be used later on. The state g; of
M; is generated following which there is a synchronous transition on event F synchroniz-
ing with M, and M, both of which are waiting on stack. The parmers_list[F,
xo=Mp1(co)(3)][1] and parmers_list[F, z, J[1] are created using the range (xo, Zo) and <g;,
(g,F,x)> is added to both of them on account of the synchronization of F between M3 and
M,. <g;, (g, F.x)> is added also to parters_list[F, zy=Mpa(to}(3)][2], on account of the

synchronization of F between M3 and M.

I Note that, the algorithm assumes only two-way synchronization which can be in general n-way and so an
additional element to denote the identity of partner_lists of M;, i=1..n is necessary.

184

Stage (vi): M, is ready to synchronize on occurrences of F from dy with the partner Mpms
both M, and M3. ug is the handle-state which needs to synchronize on D with M3 before
simulating that on F. Hence the states v,, go of M> and M; are generated (by referring to
the partners_list) followed by a,, py, x; respectively of all three Mpms. While generating
the synchronous event D from uy, z, need not be re-explored since the flag explored|z,] is
true. Instead, the parmers_list[D,z,] is referred to (there is only one element <z, (z,D.g)>
in this list corresponding to the single occurrence of D; in this case z itself is the input
partner state as well, though it is a descendent of z, thus saving us the re-visit of multiple
states) to generate v, and g, in M, and M; respectively after performing Dy,

Stage (vii): The rest of the states of the three Mpms are generated upon performing the
occurrence F, of F, again referring to the parmers_list[F, xo] and parmers_list[F, zg]

respectively.

4.7.6 Complexity of Algorithm (ji)
Input Parameter: Though the CMpms are generated from CFsms, because the generation

is recursive, the algorithm is analyzed with N, the size of the generated tree itself as a pri-
mary parameter. The worst case size of sum machine is analysed in terms of those of
CFsms.

Space Complexity:

Space complexity is due to array of partners_list and explored flags:

There are as many flags as there are number of synchronous output states. So,

Upper bound of space complexity of explored flags = |Spi| = N;

Similarly, there is a partners_list for every synchronous output state of an Mpm, (explor-

ing which a set of synchronous input state and event pairs can be reached) corresponding

to every synchronous event of every one of partner Mpms.
Upper bound of space complexity of parters_list array =
(Size of the array)* (Length of each cell)(1)

Size of the array = (n*[Eg|*n*N)....(ii)

Length of each cell :=

185

Size of list of ordered pairs <state, event> of an Mpm = N*|Eg]....(i1i)

Therefore, complexity of (i) := (n*[Eg/*n*N) * (N*[Eg() = n?*N**[Eg|? from (ii) and (jii).
Even though partiers_list is stored on the basis of pairwise synchrony,when more than
two partner Mpms synchronize, the size of the array will increase by an order of n to dis-
tinguish the partners of different Mpms synchronizing on the same event. So in the above
complexity , n? will be replaced by n’.
The above is really a pessimistic upper bound since it assumes all the states and events of
an Mpm to be synchronous.
Time Complexity:
Every state is visited exactly once during its generation , and if the state is a synchronous
input state, the parters_list array is created for at most all the synchronous output states
between the initial state and the generated state in its tree. A7 most, the entire depth of the
tree may be back-tracked with a worst case complexity of (logN), the height of the bal-
anced tree.

At most, every state could be a synchronous input state in the worst case.

Therefore, the time complexiny is : O(nNlogN).

4.7.6.1 Size of Sum machine as a Primary Parameter

Though we started with CFsms, since the model-checker works on the sum-machine, the
size of the latter becomes the primary parameter. It plays a dominant role after transforma-
tion and is comparable to the size of the Net models of propositional logics [35] and the
size of the unfolding [3]. Hence it serves as a standard parameter as in other PO models.
The size of the sum machine itself depends on the structure of the given specification,
especially the basic three relations (sequence, choice and concurrency), and strongly on
the synchronization/degree of coupling among the Fsms as it is given by the size of Mini-
mal prefixes which depend on the degree of coupling. The figure below gives an idea of
two different variations expected for two different specification structures of CFsms with
respect to the degree of coupling. N varies directly with the degree of coupling. But the
actual pattern of change depends also on other parameters viz., choice, sequence etc. mak-

ing up the structure of the given CFsms. The illustrated ones are two possible samples.

186

Fig. 18 Variation of the size of sum-machine with degree of coupling for two different spec. structures

Specification 1

N Specification 2

Degree of Coupling ,d ——pp

4.7.7 Size of sum machine in terms of Size of CFsms

If Ny is the size of an Fsm and Ng,,. < Nris the size of synchronous states, (Ngsync)” is
the only worst case exponential factor in the size of the sum machine (number of Minimal
prefix vectors) due to all possible synchronous combinations of local states due to non-
deterministic, tight synchronization of true choices. This is to be contrasted with the worst
case size of (Np" in the case of the product machine. Following are the two phenomena
that hinder the applicability of the sum machine:

(1) As the degree of coupling increases, Ny , N increases and the number of Minimal-
prefix vectors increase. Both the number of synchronous local states and the number of the
participants of each synchronization (tightness) contribute to the degree of coupling. The
size of equivalence class of every Mp-vector and so the applicability of the interleaving
enumeration becomes less and less due to the above phenomenon.

(ii) When the non-determinism in the synchronizations increases, the non-enumeration of

runs gradually cease to apply as explained in Section 2.12.4 on page 88 in Chapter-2.

As the upper limit of both the phenomena, the equivalence class of every Mp-vector
shrinks i.e.. degenerates to a singleton with [Mp;,i=1..n} = N = (Ng,)" due to all possible

combinations of synchronous local states forming Mp-vectors constituting all the global-

states. This is due to the combination of highest degree of coupling that is most non-deter-

187

ministic; this is when the aY 7 /1 1~
cidentally drop 10 null. This is the degenerate case when the causality relation < , that is
in general a partial-order degenerates 1o a total-order along with an exponential number
of true local choices exist due to non-deterministic synchronizations that are tight.

One consolation to the above situation is that when the asynchrony is absent and the pro-
cesses progress in lock-step synchrony, the number of states will not be as explosive as in
the case of high degree of asynchrony with no remedial measure adopted to control the
state size.

If the absence of the degenerate case is guaranteed and the cases tending to it i.e., when
the specification lends itself to utilize the advantages of sum machine, the complexity of
the model-checker for the polynomial sized formulae does not seem to be NP-complete as

opposed to at least one popular, rival approach of the ser methods [44]. [9], [10], [13],
[17].

4.7.7.1 Non-determinism in Specification, Property Checked and the
Checking Procedure

(i) Non-determinism in Specification: Since the frue choices are restricted to local

Mpms, the only source of exponential number of local states within an Mpm is the one
mentioned in the last few subsections due to non-deterministic/combinatorial choices of

synchronization among true choice states of multiple Mpms.

(ii) Non-determinism in the Property Checked: The conjunctive normal form of the
propositional element in the CML formula is considered non-deterministic due to the vari-
ety of possible local propositions in each disjunction resulting in an exponential number of
primitive conjunctive propositions to be checked. Consequently, there are exponential
number of global-states whose reachabilities are to be checked, one corresponding to
every primitive conjunctive proposition, upon transformation of the given conjunctive nor-
mal form to the disjunctive normal form.

(iii) Non-determinism in the Verification Procedure; Fven given the absence of the
above two categories of non-determinism, the verification procedure itself could be non-
deterministic. This is manifested as the norn-deterministic interleavings in the global state-

graph of the traditional model-checking procedures. In the case of some of the popular

188

modern procedures working on the reduced-state graph, the mentioned non-determinism
is apparently got rid of, by generating only certain representative interleavings instead of
all. But in the process, the non-determinism is only shifted to the procedure of selecting
the representative global-states in order to maintain the equivalence between the original
and reduced state-graphs.

The non-deterministic interleavings are alleviated in our work, by a deterministic proce-
dure that traverses a set of deterministic Mpms whose local states and their global-vector
labels are used to dynamically generate or reason about every required portion of the glo-
bal-state graph selectively as demanded by the property checked, without any restriction.
This way, the non-determinism is completely avoided without making any compromise or
assumptions on the states required.

Given the absence of non-determinism in categories (i) and (ii), using our verification pro-
cedure, we can eliminate every source of non-determinism and hence conclude that the

problem at hand is notin NP but in P.

189

4.7.8 The Easter-Egg Hunt Algorithm for Model-checking

The following algorithm is to check a monadic third-order CML ¢ formula with a primi-
tive conjunctive proposition: g¢ = A; A F hg where he = (apg Napg N ... N apg).

The above formula is transformed to a corresponding CML‘;M/CMLDM formula g, such
that B(g,,,) = g¢ that can be checked over M as discussed in Section 4.2.2 at the begin-
ning of this chapter.

Searching for the Mpm-state containing/satisfying a specific atomic proposition/conjunct
in an Mpm-tree is likened to hunting for the golden egg containing the desired Easter
treat. There are golden eggs/Mpm-states in every Mpm-tree, as many as the number of
required conjuncts in total. If we could hunt the golden-eggs/Mpm-states, from all the
required Mpm-trees in which the respective conjuncts belong, one each from every inter-
leaving of every run of TIM or equivalently every maximal configuration Cp,y Of =M,
we are considered to be successful.

While checking a formula in disjunctive normal form, the algorithm is repeated once for
every disjunct of the formula g, above. The algorithm is recursive and starts with check-
ing for the local conjunct app,;. The current configuration is set to the initial configuration
Co = {Som1> Som2>----Somn}- It checks for the conjunct by traversing the local continuations
of C, within state-tree of Mpm M;, in a distributed, nested depth-first manner. Chk_all_-

runs() is a recursive function, performing the recursive search.

The distributed, nested depth-first traversal is a pragmatic strategy as discussed in a pre-
ceding section to cover the maximal, finite configuration (i.e., Crmax Up t0 cut-off) corre-
sponding to each run I1r < TIM at a time. The current configuration C < Cmax keeps
track of the partial run corresponding to ITr traversed thus far, the former being the subset
of Zr.

If the local conjunct apyy,; is found, we switch to M; as the primary Mpm to check through
its local continuations of C for the next local conjunct ap,;, using Fsv(C)() as the handle
state. C here is the switching configuration. For every switching configuration reached at a
local Mpm, there are multiple continuations to be traversed/checked at the next Mpm from
the handle-state and so on until the last Mpm is reached and its conjunct checked. This

procedure is referred to as the distributed nesting of the depth-first traversal, as the entire

190

depth of one single time continuum is broken up across multiple Mpm-trees, as mentioned
in a preceding section.

After branching (in space), not every successor of the handle-state is guaranteed to con-
figure with the switching configuration as explained in Section 4.4.1, with an example.
The configurability of the successor of the handle-state (and its descendents) is tested by
applying the configurability theorem, by the function configurable() of the algorithm.
During the search of any Mpm if it is either a cut-off state or in asynchronous, non-local
conflict with a cut-off state (allowing the possibility of unfair runs), the required conjunct
can not be found. This follows from the unfairness theorem.

Otherwise, the recursive procedure is continued by traversing all possible successors until:
(i) cutoff state is encountered which means failure of satisfiability of the formula, accord-
ing to the cyclicity-theorem, or

(ii) there is no more continuation possible which again means failure, or

(iii) the local conjunct is found and switching (branching in space) to next Mpm made.
This procedure is continued until all conjuncts and hence the conjunction is satisfied

which means success, the cases of failure being handled as in (i) and (ii) above.

191

Input of Meodel-checker: F;, i=1..n and g¢a CML ¢ formula.

Qutput of Model-checker: The result of satisfiability of grin the model CML py: true or
false.

It is assumed that =M corresponding to F;,i=1..n has been generated as discussed and
g, such that B(g,,)=gris a cmL® sm/ CML py formula .

F;, i=1..n State-graph of Fsm F;, i=1..n

M, ,i=1.n State-tree of Mpm M;, i=1..n

B; The mapping of states, events of M; onro F;

B The mapping of states, events of [IM onto T1F.

Im CML';;M and CML [p formula such that B(gn) = 0r
N, A primitive conjunctive proposition of gp,.
Mp,,i=1..n Set of n Minimal prefix functions, i =1..n.

Co initial Configuration of M

Ci(smi) Local Configuration of Mpm-state s,;

C Current Configuration

Sn = Fsv(C) ' Final state vector of C

Smi anl_conf Sp; boolean binary operator indicating if Sy, is in asynchronous

local conflict with sp;.

local_successors List of local Mpm-state successors of s, in M; (sy;) that
need to be checked.

failed_successors List of all Mpm-state successors of s;,, that need to be
continued again when s, does not satisfy g, for al/

interleavings.

192

global C, Sp, hyyy ZM;
function CML_dheck(U;=1_oFi» G¢) /“The main modei-checker function */
{
O = A; A F hy, where hy = (@ppx A &8Pk A - A apmp-j)
such that: B(gy,) = 9p Bi(hmi) = hg and hy; = @pp;, i= K..(k+j), j< n;
Sm = Som := (Som1+ Som2s ---sSomn); C = Cp 1= {Somi! i=1..n}; /*initialization of C and
Fsv(C) =sm"/
for some conjunct h; in hy,

return(chk_all_runs(M;, Spi, Nmi)); /*which invokes checking of all conjuncts */

¥Y*CML_check()*/

function Chk_all_runs(M;, Spi, Nii)
{
If (5 IS @ cut-off state) return(false);
if (S anl_confsy; S.t: Sy iS cut-off state) return(false); /* recorded during
generation of Mpms*/

If (Prmi(Smi) =hm; Such that: B;(hp;) = hg) /*local conjunct is found™/

{
if (Prmj(Smj) <> hgy, for some j<>1i)
{
success := chk_all_runs(M;, Sy, h)s /*nested search of next Mpm */
if (not success) return(false);
}

/* s of current configuration/run satisfying hm in one interleaving is reached
which has to be checked for truth for all interleavings before going to next
run®/

failed_successors := chk_all_interleavings(s,);

if (failed_successors is Null) return(true);

183

}

else /* local conjunct is not yet reached and so searched among local successors

of s, that are configurable with C*/

if ((local_successors := configurable(C, sy,;)) is Null) return(false);
for all (Smi_nxt in {local_successors U failed_successors})
[+ all successors take care of all runs®/
{
C := C U Ci(Smi_nxt); Sm = Fsv(C); /"updating C and s, to their
successors™/
if (chk_all_runs(M;, Smi_nxt. Nmi) is false) return(false); /*recursive
call to its successor in the current Mpm*/

}
return(true);
}
Y*chk_all_runs()*/
function configurable(C, sy;)
{
local_successors := Null;
for all Spyj_nxt = SUCCESSOr(Sm;) in M; do
if (is_confign(C;(Smi_nxt) » C) /*Checks it (Ci(Smi_nxt) U C is a configuration */
add Sm;_nx to local_successors;
return(local_successors),
¥* configurable()*/
function is_confign(C;(smi) » C)
{

fork=1..ndo

{

194

if (not Mp;(Smi)(K) is reachable from Fsvy(C), k =1..n or vice versa) in state-tree of
M, /*Follows by configurability theorem of Chapter-2; incurs visiting at most
(nlogN) states.*/
return(false);
}
return(true);
} f*is_confign()*/
function Chk_all_interleavings(sy,) /*checks all the interleavings of a run */
{
failed_successors := Null;
Repeat for every pair of successors Smi_nxt: Smj_nxt
{
for every pair Sy, Smj Such that: Spmi_nxt» Smj_nxt configure with C
{
if (not (must-co-wait(Smi, Smj» Smi_nxts Smj_nxt)))
add Smi_nxt: Smj_nxt t0 failed-successors;
)/for loop exhaustive of all pairs of i and j */
}J/~repeat loop exhausting all successors of each pair of S, Smj */
return(failed-successors);
}/=Chk_ali_interleavings()*/
function Must-Co-wait(Smi» Smj» Smi_nxt» Smj_nxt)
/“implement the checking of ‘must-co-wait’ condition among Mpm-states expressed in

the inference rule interleaving theorem stated as of Theorem 3.2 Chapter-3.%/
{
if is_dependent(Smi, Smj_nxt) A is_dependent(Sm;j; Smi_nxt))
return(true);
else return(faise);

Y*must-co-wait()*/

195

function is_depéndent(smj, Smi)
{
/* This function checks if Smj < S, With Mpm-trees M;, M; visiting at most 2*logN
states*/
Backtrack s along its unique path of predecessors in M; until Sm;_sync
such that: (Smi_sync SYNCout Smj_sync) IS reached;
Backtrack Sp;_sync along its unique path of predecessors in M;
until Sm; O So,; is reached;
If (Smj is not reachable) return(false); /*i.e., when Sgm; is reached */
return(true);

} /*is_dependent()*/

4.7.9 Analysis of the Model-checker Algorithm
4.7.9.1 Upper bound of Complexity

The maximum number of continuations traversed or synonymously the states visited per
Mpm-tree is the same as the maximum number of occurrences of an Fsm state in the cor-
responding Mpm. So, if there are multiple conjuncts in a conjunction of /ocal atomic prop-
ositions, (the number of such conjuncts being at most n) the complexity of evaluating the
satisfiability of such a primitive conjunction is corresponds to that of deciding the reach-

ability of a global state and hence is focussed below.

Parameters of Complexity:
Primary Parameters:
« N — the maximum number of Mpm-states per any Mpm-tree, i=1..n.

« n — Number of Mpms, which is also the maximum number of conjuncts as well as

the maximum depth of nesting of the traversal.

« d - Degree of coupling‘interaction’'synchrony among Mpms contributed by the

number of synchronous transitions and their tightness.

196

Secondary Parameters:
There are two secondary parameters m and k that depend on d; m varies directly with d

and k varies inversely with d as explained below.

« m- the maximum number of successful local runs‘configurations satisfying the
local proposition, apg, which is the number of occurrences of any one Fsm-state,
sg, i=1..n, in conflict. If d is large, then the size of |sync| and the size of |ZMp;|
(and N) are large. This implies that the number of occurrences of given sg and m
are also large. Similarly, if the value of d is small, the other extreme can be argued:
i.e., the less the value of d, so will be that of m. The upper bound of m is N but in
general, m<<N as it represents occurrences of only one Fsm-state. Lower bound of

mis 1 (0 is possible as well but excluded).

« k -- the degree of distributed nesting of local configurations: This parameter is a
variable as opposed to the depth of nesting which is a constant. Its maximum value
is equal to the maximum number of conjuncts, which is 7 and its minimum value is
1. The value of k is related to the degree of coupling d. If each one of the m suc-
cessful local configurations of one Mpm has al/ the m local configurations of the
next Mpm as their continuations for every pair of current and next Mpms, it will
imply that the asynchrony among Mpms is maximum (i.e., d is minimum). At the
other extreme, when each one of the m local configurations has exactly one distinct
successful continuation in the next Mpm, it will imply that the asynchrony among
Mpms is minimum, which corresponds to d at its maximum. Thus we establish the

maximum and minimum values of k as n and 1 respectively.

The Reasoning of the Upper Bound :

From every Mpm-tree, up to m successful local configurations in conflict correspond to m
local runs satisfying the atomic proposition. With the nesting degree k varying from 1 ton
for every local configuration, there could be up to m successful local continuations in the
next Mpm-iree. Accounting for all n Mpms we get a total of m¥ local configurations, that

is apparently exponential.

The term ‘apparently’ is explained as follows:

197

When the degree of coupling d is high, the cardinality of sync relation, |sync} is high which
means that | ZMp;| and m are also high, the upper bound of which is N. When that hap-
pens, each local configuration has a unique successful continuation in the next Mpm, mak-
ing the nesting degree a minimum, k=1. This means mX tends to become N

On the other extreme, when d is lowest, |sync| is lowest, and due to large asynchrony, a//
the m successful local configurations of one Mpm are reachable totally asynchronous of
the each of m successful local configurations of the previous Mpm leading to the maxi-
mum degree of nesting, k = n. Interestingly, the maximum number of occurrences of an
Fsm-state m is almost unity in this case since | ZMpj| is at a minimum and so mK reduces to

1" in this case. That is,

limit (m*) = 1% and,
d-->min

limit ky=nN!
d-r-n>lmax (m®)

The maximum value of the function mX occurs for an optimum value of d, when k is
between 1 and n and m is between N and 1. As k is higher, m is lower, thus nullifying each
other and hence diffusing the explosive effect of the factor, m¥. Therefore, even though it is
an exponential factor, it droops after an optimal peak where m <<N (since m in general is
the number of occurrences of one Fsm-state only) and k <n.

Since the size of a maximal configuration is O(nlogN) (assuming the balanced Mpm-tree)
according to Lemma 4.1, as traversed by configurable() function, the complexity of tra-
versing all successful runs is: m¥(nlogN).

Including also the failed local configurations of each Mpm, we account for all the local
configurations of all n Mpms, i.e., (nN*nlogN) in the complexity.

Thus the total complexity of check_all_runs() is: (nN + m¥)nlogN.

The figure below shows the trend of the upper bound complexity of checking all runs with
the degree of coupling. There are two different trends (labeled as trend 1 and trend 2) cor-

responding to two different primitive conjunctions checked (which changes m and k) in a
given specification. The complexity is expressed in terms of N which itself varies with the

198

degree of coupling as shown in Fig. I8. That is s why for the same complexity in terms of

N, the actual value is high when d is high, and is low when d is low. When m and k are
optimal, the factor (m **k) dominates and increases the complexity beyond the extreme

cases when the above factor loses its effect.

Fig. 19 Variation of complexity of chk_all_runs() with the degree of coupling

O(mk+nN)(nlogN)), k —>n, m --> 1
trend 2

m -->N, k --> 1
trend 1
O(n*NlogN)
k=1
ComplexityN - high

Degree of coupling, d €¢——
Degree of asynchrony —

199

4.7.9.2 Size of the parameter m and Non-deterministic Synchronization

Fig. 20 Non-deterministic Synchronization and Enumeration of Runs (induced local conflicts)
Fl F2 Fn

<, 2 -

Crex -
(2**(n-1))+1
€a%%(n-1)

€**(n-1))+2

ool e & 2

Szt *(n-1)

m state-instances of s of F;, m = 2**(n-1)

As illustrated in the figure above, that is reproduced from Chapter-2 with additional state
information, we note that the states s; through ss«s(,.;) in M; are all the instances of the

single Fsm-state s of Fsm F; and the corresponding instances of the local predicate of's.

The growth of m with the degree of coupling is caused mainly by this phenomenon of

non-deterministic synchronization culminating in m tending to the order of N. Fortunately

200

the size of k tends to 1 then although N itself has an exponential size which is caused by
all possible synchronous combinations of local states due to the phenomenon discussed.
When the degree of coupling is low, k may be high but the size of m and N are not expo-
nential. Depending on the extent of non-deterministic synchronization (m ** k) may dom-
inate instead of N in this case.

Thus we see that either the growth of N or domination of (m**k) is a result of the neces-
sary enumeration of local runs inherited from the specification. By carefully avoiding the
combination of non-determinism and tightness of synchronous transitions wherever possi-

ble the above growth can be controlled.
4.7.9.3 Upper bound Complexity of chk_all_interleavings()

This is contributed by the is_dependent() function .

There are at most (nC2) comparisons/calls for every pair of states of s, the final state of
the configuration; each comparison makes at most O(logN) visits (height of the balanced
tree) while backtracking the concerned states in their paths. Thus, the upper bound of com-

plexity of checking all interleavings within each run is:

O(nz*logN) since n€2 = O(nz).

The over all complexity is given by the product of:.

complexity of chk_all_runs() and of chk_all_interleavings(): O(Nn3log?N).

4.7.9.4 Total Upper bound Complexity

The total upper bound complexity of the model checker algorithm to check all interleav-
ings of every run is given by the product of the complexity of chk_all_interleavings():
O(n%logN) and that of chk_all_runs() of last section and the product is:

(mk+nN) (n3log2N).

When the Mpm-trees are not balanced, l1ogN is replaced by N in the above figure.

We see that the upper bound complexity is polynomial both in the size of sum machine N
and n, considering the fact that m and k diffuse each other out.

If there are q disjuncts in the disjunctive normal form of the proposition checked in the

formula, the complexity is only q times the above figure.

201

The important result here is that the complexity is neither exponential in the size of TM
nor in the length of the formula (conjunctions and disjunctions) as opposed to the conven-

tional propositional logics over Nets [35].
4.7.9.5 Worst case Complexity

The above claim, (m*+nN) (n3log2N) of the upper bound complexity does not necessitate
any assumption about the specification structure. The size of N itself can be exponential.
Typically, when m tends to N (and k to 1) it s also the case that N is exponential equal to (
Npsyne) ' due to the combination of non-deterministic and tight coupling among Mpms,
resulting in exponential induced local conflicts within an Mpm. This issue was explained
in a couple of contexts in Section 4.7.7 and in Section 4.7.10.

If we assume the specification to be free of non-deterministic synchronization, then we
can realize the non-enumerative advantages of the sum machine usefully without any
exponential complexity absolutely, for the formulae in disjunctive normal form.

Conclusi { Model-checker and its Complexity:

The contribution of model-checker is that, only the successful, specific local continuations
depending on the formula checked are considered for traversal in practice across one Mpm
to the next, which in practice droops down more and more as the degree of nesting
increases.

Searching for a global-state across a single global state graph exhaustively is a random
approach and hence nondeterministic as opposed to the deterministic, goal-oriented local-
ized search across individual local state graphs that are linked by the Minimal prefix vec-
tors. The global-state and the corresponding global proposition are constructed by
concurrent holding of specific local Mpm-states and the conjunction of their atomic prop-
ositions respectively during the local search of Mpm-trees as contrasted to global search
of enumerated global-states checking for the satisfaction of the whole conjunction

directly, at once.

4.7.10 Examples
Model-checl ith Uni LV Exi ial interleaving Q .

202

The model-checker corresponding to existential interleaving operator checks for one
interleaving by traversing the configuration as guided by the proposition. It is equivalent
to checking for pos-co-wait condition among Mpm-states, as stated in Axiom 3.4 of Chap-
ter-3. The algorithm does not invoke the chk_all_interleavings() function at all within the
chk_all_runs(), which requires a minimal simplification of the model-checker algorithm
presented.

The model-checker with universal interleaving operator is the one presented in the last
section. It is the same as the one with existential operator except that the conjunction
checked is quantified by the universal interleaving operator (Ay) in place of Ey,; in which
case, once a conjunction is satisfied by reaching the required configuration C by some
arbitrary interleaving, we check if the individual components of the conjunction must nec-
essarily co-wait according to the interleaving theorem of Chapter-3. If so, it implies that
the conjunction is true for all interleavings. Following section explains how to implement
the checking of ‘must-co-wait’ condition among Mpm-states expressed in the inference
rule interleaving theorem as stated at Theorem 3.2 of Chapter-3. So, there is additional

function chk_all_interleavings() , to implement the following in this algorithm.

Example 4.7 The algorithm for the formula sy |= E; Ay F (Pm1(do) N Pm2(V1) /A Pm3(81))
works the same way as for existential operator, till the configuration C with Fsv(C) = (d,,

vi, 81) is reached.

After that, we check if every pair (and so their atomic propositions) of the components of
Fsv(C) = (dg, v;. g;) reached by some arbitrary interleaving must-co-wait.

Considering dg and v, dy < v; and so (do must-wait-for v;) since d, is present in the local
configuration of v;. Next thing to be checked is whether succ(dp) > v,, where succ(dg) is a
successor of dg.

This is done by : back-tracking v, to uy which forms a synchronization point with dy itself.
(In general, the synchronous state has to be back-tracked in M; to check if the desired state
is reachable). Therefore, py;(dg) and pya(vy) must co-wait.

Similarly, v, and g; can be shown to wait for each other and so do g, and do.

Thus the conjunction is satisfied by all interleavings of the run containing C in its conflict-

free sum-machine. Hence the formula.

203

Example 4.8 _The formula, sor |= A; E; F (P (d) A p(v) A p3(g)) can not be true as fol-
lows:

When M, is traversed, at state d, we find that (dy an/-conf x3) where x3 is a cut-off state.
Therefore by unfairness theorem, we can conclude that there is a run where dj or any of its
local descendents (with respect to <) in M; will never be reached in the future. Thus there
will not be an Mpm-state mapping onto d in F; in the future and so the conjunction will
not be satisfied in the future as well.

Hence the result.

Example 4.9 Let us walk through the checking of the formula,

sp |= E; Epr F (Pa(d) A p(v) A pi3(8)):
The checking of this formula in ITF domain consists in finding the satisfiability of the fol-

lowing formula in ITM domain:

som I= E¢ Etr F(Pm1(dnum1) A Pm2(Vaum2) \ Pm3(8num2)) such that:

B (dpum1) = d, B2(Vaum2) =V, B3(gnum3) = 8 -

The initial configuration is set to Co = {ag, Po. Xo}.We traverse the state-tree of M, first
until we reach state dy visiting and traversing the local configurations of all the states
enroute. When we reach d, which maps onto Fsm-state d, C= C,(dp) is the switching con-
figuration with Fsv(C) = Mp,(do) = (do, o, zo). We switch to M> and traverse from the
handle-state vy, using the Mp-vector label of dy. The successor v, of ug configures with
the switching configuration. The current configuration C now is the local configuration of
v, with Fsv(C) = (dy, v}, Z)- Since the local conjunct of M is satisfied, we now switch to
M. The successor of zg viz., g; configures with the switching confi guration to give rise to
its new current configuration C, with Fsv(C) = (dg, vi, 81)-

Therefore, sgm |= E; Ei; F (apgo /\ apy1 /\ apg;) and

mapping it from [IM onro ITF through B, we get:

Sof |= E. Elr F (apd A apy A\ apg)

Example 4,10 _As an alternative example, consider the formula sor |= E, E;; F (ap, N
apg):

204

M, is traversed until t is reached with Mpa(tg) = (Co, to, Zo); Using zg = Mp,(t5)(3) as the
handle-state, branching-off to M3 is made. Suppose g is visited in Mj, arbitrarily chosen
as the first descendent of z,. Now the current configuration C is such that, Fsv(C) = (do,
Vo, o). Interestingly, this vector satisfies apgo but not an instance of ap,. So, M, is tra-
versed again from v, , the handle-state. But its only descendent p, is a cut-off state mean-
ing failure of the local conjunct and hence the formula in the current run.

g, is another successor of z, which upon visitation, gives rise to C with Fsv(C) = (co, to,
g;) satisfying (apy /\ ap,), and hence the given formula, since this conjunction holds in

the future of a run/configuration just traversed, by an arbitrary interleaving.
Example 4.11 _Let us consider the formula, so, |= A E F (ap. N apy).

In this example, M, is traversed till the state v, is reached; C such that Fsv(C) = (dg,v1,20)
is the switching configuration. Using z; as the handle state, M is traversed from z,. g,
configures with C but not other successors g, and hy of z; because: (go conf vy) and (hg
confvy), inherited from (v, confs vo) where (vo=go) and (v, conf ry) where (rg = hg) respec-
tively.

Thus we get C' as the only local continuation of C in M3, such that Fsv(C') = (dg,v1,8;) sat-
isfying ap,; /\ apg;.

C" = (dg.vo.Lo) is another continuation in M, satisfying (ap.o /\ apg0) already.

"™ = (cq,51.X3) is yet another continuation which is a cut-off vector corresponding to the
basis vector, (Co, So, Xo) s explained in Chapter-2. Since a cut-off vector is reached before
finding the targeted conjunct (and hence the conjunction), the run corresponding to C*"
does not satisfy the formula, by the cyclicity theorem.

Hence the given formula is false.

4.7.11 Sketch of Proof of Correctness of Model-checker

The proofs essentially follow from many definitions, theorems of Chapter-2 and particu-

larly the axioms and inference rule of Chapter-3.

Some of the salient points that contribute to the sketch of the proof, using which the proof

can be phrased without any lack of rigour, are listed below:

205

There is a one-to-one correspondence between configurations and reachable
Mpm-state vectors (as formers’ Fsvs), and every general configuration and its Fsv
can be reached by the traversal of local configurations by ITM Generator Theorem

viz., Theorem 2.8 that follows from the Summation Lemma of Chapter-2.

Every reachable state-vector also corresponds one-to-one, 10 a primitive conjunc-
tion of atomic propositions of the component local Mpm-states, by the definition
of the input bijection pg and the generated bijection py;, by the Mpm-propositions
stated as Definition 3.1 of Chapter-3.

By Equivalence Theorem Il stated at Theorem 3.2 of Chapter-3, the given CML ¢
formula (with respect to ITF) can be transformed to an equivalent CML for-

mula in [TM domain and checked on XM domain, as a CML‘;M formula.

The recursive processing of successive states ensure the depth-first search, to
cover all the required configurations corresponding to all required runs, ore con-

figuration (run) at a time.

The notion of Mp ensures branching of space from one Mpm to the other and con-
tinue the traversal of the latter’s states, maintaining the current branch of time,

using the notion of handle-state.

The Axiom 3.2 of Chapter-3 supports the implementation of existential interleav-
ing operator as (pos-co-wait) or concurrency among states of the final state vector

reached by a configuration.

The cyclicity theorem and unfairness theorem ensure termination of the algorithms
due to failure, as proved and explained in Section 4.4.5 and Section 4.5.1 respec-

tively.

The purpose of the chk_all_interleavings() function is to check if every pair of
COMpONENts S, Smj Of Su= Fsv(C) where C is the destination configuration are
related by the must-co-wait operator. The proof-sketch follows from the inference
rule at Rule 3.2 and interleaving theorem (of Rule 3.4) Chapter-3.

206

4.8 Complexity Theorem Il

The overall complexity of verification of the properties of a given CFsm system includes
the one time generation of the sum machine IM, followed by its traversal for model-
checking.

Theorem 4.4 The language restricted to monadic third-order formulae with propositions
in disjunctive normal form of the primitive conjunctions of the logic CML ¢ is recogniz-
able by the sum machine IM, with a complexity ,

(i) which is neither exponential in the size of XM nor in the length of the formulae with-
out any assumption made.

(ii) which is non-exponential absolutely, assuming the absence of non-deterministic syn-

chronizations in the specification.

(iii) which is non-exponential again for any CML formulae, assuming the absence of non-

determinism in the property checked as well as in the specification mentioned in (i1).

Proof: The proof of (i) follows conceptually from the complexity theorem I of Chapter-2
and concretely from the model-checker algorithm along with their proof sketch of correct-

ness in the last section above.

Using ZM, the properties of ITF expressed as CML which include both safety and live-
ness can be verified. The algorithm covers one of the most complex formulae as a repre-
sentative, like the approach of [1], with a complexity that is neither exponential in N, nor
in the length of conjunction n , nor again the disjunction, q.

Proof of (ii) : The alleviation of non-deterministic specification of synchronization guar-
antees that N, and so the size of the sum machine IM will not be exponential, since it is
the combination of tight coupling and non-determinism that leads to combinatorially
induced local conflicts, as explained in Section 2.12.4 on page 88 of Chapter-2 and Sec-
tion 4.7.10.

Proof of (iii) : With (ii) guaranteed and with the absence of non-determinism in the prop-
erty checked typically contributed by the conjunctive normal form, we avoid the exponen-

tial number of global-states whose reachabilities are to be checked.

207

As explained in Section 4.7.7.1, with all the three sources of non-determinism removed,

the problem is in P (Polynomial) rather than in NP and hence the result follows.

Depending on the specification structure, the size N varies as discussed in Section 4.7.7
on page 187. If the degree of coupling is not high and the non-deterministic synchroniza-
tion is minimal in the given input system of CFsms, there is ample room for the exploita-
tion of non-enumeration of interleavings and runs in which cases, the size of N will not be
exponential : 2 the size of N¢.

But when N = (N = Nfs._,,,,c)n (due to the combination of tight and non-deterministic cou-
pling), we can only be rest assured that the stringent synchronous paths naturally are regu-
lated by the high degree of coupling in a self-stabilizing manner and the resulting N will
not be as high as the size of (NP)" when there is large degree of asynchrony when Ny >>
Negyne-

Thus the algorithm is not inherently NP-complete even though NP-cases are not ruled out
depending on the specification structure and the property checked as discussed in Section
4.7.7.1 categorically. This result is better than the one where the method may fail to apply
for some degenerate cases as mentioned and in addition, the complexity is exponential
regardless of the specification structure and the property checked. The contrast in this
regard with a popular, existing approach will be made in Chapter-5.

The primitive conjunctions correspond to global-state reachability; the latter corresponds
to what is aimed by formulae of full logics of CTL [1] etc. The CML formulae with unti/
since operators can be reduced to the ones with primitive conjunctions as shown by the
axioms of Chapter-3. Even all the other formulae allowed by full logic CML can be
checked as well by the algorithm with the presumption, if the input formulae size is com-
binatorially large the same order of complexity is to be expected/tolerated. The polyno-

mial and exponential sized formulae were discussed in Sectiton 4.2.1.1 on page 151.

208

4.9 Summary of Verification/Model checking

A CML formula with respect to the product machine TIF of a given CFsm system is
viewed as a surjection of a corresponding formula with respect to IIM of the generated
CMpm system. The generation of the CMpm system and the associated sum machine M
from the given CFsm system has been described rigorously in Chapter-2. The CML for-
mula transformed with respect to [IM is in turn viewed virtually, upon the sum machine
M that is real. The reachability of the global-states of the former is asserted as the
reachability of the Final-state-vectors of the configurations of the latter, qualified and
quantified by the modal and branching operators respectively of branching space-time
logic CML that expresses monadic, third-order global-state formulae.
The model-checking algorithm describes the verification process, adopting a distributed,
recursive, depth-first traversal of some or all of the n state-trees of M;, i=1..n depending
on the given predicate to be verified. Primitive conjunctive propositions involve reachabil-
ity of global-states and incur typically, non-trivial complexity among all the assumed
propositions calling for the branching off in space from one Mpm to the other, multiple
number of times depending on the number of conjuncts.
Primitive conjunctive propositions qualified by modal operators and quantified by branch-
ing operators constitute the CML formulae primarily checked. Upon reaching the Mpm-
state satisfying a conjunct, switching of the primary Mpm corresponding to branching-off
in space takes place maintaining the current branch of time. Different branches of time are
decided only by local conflicts inherited by non-local (Mpm-)states and monitored by
Minimal prefix vectors, stored along with every associated Mpm-state in the representa-
tion of Fig. C in Appendix.
Configurability theorem of Chapter-2 is applied to check if a successor of the current state
visited in the primary Mpm is a continuation of the current configuration or not. Cyclicity
Theorem and Unfairness theorem are applied to detect the termination upon failure.
Deadlocks and System invariants are defined as CML formulae and the detection of dead-
locks shown to be feasible by the listed model checker, where Mpm-states satisfying given
atomic propositions are replaced by dead-states. Accommodating the fairness assumption

is shown to be simple.

209

TABLE 3

Model-checking with CTL/Net logics Versus. CML

CTL model is a TM (Total-
order Model).

Even though CMLrisa
TM, by virtue of its equiva-
lenccz with CML py and
CMLyxM , it derives all the
advantages of EPM
(Extended Partial order
Model).

CTL’s monadic second-order
formulae are implemented in

(1]

CML’s monadic third-order
formulae are checked in ours.

CTL formulae are checked on
a single tree with recursive
DFS (Depth First Search).

CML formulae are checked
on a set of n trees with recur-
sive, distributed. nested DFS
over them individually.

For the most complex for-
mula viz., A(g until h) in [1],
labeling algorithm is needed
to check for g and h, a priori
and /abel the states accord-
ingly.

For the corresponding CML
formula, there is no labeling
of subformulae necessary. In
particular, A (g until h) can be
implemented as: A Ej/A1 (8
AF (g A h)), with a conjunc-
tive predicate as above.

The algorithm is exponential
which is the size of the state-
graph.

For the propositional logics,
any model-checker based on
Nets is exponential either in
the size of the net or in the
length of the formula, given
by the number of conjuncts in
the case of a monadic for-
mula.

The algorithm of model-
checker, though has an appar-
ent exponential factor m", the
base and the exponent have a
diffusing effect on each other.
As a result. after an optimal
growth up to a moderate
value of the exponent. the
factor droops down.

The important result is that it
is neither exponential in the
size of N nor the length of the
formula. which is the number
of conjuncts and disjuncts in
the disjunctive normal form.

210

Chapter 5
Summary and Conclusion

5.1 What is accomplished?

We assume an input specification that is a fixed set of n communicating sequential pro-
cesses (CFsms). The set of (local) states of each process is associated with a respective set
of atomic propositions given, mapped as a bijection from the states of each process. The

processes communicate by synchronization.
5.1.1 The Problem

If the given CFsms were composed into a conventional product machine, there is state-
space explosion due to the non-deterministic interleaving inherent in the total-order mod-
els. If the CFsms were transformed into an elementary net model which is quite straight-
forward, even though true-concurrency is modeled by its partial-order (PO), true-choice
can not be modeled as a basic process relation and this is the reason why many partial-
order computational models are based on linear-time logics/semantics only. This is due to

the inadequacy of the flow relation of the Net models that will be explained in the sequel.

Partial-order reduction methods form a very popular alternative approach that represent a
single interleaving instead of enumerating all, to cope with the explosion due to non-deter-
ministic interleaving of total-order models. This representation works fine for safer) prop-
erties which check for the negation of certain predicates qualified by the implicit
existential interleaving qualifier alone. But there could be some interesting /iveness prop-
erties where it might be useful to assert the concurrent holding of a given set of conditions

at least in some or all interleavings eventually.

The main drawback of the above reduction methods in the complexity domain is that,

211

5.1.2 A Solution

We have shown that, by assuming a concrete input specification of n communicating
sequential processes modeled as n CFsms, it can be transformed to a state-based partially-
ordered model of n communicating processes modeled as n CMpms constituting the so-
called sum machine. It is novel in the sense that it not only represents frue concurrency but
also frue choice in combination, without one being sacrificed for the sake of the other as in
the research of many of the peers surveyed in the literature and listed by the table of [2] in
Chapter-1. True causality and true sequence are the distinct features of our model also.

The states of the sum machine are related by a global, dependency-order-‘causality relation
denoted < , that is partial (PO). Through this order, sequence, conflict and concurrency
are all defined at the same basic computational level such that their union is a rotal relation
among all Mpm-states. From a given input system of a fixed set of » CFsms, we show that
a corresponding set of » CMpms whose disjoint union and the (inter and intra) depen-
dency-order, i.e., the partial causality relation < among them, constitute a sum-machine,

through a surjective mapping, B.

t0 a global level. These notions enable:

« TImplementation of a concrete model-checker for a branching-time temporal logic

over partially-ordered structure (resulting in branching-space, branching-time
logic or in short, branching space-time logic CML), to verify the properties of the

input CFsms using the sum-machine of CMpms introduced.

. Distributed traversal of local configurations to dynamically generate the required
runs among the set of all general runs, as guided by CML formula checked. In
other words, generation of all the required, reachable global-states of the CFsm

system using a minimal subset corresponding to the Mp-vectors.

« Introduction of interleaving operator that takes away non-determinism in the inter-

pretation of reachability of global-states checked and aids the reasoning about

212

varying degrees of concurrency: specifically, deduction of the property of all inter-

leavings from one.

 Excepting the degenerate cases of the specification due to high degree and non-
determinism in the coupling of input processes, which take away the applicability
of the sum machine (in particular the non-enumerative aspect of interleavings and
runs), the model-checking over CMpms of deterministic property/polynomial sized
CML formulae as discussed, is deterministic and is of polynomial complexity as
opposed to the quoted NP-completeness of PQ-sez-methods for the same specifica-

tion and same property checked.

5.2 Comparison & Contrast with Related Work in a Pragmatic Perspective

5.2.1 CML Versus Partial order Reduction Methods

The research results of [9], [10], [13], [17]report approximated partial-order models with
representatives of interleavings instead of all, but they work with the assumption that if a
property is true for some interleaving, it is also true for all. As reported in [36], what could
be perhaps described collectively as ‘the set methods’ (stubborn sets, sleep sets, persistent
sets, ample sets etc.) of [44], [9], [10], [13], [17] are essentially based on the exploitation
of the conditional commutativity of actions rather than on partial orders, and thus calling
them ‘partial order methods' may be partially misleading. Nevertheless, they have gained
a lot of popularity over the last decade since the experimental results show a substantial
reduction of the otherwise full state-graph by a variety of such reduction methods for real-
life industrial applications [35],[39] necessitating a detailed comparison and contrast with

our work.

These PO reduction methods or the ‘commutativity based” methods [40] as mentioned,
share the goal of alleviating the state space explosion by exploiting the fact: many proper-
ties are insensitive to the order in which concurrent actions are executed. All of these
methods are aimed at constructing a reduced state-graph, based on exploring for each vis-
ited state, only a subset of the enabled operations so that only some of the successors of
that state are expanded. They differ only in the details of selecting the above subset
referred to, and the properties preserved by the reduction. Thus a family of reduction

methods possible are reported in the literature.

213

The techniques of these set methods are integrated into tools such as SPIN, VFSM-valid
(cross-referred to, in the survey article of [35]) and so they inherit all the characteristics of
these methods. SPIN includes an ‘on-the-fly’ model checking algorithm using a Buchi
automaton that corresponds to the complement of a specification. It also uses a more effi-
cient double DFS (depth-first search). But since the automaton recognizes the sequences,
(that are disallowed by the specification), only LTL (Linear time logic) formulas can be
recognized. The rest of the points of comparison of the general set methods i.e., PO-reduc-

tion methods to be listed in the following, hold good for these tools as well.

The idea of Minimal prefixes of CMpms model is comparable to the representative inter-
leavings of these methods but the difference is: with Mp-vectors, there is a possibility of
generating any interleaving and so any global-state required by the formula by allowing
the conjunctive predicate to guide and simulate the path of interleaving or the order in
which the union of certain local configurations is performed; on the other hand, the repre-
sentative global states are statically decided in the rival approach and hence there are glo-
bal states that can not be generated at all (dynamically or otherwise). Also, the procedure
to choose the representative set is in general NP-complete as mentioned before and reiter-

ated as follows:

The degenerate case when the methodology loses its application is shared by these PO-ser
reduction methods (in choosing selected interleavings, that represent others). But in their
case, irrespective of the influence of the specification, the implementation of the al gorithm
to find an optimal number of successors of every state (in the reduced state-graph) accord-
ing to equivalent robustness condition is inherently NP-complete, and heuristics are
adopted in the implementation. While in ours, there is no question of choosing any set of
representatives, since we allow the flexibility to generate every interleaving/run as
required by the formula dynamically with local states and their Mp-vectors. Generation of

all local states and their Mp-ve mechanical as opposed. to making a prudent chol

of optimal set of successors of every state when visited. according to certain equivalence
robusmess criteria. In addition to being mechanical, we buy the saving due to non-enu-
meration of runs (that comes from storing the local states alone) as well as the flexibility
to build any interleaving possible and deduce the rest. There is no restriction of properties/

formulae checked since there is no equivalence robustness to be met in our case.

214

CML shares the disadvantage with these set-methods that in the degenerate cases of the
specification when the degree of coupling is high the methodology can not be applied suc-
cessfully as there is no scope to apply the non-enumerative aspect of interleavings. In our
case, the non-enumerative aspect of runs can not be applied also due to non-deterministic
coupling which gets worse with high degree of coupling. The degree of coupling is high
when the number and the tightness (number of participants) of synchronous transitions are
high.

But the consolation in both the approaches is that, in the degenerate cases the combinato-
rial explosion that takes place is not as bad as the cases when there is a high degree of
asynchrony but no approach is adopted to apply the non-enumeration. This is because,
with lock-step synchrony that is the result of high degree of coupling, the paths of global-
states are relatively limited and regulated by the synchrony itself as opposed to having a
high degree of asynchrony with no measure taken to control the explosive possibilities of
paths of global-states. Thus the state-explosion becomes adaptive to the degenerate condi-

tion in a self-stabilizing manner.

Minimizing the non-determinism in the synchronous transitions in the given CFsms is a
way of avoiding the explosive, induced, local conflicts inherited from other processes thus
sustaining the savings due to non-enumeration of runs. Tapering off the number of partici-
pants from such non-deterministic synchronizations is another way in particular, and keep-
ing the degree of coupling low, in general. This sustains the savings due to non-

enumeration of runs and interleavings.

5.2.1.1 Disadvantages of PO-reduction

The limitations of PO-reduction/set methods listed below are in contrast to CML backed

by sum-machine:

« Most of these methods model the executions of programs as computation
sequences, in particular with the underlying logic LTL (Linear-time Temporal
Logic) and not the branching-time one. There is an exception to this which will be

compared in the sequel.

215

« The expressiveness of properties verifiable is rather low: Many properties in LTL
are restricted to deadlock-freedom or safety properties alone, i.¢., the ones that are
preserved by or insensitive to the reduction often referred to as equivalence robust

properties.

« The work reported in [40] is claimed to be the first approach that is most recent,
combining partial-orders with branching-time semantics. But even in non-degen-
erate cases when the system specification to be checked is amenable to the meth-
odology, finding optimal ample sets is NP-complete and only heuristics are used

for the implementation in this work.

Specific comparison with the most recent logic CTL-X based on the set-method is dis-

cussed below.

5.2.1.2 CML versus CTL-X

Partial-order reduction methods have been implemented for assertional languages that
model the logic LTL. The approach of [40] claims to show, for the first time, that PO
reductions can be applied to branching-time logics. CTL-X is the result of this approach.

The following are the main points of comparison/contrast:

(i) Even though this logic has model-checking algorithm that is /inear rather than expo-
nential in the size of the checked property and the experimental results show substantial
reduction in the size of state-graph, in general the reduction problem is reported to be

PSPACE-hard, in the number of program operations.
(ii) As its name suggests, the next-time operator is disallowed in the logic.

CML clearly is in contrast to the above demerits and it is needless to reiterate them here.

5.2.2 Comparison with Net based Models

5.2.2.1 Comparison with Petrinet based analysis tools like PEP Etc.

The report in [36] discusses the verification test bed called Programming Environment
based on Petrinets (PEP), in particular, its highlights and shortcomings, and so makes an

ideal candidate to compare and contrast with our work.

216

The system accepts two types of input: a parallel program written in a simple language
called B(PN)2 (Basic Petri Net Programming Notation), and a property expressed in a
temporal language called BL (Branching time Logic). Through a sequence of compilation
and verification steps, PEP allows the property to be checked against the program.

The logics BL Versus CMILZ

The logic BL is propositional over places quite similar to our basic partial order model of
CMLsM . In particular, the subformulae such as X(1; Al A..Nlp) is the same as our prim-
itive conjunctive formulae, where |; is a literal i.e., an atomic proposition (or its comple-

ment) over s; , the set of places, a place of the Petrinet being comparable to Mpm-state of

ours.

« The complexity of model-checking the formula of above type is exponential in the
length of the formula conjunction in BL. Though in CML, an exponential factor
m¥ is present in the upper bound, fortunately m tends to be very small when the
exponent k approaches n, the maximum length of the conjunction, thanks to the

concept of Minimal prefix and its link with the degree of synchrony.

« The eventuality properties can not be specified in BL. In fact it is admitted that

PEP does not support a strong logical system as yet.

« Itis also admitted that among the Petrinet based verification systems such as PEP,
INA and PROD (that are cross referenced in [36]), every one has its strengths and
weaknesses and a combination of different tools seems to be desirable. There is no
specific weakness of CML that is really undesirable.

5.2.3 Linear Algebra based model-checking

This is a semidecision verification method, based on a linear upper approximation of the
state space[36]. The method extracts from the description of a net, a set of linear con-
straints L that every reachable marking must satisfy. Thus, the solutions of L are a superset
of the reachable markings. In order to make use of L for verification, a new set LP of lin-
ear constraints is added to it, which specify the markings that do not satisfy a desirable
property P. Then, linear programming is used to solve the system L U Lp; if the system has

no solution, every reachable marking satisfies P.

217

Currently, there are semidecision-algorithms for deadlock-freedom and for the reachabil-
ity of a marking but not supported by a logic in general. Semidecision al gorithms are only
a compromise between the inherent algorithmic complexity of fully automated verifica-

tion and the aid of computer-assistance during validation.
5.2.4 Tableau Constructions in Modei-checking

A tableau T is a directed-graph. The tableau-construction in general, translates a tempo-
ral-logic formula to an automaton that usually accepts the set of linearizations satisfying
the formula. Thus it is a popular methodology for checking linear-time versions of logics
(as opposed to our goal of branching-time ones) such as LTL. This allows both checking
the validity of formulae and model-checking of program properties[34]. The asynchro-
nous Buchi automaton, Street! automaton are generated by tableau-constructions from

LTL specifications.

Several logics [11], [12]. [21], [34], [50] allow specifying properties over partial-order
executions. All these are linear-time based, as finite acceptors for PO executions/event-
structures with conflicts are not known. For instance, TLC reported in [34] is one such.
For model-checking of a TLC specification g of a concurrent program P, first an automa-
ton Ma, for the negated property followed by Mp that generates the program executions,
are constructed. Then it is checked if the intersection of the languages of these two autom-
ata is empty. Since g does not distinguish among linearizations of the same partial-order,
Mp may generate only one representative per equivalence class, thus admitting the bene-

fits and drawbacks of partial-order reduction methods.

Thus, tableau-construction is associated with generating automaton (often in exponential
time) that are recognizers of traces or linearizations of PO executions only without con-
flicts being taken into account. Comparison/contrast with CML and sum machine is quite

obvious here.

The rest of the allied recent work in the literature, just as the ones compared and con-
trasted above, either are based on linear-time semantics only with PO-semantics (branch-
ing space) or branching-time semantics with linear space only (without PO-semantics)

alone and hence are not repeated.

218

5.3 Comparison & Contrast with Peers in an Abstract, Modeling Perspective

5.3.1 CML Versus CTL and F(B)

F(B) was developed along CTL" and CML is developed along F(B). CTL is a total-order
based logic. Though it is claimed to be ‘branching-time’, the paths treated as runs in this
logic include non-deterministic, interleaved paths as well as the genuine runs originating
due to conflicts alone. Though F(B) is a partial-order based logic along with branching-
time feature, it does not support a model-checker and the reason is elaborated in the fol-

lowing subsection.

CML |y is a total-order model (TM), that is built by the partial-order model (PM) of
CMLg), , with the runs of the former configured by the local states of the latter that form
a global partial-order. So, CML 4 enjoys the advantages of the operational-semantics of
a TM (total-order model) as well as those of a PM resulting in the alleviation of the state-
explosion problem of CTL. Viewing the runs as partial-ordered configurations that form a
set of n respective paths of the n input processes has multiple advantages in contrast to
CTL: Path interleaving formulae in addition to and distinct from run formulae improve
the expressiveness of the specification of reachability of states. Since the runs correspond
to configurations which can be formed as the union of local configurations according to
Summation Lemma of Chapter-2, enumeration of all possible configurations and so runs
is not necessary. Causality based on simultaneity of state entries enables the checking of

universality property of interleavings without their enumeration as well.

More specifically, the sum-machine M comprises a set of concurrent automata that
comes with the property of state-based partial order, that is not yet put forth by any related
work, to our knowledge. The concept of Minimal prefix that issues out from the state-
based causality supports CML s , a total-order model (TM) that is equivalent to the
extended-partial-order model (EPM) CML'ZM, as proved in Chapter-3.

5.3.2 Comparison with Traditional Event-Oriented PO Structures

In the case of sum-machine, the entities ordered are Mpm-states (even though the ordering
is based on state-entry which can be considered as an event) as opposed to the events

themselves. The main advantage of relating the states (i.e., by their entries) lies in the cap-

219

turing of synchrony that gives rise to simultaneity of two or more distinct states each
belonging to different processes. In the case of events and the causal ordering among
them, synchronization or simultaneity can only be modeled by a single identical event,
one each from multiple processes. So, there is no additional information captured pertain-
ing to the simultaneity of the synchronous events that is not present in the asynchronous

events.

By modeling simultaneity of states of processes which are distinct, as an equality relation,
we capture an additional information that is not present among asynchronous states. We
are then able to define global causality by extending equality/simultaneity transitively
with the local reachability relations. Concurrency, defined as the complement of the union
of sequence and conflict also exhibits a semblance of causality: 4 state is related by con-

C1 % > 10 4 ne dlé nal are equal-Sim dN€ 0] s, d We d 0 [nose Indl arg

reached asynchronous of it. Since simultaneity is a relation (equality) rather than unrela-
tion or independence among states, concurrency and causality relations are allowed to
overlap in the sense that two states can be related by both the latter relations. A global-
state can have all its n components causally related to each other in addition to being con-
current, by their definition. This result allows the deduction of universality property of
interleavings from the configurations. In other words, without enumerating global-states,
we can reach all of them as far as the expressibility of the logic requires, using the local

states and their concurrency and causal relationships.

This we claim, as the advantage of choosing the state-entries as entities for causal order-
ing as opposed to event-occurrences. This does not mean that the causal ordering among

In this regard, a comparison/contrast needs to be done with the Petrinets/Occurrence nets
that can model both synchrony and asynchrony, as well as with the behaviour models such

as prime event structures in the paradigm of asynchronous communication.

220

5.3.2.1 Comparison with Petri/Occurrence Net Models

The models based on Petrinets and their derivatives such as Occurrence nets define the
causality among events primarily which makes the ordering inadequate in the following

sense:

The causality (dependency-order) in Petrinets (and its derivatives) comes from the flow
relation defined as: F== (S x T) U (T x S) where S denotes the places and T the transi-
tions comparable to Mpm-states and events respectively of ZM. Then, causality is defined

as:< =F".

F forces the dependency-order among places in such a way that for two places in S to be
dependent, they need to be sandwiched i.e., punctuated by at least one transition. This
essentially defines only the sequential relation among places and not in general, the causal
relationship among them; that is, one entering before the other, not necessarily in a
sequence. If two states are sequential, one has to exit before the other’s entry. In general,
one place can hold a token before another place of a different process progressing concur-
rently, and continue to have the token even after the other place gets its token. Thus, the
latter place can be dependent on the former causally, without particularly being sequential.

This general dependency-ordering among places is not captured by F and hence the inade-

quacy.
5.3.2.2 Lacunae of Net models

The lacunae mentioned in the last subsection stems from the following facts:

(i) Simultaneity is not part of the event-structure of the model, since one can not capture
any non-trivial information by modeling simultaneity among events as explained in the
last section. Equality subset of the causality-relation < comes solely from the id function
and not from sync,,,/simultaneity relation even though Nets include synchronous transi-

tions.

(ii) Concurrency is rather treated as the complement of causality relation < , with the fol-
lowing significant implications that are detrimental to both modeling and implementation

domains:

(a) Because causality and concurrency relations are complement of each other, their union
forms the universe and therefore, conflict relation is automatically pushed out of the uni-
verse. This is why the basic process structure of nets can not consider all the three entities
viz., sequence, conflict and concurrency at the same computational level. Consequently, to
come up with a finite acceptor and a concrete model checker that handles both conflict and
so branching-time semantics, with concurrency and so partial-order semantics at once are

hard in this paradigm.

(b) Since causality and concurrency are mutually exclusive, the benefits of the former
reinforcing the latter to derive the universality properties of interleavings can not be uti-

lized.

The sum-machine M models rrue concurrency and true choice as explained in the con-
tent of the previous chapters as well as true sequence and true causaliry, all in the same
layer of execution. Consequently, we have a finite acceptor viz., ZM for branching-time,
branching space CML structures, i.e., for a spatial, temporal logic. Hence a concrete
model-checking algorithm is a reality, with the above acceptor as the platform for
CML" 5. the extended PM, which simulates CML . the TM.

5.3.2.3 Lacunae of Prime event structures with Conflicts

Pratt’s [18] and Winskel’s [15] event structures and their derivatives come under this cate-
gory. As opposed to Net models, the synchronous communication is completely hidden in
these models, and the event-structure represents only the asynchronous communication. In
this sense, the physical communication mechanism is abstracted out and the causal order
among events denoted as < is assumed to be a granted rather than a derived notion unlike

ours.

Here also, as in the Net models, concurrency is defined as unorder, i.e., as a complement
of < . So, all the demerits mentioned in the last subsection for Nets model apply to this
model as well, centered around the fact that all the three relations namely, sequence, con-
flict and concurrency can not be expressed in the same layer/level of program execution.
So, we either have causality and concurrency based logics in linear time only or if branch-
ing-time semantics is incorporated with conflicts, only the linearizations of PO structures

are recognized. The asynchronous Buchi automata and Streett automaton [34] are recog-

222

nizers of traces or the set of linearizations of a PO execution and not the PO structure as
such. As a result, modal operators over causal structure (PO) involve reinterpretation

using certain quxiliary operators over the linearizations of PO.

Following is the claim: The physical communication mechanism viz., synchrony/simulta-
neity needs to be represented rather than abstracted out from the model. When the causal-
ity-relation is derived from the concrete notion, the advantage propagates in all directions;
particularly, it seems to be possible to extract the concrete set of paths from the abstract
labelled partial orders-configurations and link them to finite qutomata as well as to a log-

ical system and its algorithmic implementation, by the model-checker.

5.3.2.4 Comparison with Reisig’s work

The fundamental work of Reisig [2] reports a mapping between an en-system (elementary-
net system) and an occurrence-net to model a run of the former. This mapping is similar to
and very much instrumental in the composition of the mapping B;, i=1..n and B in our
work between CMpm and CFsm systems. There is also the logic F(B) proposed in this
work. But Reisig’s model has the lacunae mentioned in a previous subsection that mani-

fests as the following drawback:

There is a discrepancy between the logic and the model of occurrence net. Even though
the former accommodates conflicts, the latter does not represent it as a basic entity like
concurrency and sequence. So, the free of infinite occurrence nets, perceived by the logic
is difficult to implement at a concrete level. This is consistent with the conclusion that

there is no finite acceptor for the branching, prime event structures [34].

In other words, processes are linear-time structures only, i.e., the ones free of conflicts.
due to the inadequate representation of the flow-relation as already explained before. This
is the reason why the mapping in [2] could be used only to define a logic F(B) and its set
of axioms and inference rules without an implementable, concrete model-checker to sup-

port the logic.

5.3.2.5 Comparison with McMillan’s work

The work by McMillan[3] again uses the finite prefices of an occurrence net generated as

an unfolding of a Petrinet specification. Qur computational model is similar to this work

223

since the truncated CMpms can be considered as the unfolding of CFsms specification.
But in contrast to our mathematical functions B;,i=1..n and B, the former [3] is not for-
mally backed by a mathematical mapping of occurrence-net to Petrinet entities. It defines
an event-oriented configuration that is inspirational and dualistic to our stare-oriented
configurations. The former fits naturally with the net’s transitive closure of flow-relation,
F". As explained already, dependency-order derived from this flow-relation models only
sequence and not causality among the local states of the processes, with its consequential

drawbacks mentioned already.

Dynamic birth and death of processes without fixed identity to them, makes the compiex-
ity of generation of the occurrence-net unfolding, exponential, all subsets of places have to
be exhaustively searched in a nondeterministic fashion before generating every input tran-
sition since the determinism due to identity of processes and the knowledge of partners of

every synchronous transition are missing in this model.
Following are the draw-backs in [3]:

(i) There is no general logic for specifying the properties in this work and consequently,
lack of expressiveness. Only basic existential safety predicates can be checked using the

unfolding.

(i1) The unfolding needs to be generated once for every such predicate verified which
involves in the worst case, a complexity of O(N") where N is the size of unfolding and nis

the maximum number of partners of a synchronous transition.

(iii) The property of deadlock freedom can not be posed as a predicate but instead, a more
complex constraint satisfaction approach is used in a dedicated deadlock-detection algo-

rithm.
All the above factors favour our work in which:

(i) Richer predicates supported by a logic with modal operators enriched with branching
time as well as branching space, can be specified, thus filling the void entry of the table of

survey in [2].

(it) CMpm system with respect to a given CFsm system needs to be generated just once

for all the formulae checked.

224

(iii) Neither the generation nor the checking of formulae(model-checking) incurs the
exponential complexity due to the enumeration of runs or interleavings of a run except in

the degenerate cases where there is no scope for the applicability of the sum-machine.

5.4 Classical Framework Provided by Sum machine and CML

5.4.1 Finite Automata Over Partial-orders

From the recent literature [37], it is quite clear that the area of ‘finite automata over PO’ is

not yet an established one. The possible reason and remedy are quoted in the following :

Possible reason: “Many properties of finite automata which are essential in logical or
algorithmic applications fail to hold when partial orders are considered as inputs to

automata rather than strings or trees.

Possible remedy: To take a ‘narrower view’ by extracting sets of paths from partial orders

which brings back the framework of classical formal language theory.”

Qur Claim: In our case of sum machine, we did not have to take any narrower view to
extract a PO. They simply turn out to be the case, resulting from a PO structure of a con-
figuration of Mpm-states being a set of n unique paths of n respective Mpms of the sum
machine, which can be considered as a collection of finite, deterministic synchronous

automata with respect to given set of n CFsms.

Every point or every Mpm-state of a configuration is assigned a representative global-
state (using Minimal prefixes) of the communicating finite automata (CFsms) determinis-
tically, thus forming a labelled PO structure. Finite prefices of these structures suffice to
verify the properties of the given automata. So, we extract finite, labelled partial orders as
configurations from essentially infinite automata, whose set of local paths are connected
into a state-tree, each accounting for branching-time semantics, the source of branching

points being local to each of » such trees.

Logics: We claim that the above set of finite, labelled, partial-order structures are finite
automata-recognizable as well, since they are generated from the latter in the first place.
Another reason to support this argument comes from the fact that these PO structures are

definable in what is defined as a ‘monadic third-order logic’, with the propositions oper-

225

ated by the first-order modal qualifiers, second-order interleaving quantifiers and the

third-order configuration/run quantifiers to define monadic, third-order state formula.

Recognizability mentioned above is accomplished by viewing the product machine with

respect to the sum machine and viewing the corresponding logical system that is a Total-

dAlgorithmics: We scan only the ‘local neighborhood’ of every Mpm'’s state-tree during the
localized depth first search till the required local property is satisfied. Only upon local suc-
cess, branching to the next non-local tree is made to continue just from those ‘non-local
neighbourhoods’ as indicated by the /abels of the former. This is how the labelled PO of
the individual points/Mpm-states are exploited. The algorithm indicates that the language
of finite labelled PO is recognizable without the state-explosion of the traditional TM.

5.4.1.1 Scope of Work in Automata/Language Theory

We believe with the above foundational support, many open questions posed in [37] are

answerable in Cl\/IL*zM as listed below:

« The theorem by Buchi and Elgot quoted in [37] is for a class of acyclic graphs that
are strings/words, definable in monadic second-order logic. This can be extended
to a class of labelled partial-orders, definable in the monadic third-order language

of CML*ZM and equivalently, in that of CML .

« Proof of the closure properties such as union, complement and projection of the

language above in classical formal language theory is another possibility.

226

5.5 Conclusion

The conclusion must be quite clear from the comparison and contrast with the peers’ work

discussed in the sections above.

We have shown that, a partial-order version of the state-oriented model is indeed possible
that is supported by an expressive, branching space-time temporal logic CML whose for-
mulae over labelled PO structures specifying both safety and a variety of /iveness proper-
ties can be checked efficiently as allowed by minimal non-determinism in the input
specification structure and the property checked. In doing so, we believe to have filled the
void entry of Reisig’s table in [2] meaningfully, which was illustrated in Fig. 1 and Fig. 2
of Chapter-1.

By relating the local state-entries as opposed to event-occurrences, in particular, the
equality of the distinct synchronous ones, simultaneity is accounted for, which becomes
the controlling agent for both concurrency as well as causality, that are not mutually
exclusive/complementary among their related states. This aspect, combined with the suffi-
ciency of local conflicts to account for global ones is exploited in the model checker. The
events are truly modeled as well (although, they are not exploited and hence not demon-
strated in this application). This is why the size of the sum-machine increases with the
degree of coupling as in the event-oriented models as opposed to the increase with asyn-

chrony as in state-oriented ones.

5.6 True Conclusion

Just as both magnetism & electricity, voltage & current and inductance & capacitance are
dual to each other in electromagnetic theory, both state and evenr are duals of each other
and both entities must symmetrically be represented as the primary entities in the model of
a concurrent/communications system without either one of them being compromised for
representing the other. They do co-exist and both are necessary; except that, depending on
the application, one entity or the other may be emphasized and projected in the computa-

tion, rather than its dual.

If a specification is first represented in the concrete domain and then escalated to the

abstract domain of a model in a bottom-up fashion, it seems to be easy to bring down the

227

results of the abstractions back to the concrete world, in the reverse direction where they
are put to use. The set of Mpms and their communication by sync relation represent the
physical communication mechanism in the concrete domain, and the theory of extended
sum machine with its configurations as labelled PO structures constitutes the abstract
domain of the model. The relationship between the configurations and their association
with the fixed set of paths of Mpm:s is the link bridging the two domains, which enables a
tractable implementation of the decidability of CML formulae.

5.7 Scope of Future Work

The algorithms for checking non-monadic higher-order formulae with nesting, as
explained in Chapter-4 are not handled here, which is hoped to be feasible with suitable
labeling algorithm for plugging in the results of the intermediate, inner state-formulae

between levels of nesting.

It is true that we have not reported any experimental results for industrial sized examples
nor the results for bench-mark examples such as Milner’s scheduler described in [23] etc.
But it is our earnest belief, as is also common-place in the literature, that the experimental
results are often quoted when the algorithm is in general PSPACE-hard/NP-complete and
in lieu of which, heuristics are adopted. But in the case of sum-machine and CML pair, the
model-checker is polynomial, for a polynomial sized formulae and non-determinism-free
communication of the input specification. All said and done, it would be worthwhile to
reinforce the theoretical results with experimental ones by actually implementing our
model-checker and checking it with a wide range of examples it is expected to cover. This

is left for the future work.

The complete axiomatization of the logic CML, proving its soundness and completeness

in a classical manner, could be another possible direction of extending this work.

Towards another classical result, as already mentioned, an extension of the Buchi, Elgor
theorem stated in [37] can be made as: the class of language over partial-orders (as
opposed to strings) is recognizable by a finite set of Mpms iff it is monadic third-order
(MTO) definable. The forward direction of the proof is more or less the complexiry theo-
rem II proved in Chapter-4, but the converse direction from MTO-formulae to the sum

machine requires standard closure properties under union, complementation and projec-

228

tion that need to be proved. This may not be difficult, given the result of equivalence of
non-deterministic model of CFsms and the deterministic model of finite CMpms, proved

in Theorem 2.10 of Chapter-2.

With the inherently infinite Mpms, some more unexplored direction could be towards the
theory of recognizable sets of infinite PO structures such as: the meaning of ‘regularity’ of

PO structures, the non-emptiness problem over the classes of these infinite PO etc., as

raised in [37] again.

We believe to have laid a reasonably and sufficiently classical foundation to answer all the

above open questions.

229

(1]

[2]

(3]

[4]

(5]

(6]

(7
(8]

(9]

(10]

[11]

[12]

[13]

[14]

[15]
[16]

References

E.M. Clarke, E.A Emerson, and AP. Sistla, «Automatic verification of finite state
concurrent systems using temporal logic specification: A practical approach”, ACM
TOPLAS, 1983.

W. Reisig, “Towards a Temporal Logic for Causality and Choice in Distributed Sys-
tems”, Lecture Notes in Computer Science: LNCS 354, pp 603-628, 1989.

K. L. McMillan, “Using unfolding to avoid the state space explosion problem in the
verification of asynchronous circuits”, Proc. 4th Workshop on Computer Aided Ver-
ification, 1992.

W Reisig, “Temporal Logic and Causality in Concurrent Systems”, LNCS 224,
1988.

E.A. Emerson and J.Y.Halpen, “Decision Procedures and Expressiveness in the
Temporal Logic of Branching Time,” Journal of Computer and System Sciences,
1985.

K. H. Rosen, “Descrete Mathematics and its Applications”, Random House, New
York, 1987.

W Reisig, “Elementary Net systems - Part-1, condition/event systems’ .

Norio Shiratori et al., “A Verification Method for LOTOS specifications and its
application”, Protocol Specification, Testing and Verification IX, IFIP, 1990.

Patrice Godefroid, “Using Partial-orders to improve automatic verification meth-
ods”, In workshop on Computer aided Verification, 1990.

P.Godefroid and P.Wolper, “Using partial orders for the efficient verification of dead-
lock freedom and safety properties”, Formal Methods in System Design, 2(2): 149-
164, 1993.

S.Pinter and P.Wolper, “A temporal logic for reasoning about partially ordered com-
putations”, Proc. 3rd ACM Principles of Distributed Cimputing, 28-37, 1984.

S.Katz, D Peled, “Interleaving Set Temporal Logic”, Theoretical Computer Science
75 (3), 21-43, 1992.

S. Katz and D. Peled, “Defining conditional independence using collapses”, Theoret-
ical Computer Science, 101: 337-359, 1992.

G. Boudol, I.Castellani, “Concurrency and Atomicity”, Theoretical Computer Sci-
ence 59, 1988, pp 25-84.

G.Winskel, “Event structure semantics for CCS and related languages”, LNCS 140.

A. Mazurkiewicz, “Trace Theory: in Petrinets: Applications and relationships to
other models of concurrency”, LNCS 255, pp 270-324, 1986.

230

[17] D.Peled, “All from one, one for all: on model-checking using representatives”, Proc.
5th workshop on CAY, 1993.

[18] V. R. Pratt, “Modelling Concurrency with Partial Orders”, International Journal of
Parallel Programming”, Vol. 15, No.1, 1986.

[19] E.Najm, “A Verification oriented specification in LOTOS of the Transport protocol,”
IFIP 87.

[20] J.L.Richier et.al, “Verification in XESAR of the sliding window protocol,” Protocol
Specification, Testing and verification, IFIP 1987.

[21] K. Lodaya, P.S. Thyagarajan, “A modal logic for subclass of event structures”, 14th
ICALP, LNCS 267.

[22] C.AR.Hoare, “Communicating Sequential Processes”, Prentice Hall, 1984.
[23] R. Milner, “Calculus of Communicating Systems”, LNCS 92.

[24] Z Manna, A Pneuli, “The anchored version of the temporal framework”, LNCS 354,
pp- 201-285.

[25] C.Stirling, “Temporal logics for CCS”, LNCS 354, pp660-673.

[26] T. Bolognesi, S.A. Smolka, “Fundamental results for verification of observational
equivalence - a survey”, Protocol specification, testing and verification VII, IFIP
1987, pp 165-181.

[27] D.K.Probst, HF.Li, “Abstract specification, composition and proof of correctness of
DI circuits,” Technical Report, Dept. of CS, Concordia University, 1989.

[28] E. Brinksma, “An Introduction to LOTOS,” Protocol specification, testing and veri-~
fication VII, IFIP 1987.

[29] S.D.Brookes, C.A.R. Hoare, A.D. Roscoe, “A Theory of Communicating Sequential
Processes”, J. ACM 31, pp 560-599, 1984.

[30] G.V. Bochmann, C.A. Sunshine, “ Formal Methods in Communication Protocol
Design”, IEEE Transactions on Communication, vol. COM-28, no.4, 1980.

[31] R.P. Kurshan, “Analysis of Discrete Event Co-ordination”, Technical Report, AT&T
Labs, New Jersey, 1990.

[32] Bums, M. Gouda, and Miller. “On relaxing Interleaving Assumptions,” IFIP 1990.

[33] R. Ramanujam, “Locally Linear Time Temporal Logic”, Proc. of Logic in Computer
Science, 1996.

[34] R.Alur, D. Peled, W.Penczek, “Model-checking of Causality Properties”, Proc. of
10% symposium on Logic in Computer Science, IEEE, 1995.

231

[35] D. Peled, “Partial Order Reduction: Linear and Branching Temporal Logics and Pro-
cess Algebras”, DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, vol 29, 1997.

[36] E. Best, “Partial order Verification with PEP”, DIMACS Series, vol 29, 1997.

[37] Wolfgang Thomas, “Elements of an Automata Theory Over Partial Orders”,
DIMACS Series, Vol 29, 1997.

[38] U.Montanari, M Pistore, “History Dependent Verification for Partial Order Sys-
tems”, DIMACS, Vol 29, 1997.

[39] P. Godefroid, “On the Costs and Benefits of using Partial-order Methods for the Ver-
ification of Concurrent Systems” (Invited Paper), DIMACS Series, Vol 29, 1997.

[40] R. Gerth, R Kuiper and D.Peled, “A Partial Order Approach to Branching Time
Logic Model Checking”, Third Israel Symposium on Theory of computing, 1995.

[41] G.Plotkin, VR. Pratt, “Teams Can See Pomsets”(Preliminary Version), DIMACS
Series, Vol 29, 1997.

[42] W. Reisig, “Interleaved Progress, Concurrent Progress and Local Progress”,
DIMACS Series, Vol 29, 1997.

[43] D. Mandrioli, C. Ghezzi, Theoretical Foundations of Computer Science, Wiley,
1987.

[44] A. Valmari, “Stubborn Attack on state explosion”, CAV’90, DIMACS, vol 3, 1991.

[45] E. A. Emerson, J. Y. Halper, “Sometime’ and ‘not never’ revisited: On Branching
versus Linear Time”, CACM 1983.

[46] D.Peled, “Sometimes ‘sometime’ is as good as ‘always’”, CONCUR ‘92, Aug 1992.

[47] G.J. Holzman, P. Godefroid and D. Pirottin, “Coverage Preserving Reduction Strat-
egies for Reachability Analysis”, In Proc. 12th IFIP, June 1992.

[48] P. Godefroid, P.Wolper, “Using Partial order for efficient verification of deadlock
freedom and Safety Properties”, In Proc. Third Workshop on CAV 91.

[49] P. Godefroid, D. Pirottin, “Refining Dependencies Improve Partial-order Verification
Methods” In Proc. Fifth Workshop on CAV °93.

[50] D. Peled, A. Pneuli, “Proving Partial Order Liveness Properties” LNCS 443, 1990.

[S1] R. Milner, “Calculi for Synchrony and Asynchrony”, Theoretical Computer Science
25, pp. 267-310, 1983.

[52] JR. Burch, EM. Clark et al., “Symbolic Model Checking : 1020 states and beyond™,
Proc. Fifth annual Symposium on Logic in Computer Science™, June 1990.

[53] V. Sassone, M. Nielson, G.Winskel, “A Classification of Models for Concurrency”,
Technical Report DAIMI, Computer Science Dept, Aarhus University, 1993.

232

[54] G. Winskel, “Event structure Semantics of CCS and Relataed Languages”, Proc. of
ICALP 1982, LNCS 140.

[S5] G. Winskel, “Synchronization Trees”, Theoretical Computer Science, no:34, pp.33-
82, 1985.

[56] Stephen A.Cook, “Soundness and Completeness of an Axiom system for program
Verification”, SIAM Journal of Computing, Vol. 7, No. 1, Feb 1978.

[57] M. Nielson, G.Plotkin, G.Winskel, “Petrinets, Event structures and Domains, Part I”,
Theoretical Computer Science 13, NO. 1, pp.85-108, 1980.

[58] M. Hennessy, R. Milner, “Algebraic Laws for Non-determinism and Concurrency”,
J. ACM, 32, 137-161, 1985.

[59] S.Katz, D. Peled, “Verification of Distributed Programs using Representative Inter-
leaving Sequences”, Distributed Computing 6, pp. 107-120, 1992.

[60] R. M. Keller, “Formal Verification of Parallel Programs”, CACM 19, Vol. 7, 1976.

[61] A.Pneuli, “The Temporal Logic of Programs”, Proc. of 18th symposium on Founda-
tions of Computer Science, Nov 1977.

[62] Van Nguyen, Alan Demers, D.Gries & S.Owicki, “A Model and Temporal Proof sys-
tem for Networks of processes”, Distributed Computing, 1986.

[63] T. Murata, “PetriNets: Properties, Analysis and Applications”, Proc. of IEEE, Vol
77, April 89.
[64] J. L. Peterson, “Petrinets”, ACM Computing Surveys, Vol. 9, 1977.

[65] Shai Ben-David, “The global time assumption and Semantics for Concurrent Sys-
tems”, CACM 1988.

[66] Vijay K. Garg, Craig M. Chase, “Distributed Algorithms for detecting Conjunctive
Predicates”, Technical Report ECE-PDS-94-03, Parallel and Distributed Systems
Group, University of Texas, Austin, June 1994.

[67] O. Babaoglu, M. Raynal, “Specification and Verification of Dynamic Properties in
Distributed Computations”, Technical Report UBLCS-93-11, Univ. of Bologna,
Italy, May 1994.

[68] R. de Nicola, “Extensional Equivalences for Transition System”, Acta Informatica
24, pp. 211-237, Springer-Verlag 1987.

[69] D. Harel, A Pneuli, “On the development of Reactive Systems”, NATO ASI series,
Vol. F13, Logics and Models of Concurrent Systems, 1985.

[70] W. Reisig, “Petrinets with Individual Tokens”, Theoretical Computer Science, 41,
pp. 185-213, North-Holland, 1985.

233

[71] L & M. Duponcheel, “Acceptable Functional Programming System”, Acta Informat-
ica 23, 1986.

[72] G.L. Peterson, “Concurrent Reading while Writing”, ACM Transactions on Pro-
gramming Languages and Systems”, Vol. 5, No. 1, Jan 1983.

[73] P.Wolper, P. Godefroid, “Partial-order Methods for temporal verification”, In Proc.
CONCUR ‘93, LNCS 715.

[74] M. Raynal, “Distributed Algorithms and Protocols”, John Wiley, 1988.
[75] KM. Chandy, J. Misra, “Parallel Program Design”, Addison-Wesley.

[76] W.H. Kohler, “A Survey of Techniques for Synchronization and Recovery in Decen-
tralized Computer Systems”, ACM Computing Surveys, Vol. 13, NO.2, June 1981.

[77] L. Lamport, “ A simple approach to Specifying Concurrent Systems”, Communica-
tions of ACM, Jan 1989.

[78] L. Lamport, “Reasoning about Nonatomic Operations”, Communications of ACM,
1983.

[79] L. Lamport, “On Interprocess Communication, Part I: Basic Formalism; Part II:
Algorithms”, Distributed Computing, 1, pp 77-101, 1986.

[80] S. Owicki, L. Lamport, “Proving Liveness Properties of Concurrent Programs”,
ACM Transactions on Programming Languages and Systems”, July 82.

[81] G. D. Plotkin, “A Power Domain Construction”, Siam Joumnal of Distributed Com-
puting, Vol. 5, Sep 1976.

[82] B. Alpern, F.B. Schneider, “Defining Liveness”, Information Processing Letters, 21,
1985.

[83] G.R. Andrews, F.B. Schneider, “Concepts and Notations for Concurrent Program-
ming” ACM Computing Surveys, 1983.

[84] W. Reisig, “Petri Nets and Algebraic Specifications, Fundamental Study”, Theoreti-
cal Computer Science 80, 1991.

[85] L.Lamport, “Solved Problems, Unsolved Problems and Non-Problems in Concur-
rency” Proc. of Third ACM Conference on Principles of Distributed Computing”,
1984.

234

Appendix

Fig. A. Set of CFsms

—= ()

F = {Fy, Fj, Fs}
Synchronization specification:
A, C-{F.,F} ,
B.G, D, E - {F,, F3},
F - {F,, F,, F3}.

Atomic-Proposition sets:
Apy={ab,cd},

Appp = {p.q. I. s, t,u, v},
Api = {X, ¥, Z, g h}

235

Fig. B The sum machine, M corresponding to CFsms of Fig. A

236

Fig. C *M with synch. points replaced by Mp-vectors of every state

237

Fig. D *M with Mp-vectors tabulated separately

State Mp do a0 9o Xo Xo aoPoXo
a 2o po X So Co So Xo Yo AoPoYo
! Shat to Co to Zo X4 agPoX4
bo | bo Po Xo Ug do Ug 2o Z, CotoZo
Co Co So Xo fo Co o No op CotoT1
d 4 Uz vy doVv1Zo
2 002 Vo doVoJo 90 dovoQo
a, aq P1 Xy Sy CoS1X3 ho CQrth
2 axp2Xo
a as P2 Xz P X2 aP2Xo
P+ a1p1Xy X, apx
1P1Xq
Mp+(Smi1) Mp2(Sm2)
X3 CoS1X3
MpS(Sm3)

238

