
Systemtap tutorial

Frank Ch. Eigler <fche@redhat.com>

November 8, 2024

Contents

1 Introduction 2

2 Tracing 2

2.1 Where to probe . 3

2.2 What to print . 4

2.3 Exercises . 4

3 Analysis 5

3.1 Basic constructs . 6

3.2 Target variables . 6

3.3 Functions . 7

3.4 Arrays . 7

3.5 Aggregates . 9

3.6 Safety . 10

3.7 Exercises . 10

4 Tapsets 11

4.1 Automatic selection . 11

4.2 Probe point aliases . 12

4.3 Embedded C . 13

4.4 Naming conventions . 15

4.5 Exercises . 15

5 Further information 15

A Errors 16

A.1 Parse errors . 16

A.2 Type errors . 16

A.3 Symbol errors . 16

A.4 Probing errors . 17

A.5 Runtime errors . 17

1

B Acknowledgments 18

1 Introduction

Systemtap is a tool that allows developers and administrators to write and reuse simple scripts to deeply

examine the activities of a live Linux system. Data may be extracted, filtered, and summarized quickly and

safely, to enable diagnoses of complex performance or functional problems.

NOTE: This tutorial does not describe every feature available in systemtap. Please see the individual stap

manual pages for the most up-to-date information. These may be available installed on your system, or at

http://sourceware.org/systemtap/man/.

The essential idea behind a systemtap script is to name events, and to give them handlers. Whenever a
specified event occurs, the Linux kernel runs the handler as if it were a quick subroutine, then resumes.

There are several kind of events, such as entering or exiting a function, a timer expiring, or the entire
systemtap session starting or stopping. A handler is a series of script language statements that specify the

work to be done whenever the event occurs. This work normally includes extracting data from the event

context, storing them into internal variables, or printing results.

Systemtap works by translating the script to C, running the system C compiler to create a kernel module
from that. When the module is loaded, it activates all the probed events by hooking into the kernel. Then,

as events occur on any processor, the compiled handlers run. Eventually, the session stops, the hooks are
disconnected, and the module removed. This entire process is driven from a single command-line program,

stap.

cat hello-world.stp

probe begin

{

print ("hello world\n")

exit ()

}

stap hello-world.stp

hello world

Figure 1: A systemtap smoke test.

This paper assumes that you have installed systemtap and its prerequisite kernel development tools and

debugging data, so that you can run the scripts such as the simple one in Figure 1. Log on as root, or even
better, login as a user that is a member of stapdev group or as a user authorized to sudo, before running

systemtap.

2 Tracing

The simplest kind of probe is simply to trace an event. This is the effect of inserting strategically located

print statements into a program. This is often the first step of problem solving: explore by seeing a history
of what has happened.

This style of instrumentation is the simplest. It just asks systemtap to print something at each event. To

express this in the script language, you need to say where to probe and what to print there.

2

cat strace-open.stp

probe syscall.open

{

printf ("%s(%d) open (%s)\n", execname(), pid(), argstr)

}

probe timer.ms(4000) # after 4 seconds

{

exit ()

}

stap strace-open.stp

vmware-guestd(2206) open ("/etc/redhat-release", O_RDONLY)

hald(2360) open ("/dev/hdc", O_RDONLY|O_EXCL|O_NONBLOCK)

hald(2360) open ("/dev/hdc", O_RDONLY|O_EXCL|O_NONBLOCK)

hald(2360) open ("/dev/hdc", O_RDONLY|O_EXCL|O_NONBLOCK)

df(3433) open ("/etc/ld.so.cache", O_RDONLY)

df(3433) open ("/lib/tls/libc.so.6", O_RDONLY)

df(3433) open ("/etc/mtab", O_RDONLY)

hald(2360) open ("/dev/hdc", O_RDONLY|O_EXCL|O_NONBLOCK)

Figure 2: A taste of systemtap: a system-wide strace, just for the open system call.

2.1 Where to probe

Systemtap supports a number of built-in events. The library of scripts that comes with systemtap, each called

a “tapset”, may define additional ones defined in terms of the built-in family. See the stapprobes man page
for details on these and many other probe point families. All these events are named using a unified

syntax with dot-separated parameterized identifiers:

begin The startup of the systemtap session.

end The end of the systemtap session.

kernel.function("sys_open") The entry to the function named sys_open in the kernel.
syscall.close.return The return from the close system call.

module("ext3").statement(0xdeadbeef) The addressed instruction in the ext3 filesystem driver.

timer.ms(200) A timer that fires every 200 milliseconds.
timer.profile A timer that fires periodically on every CPU.

perf.hw.cache_misses A particular number of CPU cache misses have occurred.
procfs("status").read A process trying to read a synthetic file.

process("a.out").statement("*@main.c:200") Line 200 of the a.out program.

Let’s say that you would like to trace all function entries and exits in a source file, say net/socket.c in the

kernel. The kernel.function probe point lets you express that easily, since systemtap examines the kernel’s
debugging information to relate object code to source code. It works like a debugger: if you can name

or place it, you can probe it. Use kernel.function("*@net/socket.c").call for the function entries1,
and kernel.function("*@net/socket.c").return for matching exits. Note the use of wildcards in the

function name part, and the subsequent @FILENAME part. You can also put wildcards into the file name, and

even add a colon (:) and a line number, if you want to restrict the search that precisely. Since systemtap will
put a separate probe in every place that matches a probe point, a few wildcards can expand to hundreds or

thousands of probes, so be careful what you ask for.

1Without the .call qualifier, inlined function instances are also probed, but they have no corresponding .return.

3

Once you identify the probe points, the skeleton of the systemtap script appears. The probe keyword intro-

duces a probe point, or a comma-separated list of them. The following { and } braces enclose the handler
for all listed probe points.

probe kernel.function("*@net/socket.c") { }

probe kernel.function("*@net/socket.c").return { }

You can run this script as is, though with empty handlers there will be no output. Put the two lines into a

new file. Run stap -v FILE. Terminate it any time with ^C. (The -v option tells systemtap to print more

verbose messages during its processing. Try the -h option to see more options.)

2.2 What to print

Since you are interested in each function that was entered and exited, a line should be printed for each,

containing the function name. In order to make that list easy to read, systemtap should indent the lines so
that functions called by other traced functions are nested deeper. To tell each single process apart from any

others that may be running concurrently, systemtap should also print the process ID in the line.

Systemtap provides a variety of such contextual data, ready for formatting. They usually appear as function

calls within the handler, like you already saw in Figure 1. See the function::* man pages for those
functions and more defined in the tapset library, but here’s a sampling:

tid() The id of the current thread.
pid() The process (task group) id of the current thread.

uid() The id of the current user.
execname() The name of the current process.

cpu() The current cpu number.

gettimeofday_s() Number of seconds since epoch.
get_cycles() Snapshot of hardware cycle counter.

pp() A string describing the probe point being currently handled.

ppfunc() If known, the the function name in which this probe was placed.
$$vars If available, a pretty-printed listing of all local variables in scope.

print_backtrace() If possible, print a kernel backtrace.
print_ubacktrace() If possible, print a user-space backtrace.

The values returned may be strings or numbers. The print() built-in function accepts either as its sole

argument. Or, you can use the C-style printf() built-in, whose formatting argument may include %s for a

string, %d for a number. printf and other functions take comma-separated arguments. Don’t forget a "\n"

at the end. There exist more printing / formatting functions too.

A particularly handy function in the tapset library is thread_indent. Given an indentation delta parameter, it

stores internally an indentation counter for each thread (tid()), and returns a string with some generic trace
data plus an appropriate number of indentation spaces. That generic data includes a timestamp (number

of microseconds since the initial indentation for the thread), a process name and the thread id itself. It

therefore gives an idea not only about what functions were called, but who called them, and how long they
took. Figure 3 shows the finished script. It lacks a call to the exit() function, so you need to interrupt it

with ^C when you want the tracing to stop.

2.3 Exercises

1. Use the -L option to systemtap to list all the kernel functions named with the word “nit” in them.

4

cat socket-trace.stp

probe kernel.function("*@net/socket.c").call {

printf ("%s -> %s\n", thread_indent(1), ppfunc())

}

probe kernel.function("*@net/socket.c").return {

printf ("%s <- %s\n", thread_indent(-1), ppfunc())

}

stap socket-trace.stp

0 hald(2632): -> sock_poll

28 hald(2632): <- sock_poll

[...]

0 ftp(7223): -> sys_socketcall

1159 ftp(7223): -> sys_socket

2173 ftp(7223): -> __sock_create

2286 ftp(7223): -> sock_alloc_inode

2737 ftp(7223): <- sock_alloc_inode

3349 ftp(7223): -> sock_alloc

3389 ftp(7223): <- sock_alloc

3417 ftp(7223): <- __sock_create

4117 ftp(7223): -> sock_create

4160 ftp(7223): <- sock_create

4301 ftp(7223): -> sock_map_fd

4644 ftp(7223): -> sock_map_file

4699 ftp(7223): <- sock_map_file

4715 ftp(7223): <- sock_map_fd

4732 ftp(7223): <- sys_socket

4775 ftp(7223): <- sys_socketcall

[...]

Figure 3: Tracing and timing functions in net/sockets.c.

2. Trace some system calls (use syscall.NAME and .return probe points), with the same thread_indent

probe handler as in Figure 3. Print parameters using $$parms and $$return. Interpret the results.

3. Change figure 3 by removing the .call modifier from the first probe. Note how function entry and

function return now don’t match anymore. This is because now the first probe will match both normal

function entry and inlined functions. Try putting the .call modifier back and add another probe just
for probe kernel.function("*@net/socket.c").inline What printf statement can you come up

with in the probe handler to show the inlined function entries nicely in between the .call and .return

thread indented output?

3 Analysis

Pages of generic tracing text may give you enough information for exploring a system. With systemtap, it is

possible to analyze that data, to filter, aggregate, transform, and summarize it. Different probes can work
together to share data. Probe handlers can use a rich set of control constructs to describe algorithms, with

a syntax taken roughly from awk. With these tools, systemtap scripts can focus on a specific question and

provide a compact response: no grep needed.

5

3.1 Basic constructs

Most systemtap scripts include conditionals, to limit tracing or other logic to those processes or users or

whatever of interest. The syntax is simple:

if (EXPR) STATEMENT [else STATEMENT] if/else statement

while (EXPR) STATEMENT while loop
for (A; B; C) STATEMENT for loop

Scripts may use break/continue as in C. Probe handlers can return early using next as in awk. Blocks of

statements are enclosed in { and }. In systemtap, the semicolon (;) is accepted as a null statement rather
than as a statement terminator, so is only rarely2 necessary. Shell-style (#), C-style (/* */), and C++-style

(//) comments are all accepted.

Expressions look like C or awk, and support the usual operators, precedences, and numeric literals. Strings
are treated as atomic values rather than arrays of characters. String concatenation is done with the dot

("a" . "b"). Some examples:

(uid() > 100) probably an ordinary user
(execname() == "sed") current process is sed

(cpu() == 0 && gettimeofday_s() > 1140498000) after Feb. 21, 2006, on CPU 0
"hello" . " " . "world" a string in three easy pieces

Variables may be used as well. Just pick a name, assign to it, and use it in expressions. They are automatically

initialized and declared. The type of each identifier – string vs. number – is automatically inferred by

systemtap from the kinds of operators and literals used on it. Any inconsistencies will be reported as errors.
Conversion between string and number types is done through explicit function calls.

foo = gettimeofday_s() foo is a number
bar = "/usr/bin/" . execname() bar is a string

c++ c is a number
s = sprint(2345) s becomes the string ”2345”

By default, variables are local to the probe they are used in. That is, they are initialized, used, and disposed

of at each probe handler invocation. To share variables between probes, declare them global anywhere in

the script. Because of possible concurrency (multiple probe handlers running on different CPUs), each global
variable used by a probe is automatically read- or write-locked while the handler is running.

3.2 Target variables

A class of special “target variables” allow access to the probe point context. In a symbolic debugger, when
you’re stopped at a breakpoint, you can print values from the program’s context. In systemtap scripts, for

those probe points that match with specific executable point (rather than an asynchronous event like a
timer), you can do the same.

In addition, you can take their address (the & operator), pretty-print structures (the $ and $$ suffix), pretty-

print multiple variables in scope (the $$vars and related variables), or cast pointers to their types (the @cast

operator), or test their existence / resolvability (the @defined operator). Read about these in the manual
pages.

To know which variables are likely to be available, you will need to be familiar with the kernel source you

are probing. In addition, you will need to check that the compiler has not optimized those values into
unreachable nonexistence. You can use stap -L PROBEPOINT to enumerate the variables available there.

2Use them between consecutive expressions that place unary +,- or mixed pre/post ++,-- in an ambiguous manner.

6

cat timer-jiffies.stp

global count_jiffies, count_ms

probe timer.jiffies(100) { count_jiffies ++ }

probe timer.ms(100) { count_ms ++ }

probe timer.ms(12345)

{

hz=(1000*count_jiffies) / count_ms

printf ("jiffies:ms ratio %d:%d => CONFIG_HZ=%d\n",

count_jiffies, count_ms, hz)

exit ()

}

stap timer-jiffies.stp

jiffies:ms ratio 30:123 => CONFIG_HZ=243

Figure 4: Experimentally measuring CONFIG HZ.

Let’s say that you are trying to trace filesystem reads/writes to a particular device/inode. From your knowl-

edge of the kernel, you know that two functions of interest could be vfs_read and vfs_write. Each
takes a struct file * argument, inside there is either a struct dentry * or struct path * which has a

struct dentry *. The struct dentry * contains a struct inode *, and so on. Systemtap allows limited

dereferencing of such pointer chains. Two functions, user_string and kernel_string, can copy char *

target variables into systemtap strings. Figure 5 demonstrates one way to monitor a particular file (identified

by device number and inode number). The script selects the appropriate variants of dev_nr andinode_nr

based on the kernel version. This example also demonstrates passing numeric command-line arguments ($1

etc.) into scripts.

3.3 Functions

Functions are conveniently packaged reusable software: it would be a shame to have to duplicate a complex
condition expression or logging directive in every placed it’s used. So, systemtap lets you define functions

of your own. Like global variables, systemtap functions may be defined anywhere in the script. They may
take any number of string or numeric arguments (by value), and may return a single string or number.

The parameter types are inferred as for ordinary variables, and must be consistent throughout the program.

Local and global script variables are available, but target variables are not. That’s because there is no specific
debugging-level context associated with a function.

A function is defined with the keyword function followed by a name. Then comes a comma-separated

formal argument list (just a list of variable names). The { }-enclosed body consists of any list of statements,
including expressions that call functions. Recursion is possible, up to a nesting depth limit. Figure 6 displays

function syntax.

3.4 Arrays

Often, probes will want to share data that cannot be represented as a simple scalar value. Much data is

naturally tabular in nature, indexed by some tuple of thread numbers, processor ids, names, time, and so

on. Systemtap offers associative arrays for this purpose. These arrays are implemented as hash tables with
a maximum size that is fixed at startup. Because they are too large to be created dynamically for individual

probes handler runs, they must be declared as global.

7

cat inode-watch.stp

probe kernel.function ("vfs_write"),

kernel.function ("vfs_read")

{

if (@defined($file->f_path->dentry)) {

dev_nr = $file->f_path->dentry->d_inode->i_sb->s_dev

inode_nr = $file->f_path->dentry->d_inode->i_ino

} else {

dev_nr = $file->f_dentry->d_inode->i_sb->s_dev

inode_nr = $file->f_dentry->d_inode->i_ino

}

if (dev_nr == ($1 << 20 | $2) # major/minor device

&& inode_nr == $3)

printf ("%s(%d) %s 0x%x/%u\n",

execname(), pid(), ppfunc(), dev_nr, inode_nr)

}

stat -c "%D %i" /etc/crontab

fd03 133099

stap inode-watch.stp 0xfd 3 133099

more(30789) vfs_read 0xfd00003/133099

more(30789) vfs_read 0xfd00003/133099

Figure 5: Watching for reads/writes to a particular file.

Red Hat convention; see /etc/login.defs UID_MIN

function system_uid_p (u) { return u < 500 }

kernel device number assembly macro

function makedev (major,minor) { return major << 20 | minor }

function trace_common ()

{

printf("%d %s(%d)", gettimeofday_s(), execname(), pid())

no return value necessary

}

function fibonacci (i)

{

if (i < 1) return 0

else if (i < 2) return 1

else return fibonacci(i-1) + fibonacci(i-2)

}

Figure 6: Some functions of dubious utility.

global a declare global scalar or array variable

global b[400] declare array, reserving space for up to 400 tuples

The basic operations for arrays are setting and looking up elements. These are expressed in awk syntax: the

8

array name followed by an opening [bracket, a comma-separated list of index expressions, and a closing]

bracket. Each index expression may be string or numeric, as long as it is consistently typed throughout the
script.

foo [4,"hello"] ++ increment the named array slot
processusage [uid(),execname()] ++ update a statistic

times [tid()] = get_cycles() set a timestamp reference point

delta = get_cycles() - times [tid()] compute a timestamp delta

Array elements that have not been set may be fetched, and return a dummy null value (zero or an empty

string) as appropriate. However, assigning a null value does not delete the element: an explicit delete

statement is required. Systemtap provides syntactic sugar for these operations, in the form of explicit
membership testing and deletion.

if ([4,"hello"] in foo) { } membership test
delete times[tid()] deletion of a single element

delete times deletion of all elements

One final and important operation is iteration over arrays. This uses the keyword foreach. Like awk, this

creates a loop that iterates over key tuples of an array, not just values. In addition, the iteration may be sorted

by any single key or the value by adding an extra + or - code.

The break and continue statements work inside foreach loops, too. Since arrays can be large but probe

handlers must not run for long, it is a good idea to exit iteration early if possible. The limit option in the
foreach expression is one way. For simplicity, systemtap forbids any modification of an array while it is being

iterated using a foreach.

foreach (x = [a,b] in foo) { fuss_with(x) } simple loop in arbitrary sequence

foreach ([a,b] in foo+ limit 5) { } loop in increasing sequence of value, stop

after 5
foreach ([a-,b] in foo) { } loop in decreasing sequence of first key

3.5 Aggregates

When we said above that values can only be strings or numbers, we lied a little. There is a third type:

statistics aggregates, or aggregates for short. Instances of this type are used to collect statistics on numerical
values, where it is important to accumulate new data quickly (without exclusive locks) and in large volume

(storing only aggregated stream statistics). This type only makes sense for global variables, and may be

stored individually or as elements of an array.

To add a value to a statistics aggregate, systemtap uses the special operator <<<. Think of it like C++’s

<< output streamer: the left hand side object accumulates the data sample given on the right hand side.

This operation is efficient (taking a shared lock) because the aggregate values are kept separately on each
processor, and are only aggregated across processors on request.

a <<< delta_timestamp

writes[execname()] <<< count

To read the aggregate value, special functions are available to extract a selected statistical function. The

aggregate value cannot be read by simply naming it as if it were an ordinary variable. These operations take an

exclusive lock on the respective globals, and should therefore be relatively rare. The simple ones are: @min,

@max, @count, @avg, and @sum, and evaluate to a single number. In addition, histograms of the data stream
may be extracted using the @hist_log and @hist_linear. These evaluate to a special sort of array that may

9

at present3 only be printed.

@avg(a) the average of all the values accumulated into a

print(@hist_linear(a,0,100,10)) print an “ascii art” linear histogram of the same data

stream, bounds 0 . . . 100, bucket width is 10

@count(writes["zsh"]) the number of times “zsh” ran the probe handler

print(@hist_log(writes["zsh"])) print an “ascii art” logarithmic histogram of the same

data stream

3.6 Safety

The full expressivity of the scripting language raises good questions of safety. Here is a set of Q&A:

What about infinite loops? recursion? A probe handler is bounded in time. The C code generated by

systemtap includes explicit checks that limit the total number of statements executed to a small number.
A similar limit is imposed on the nesting depth of function calls. When either limit is exceeded, that

probe handler cleanly aborts and signals an error. The systemtap session is normally configured to
abort as a whole at that time.

What about running out of memory? No dynamic memory allocation whatsoever takes place during the

execution of probe handlers. Arrays, function contexts, and buffers are allocated during initialization.

These resources may run out during a session, and generally result in errors.

What about locking? If multiple probes seek conflicting locks on the same global variables, one or more
of them will time out, and be aborted. Such events are tallied as “skipped” probes, and a count is

displayed at session end. A configurable number of skipped probes can trigger an abort of the session.

What about null pointers? division by zero? The C code generated by systemtap translates potentially

dangerous operations to routines that check their arguments at run time. These signal errors if they are
invalid. Many arithmetic and string operations silently overflow if the results exceed representation

limits.

What about bugs in the translator? compiler? While bugs in the translator, or the runtime layer certainly

exist4, our test suite gives some assurance. Plus, the entire generated C code may be inspected (try the
-p3 option). Compiler bugs are unlikely to be of any greater concern for systemtap than for the kernel

as a whole. In other words, if it was reliable enough to build the kernel, it will build the systemtap
modules properly too.

Is that the whole truth? In practice, there are several weak points in systemtap and the underlying

kprobes system at the time of writing. Putting probes indiscriminately into unusually sensitive parts

of the kernel (low level context switching, interrupt dispatching) has reportedly caused crashes in the
past. We are fixing these bugs as they are found, and constructing a probe point “blocklist”, but it is

not complete.

3.7 Exercises

1. Alter the last probe in timer-jiffies.stp to reset the counters and continue reporting instead of

exiting.

3We anticipate support for indexing and looping using foreach shortly.
4See http://sourceware.org/bugzilla

10

2. Write a script that, every ten seconds, displays the top five most frequent users of open system call

during that interval.

3. Write a script that experimentally measures the speed of the get_cycles() counter on each processor.

4. Use any suitable probe point to get an approximate profile of process CPU usage: which processes/users
use how much of each CPU.

4 Tapsets

After writing enough analysis scripts for yourself, you may become known as an expert to your colleagues,

who will want to use your scripts. Systemtap makes it possible to share in a controlled manner; to build
libraries of scripts that build on each other. In fact, all of the functions (pid(), etc.) used in the scripts above

come from tapset scripts like that. A “tapset” is just a script that designed for reuse by installation into a

special directory.

4.1 Automatic selection

Systemtap attempts to resolve references to global symbols (probes, functions, variables) that are not defined

within the script by a systematic search through the tapset library for scripts that define those symbols.
Tapset scripts are installed under the default directory named /usr/share/systemtap/tapset. A user may

give additional directories with the -I DIR option. Systemtap searches these directories for script (.stp)
files.

The search process includes subdirectories that are specialized for a particular kernel version and/or archi-

tecture, and ones that name only larger kernel families. Naturally, the search is ordered from specific to

general, as shown in Figure 7.

stap -p1 -vv -e ’probe begin { }’ > /dev/null

Created temporary directory "/tmp/staplnEBh7"

Searched ’/usr/share/systemtap/tapset/2.6.15/i686/*.stp’, match count 0

Searched ’/usr/share/systemtap/tapset/2.6.15/*.stp’, match count 0

Searched ’/usr/share/systemtap/tapset/2.6/i686/*.stp’, match count 0

Searched ’/usr/share/systemtap/tapset/2.6/*.stp’, match count 0

Searched ’/usr/share/systemtap/tapset/i686/*.stp’, match count 1

Searched ’/usr/share/systemtap/tapset/*.stp’, match count 12

Pass 1: parsed user script and 13 library script(s) in 350usr/10sys/375real ms.

Running rm -rf /tmp/staplnEBh7

Figure 7: Listing the tapset search path.

When a script file is found that defines one of the undefined symbols, that entire file is added to the probing
session being analyzed. This search is repeated until no more references can become satisfied. Systemtap

signals an error if any are still unresolved.

This mechanism enables several programming idioms. First, it allows some global symbols to be defined
only for applicable kernel version/architecture pairs, and cause an error if their use is attempted on an

inapplicable host. Similarly, the same symbol can be defined differently depending on kernels, in much the

same way that different kernel include/asm/ARCH/ files contain macros that provide a porting layer.

11

Another use is to separate the default parameters of a tapset routine from its implementation. For example,

consider a tapset that defines code for relating elapsed time intervals to process scheduling activities. The
data collection code can be generic with respect to which time unit (jiffies, wall-clock seconds, cycle counts)

it can use. It should have a default, but should not require additional run-time checks to let a user choose

another. Figure 8 shows a way.

cat tapset/time-common.stp

global __time_vars

function timer_begin (name) { __time_vars[name] = __time_value () }

function timer_end (name) { return __time_value() - __time_vars[name] }

cat tapset/time-default.stp

function __time_value () { return gettimeofday_us () }

cat tapset-time-user.stp

probe begin

{

timer_begin ("bench")

for (i=0; i<100; i++) ;

printf ("%d cycles\n", timer_end ("bench"))

exit ()

}

function __time_value () { return get_ticks () } # override for greater precision

Figure 8: Providing an overrideable default.

A tapset that exports only data may be as useful as ones that exports functions or probe point aliases (see

below). Such global data can be computed and kept up-to-date using probes internal to the tapset. Any
outside reference to the global variable would incidentally activate all the required probes.

4.2 Probe point aliases

Probe point aliases allow creation of new probe points from existing ones. This is useful if the new probe

points are named to provide a higher level of abstraction. For example, the system-calls tapset defines probe

point aliases of the form syscall.open etc., in terms of lower level ones like kernel.function("sys_open").
Even if some future kernel renames sys_open, the aliased name can remain valid.

A probe point alias definition looks like a normal probe. Both start with the keyword probe and have a probe

handler statement block at the end. But where a normal probe just lists its probe points, an alias creates a
new name using the assignment (=) operator. Another probe that names the new probe point will create an

actual probe, with the handler of the alias prepended.

This prepending behavior serves several purposes. It allows the alias definition to “preprocess” the con-
text of the probe before passing control to the user-specified handler. This has several possible uses:

if ($flag1 != $flag2) next skip probe unless given condition is met
name = "foo" supply probe-describing values

var = $var extract target variable to plain local variable

Figure 9 demonstrates a probe point alias definition as well as its use. It demonstrates how a single probe
point alias can expand to multiple probe points, even to other aliases. It also includes probe point wildcard-

ing. These functions are designed to compose sensibly.

12

cat probe-alias.stp

probe syscallgroup.io = syscall.open, syscall.close,

syscall.read, syscall.write

{ groupname = "io" }

probe syscallgroup.process = syscall.fork, syscall.execve

{ groupname = "process" }

probe syscallgroup.*

{ groups [execname() . "/" . groupname] ++ }

probe end

{

foreach (eg+ in groups)

printf ("%s: %d\n", eg, groups[eg])

}

global groups

stap probe-alias.stp

05-wait_for_sys/io: 19

10-udev.hotplug/io: 17

20-hal.hotplug/io: 12

X/io: 73

apcsmart/io: 59

[...]

make/io: 515

make/process: 16

[...]

xfce-mcs-manage/io: 3

xfdesktop/io: 5

[...]

xmms/io: 7070

zsh/io: 78

zsh/process: 5

Figure 9: Classified system call activity.

4.3 Embedded C

Sometimes, a tapset needs provide data values from the kernel that cannot be extracted using ordinary
target variables ($var). This may be because the values are in complicated data structures, may require lock

awareness, or are defined by layers of macros. Systemtap provides an “escape hatch” to go beyond what

the language can safely offer. In certain contexts, you may embed plain raw C in tapsets, exchanging power
for the safety guarantees listed in section 3.6. End-user scripts may not include embedded C code, unless

systemtap is run with the -g (“guru” mode) option. Tapset scripts get guru mode privileges automatically.

Embedded C can be the body of a script function. Instead enclosing the function body statements in { and
}, use %{ and %}. Any enclosed C code is literally transcribed into the kernel module: it is up to you to make

it safe and correct. In order to take parameters and return a value, macros STAP_ARG_* and STAP_RETVALUE

13

are made available. The familiar data-gathering functions pid(), execname(), and their neighbours are all

embedded C functions. Figure 10 contains another example.

Since systemtap cannot examine the C code to infer these types, an optional5 annotation syntax is available
to assist the type inference process. Simply suffix parameter names and/or the function name with :string

or :long to designate the string or numeric type. In addition, the script may include a %{ %} block at the
outermost level of the script, in order to transcribe declarative code like #include <linux/foo.h>. These

enable the embedded C functions to refer to general kernel types.

There are a number of safety-related constraints that should be observed by developers of embedded C code.

1. Do not dereference pointers that are not known or testable valid.

2. Do not call any kernel routine that may cause a sleep or fault.

3. Consider possible undesirable recursion, where your embedded C function calls a routine that may be

the subject of a probe. If that probe handler calls your embedded C function, you may suffer infinite

regress. Similar problems may arise with respect to non-reentrant locks.

4. If locking of a data structure is necessary, use a trylock type call to attempt to take the lock. If that
fails, give up, do not block.

cat embedded-C.stp

%{

#include <linux/sched.h>

#include <linux/list.h>

%}

function task_execname_by_pid:string (pid:long) %{

struct task_struct *p;

struct list_head *_p, *_n;

list_for_each_safe(_p, _n, ¤t->tasks) {

p = list_entry(_p, struct task_struct, tasks);

if (p->pid == (int)STAP_ARG_pid)

snprintf(STAP_RETVALUE, MAXSTRINGLEN, "%s", p->comm);

}

%}

probe begin

{

printf("%s(%d)\n", task_execname_by_pid(target()), target())

exit()

}

pgrep emacs

16641

stap -g embedded-C.stp -x 16641

emacs(16641)

Figure 10: Embedded C function.

5This is only necessary if the types cannot be inferred from other sources, such as the call sites.

14

4.4 Naming conventions

Using the tapset search mechanism just described, potentially many script files can become selected for

inclusion in a single session. This raises the problem of name collisions, where different tapsets accidentally
use the same names for functions/globals. This can result in errors at translate or run time.

To control this problem, systemtap tapset developers are advised to follow naming conventions. Here is

some of the guidance.

1. Pick a unique name for your tapset, and substitute it for TAPSET below.

2. Separate identifiers meant to be used by tapset users from those that are internal implementation
artifacts.

3. Document the first set in the appropriate man pages.

4. Prefix the names of external identifiers with TAPSET if there is any likelihood of collision with other
tapsets or end-user scripts.

5. Prefix any probe point aliases with an appropriate prefix.

6. Prefix the names of internal identifiers with TAPSET .

4.5 Exercises

1. Write a tapset that implements deferred and “cancelable” logging. Export a function that enqueues a
text string (into some private array), returning an id token. Include a timer-based probe that period-

ically flushes the array to the standard log output. Export another function that, if the entry was not

already flushed, allows a text string to be cancelled from the queue. One might speculate that similar
functions and tapsets exist.

2. Create a “relative timestamp” tapset with functions return all the same values as the ones in the times-

tamp tapset, except that they are made relative to the start time of the script.

3. Create a tapset that exports a global array that contains a mapping of recently seen process ID numbers

to process names. Intercept key system calls (execve?) to update the list incrementally.

4. Send your tapset ideas to the mailing list!

5 Further information

For further information about systemtap, several sources are available.

There are man pages:

stap systemtap program usage, language summary

stappaths your systemtap installation paths

stapprobes probes / probe aliases provided by built-in tapsets
stapex a few basic example scripts

tapset::* summaries of the probes and functions in each tapset
probe::* detailed descriptions of each probe

function::* detailed descriptions of each function

There is much more documentation and sample scripts included. You may find them under /usr/share/doc/systemtap*/.

15

Then, there is the source code itself. Since systemtap is free software, you should have available the entire

source code. The source files in the tapset/ directory are also packaged along with the systemtap binary.
Since systemtap reads these files rather than their documentation, they are the most reliable way to see

what’s inside all the tapsets. Use the -v (verbose) command line option, several times if you like, to show

inner workings.

Finally, there is the project web site (http://sourceware.org/systemtap/)with several articles, an archived

public mailing list for users and developers (systemtap@sourceware.org), IRC channels, and a live GIT

source repository. Come join us!

A Errors

We explain some common systemtap error messages in this section. Most error messages include line/char-

acter numbers with which one can locate the precise location of error in the script code. There is sometimes

a subsequent or prior line that elaborates.

error at: filename:line:column: details

Many error messages contain a man-page key like this [man foo]. This indicates that more details are

available as a man page foo, so use the % man foo command to view it.

A.1 Parse errors

parse error: expected foo, saw bar . . .

The script contained a grammar error. A different type of construct was expected in the given context.

parse error: embedded code in unprivileged script
The script contained unsafe constructs such as embedded C (section 4.3), but was run without the -g

(guru mode) option. Confirm that the constructs are used safely, then try again with -g.

A.2 Type errors

semantic error: type mismatch for identifier ’foo’ . . . string vs. long
In this case, the identifier foo was previously inferred as a numeric type (“long”), but at the given point

is being used as a string. Similar messages appear if an array index or function parameter slot is used
with conflicting types.

semantic error: unresolved type for identifier ’foo’
The identifier foo was used, for example in a print, but without any operations that could assign it a

type. Similar messages may appear if a symbol is misspelled by a typo.

semantic error: Expecting symbol or array index expression
Something other than an assignable lvalue was on the left hand sign of an assignment.

A.3 Symbol errors

while searching for arity N function, semantic error: unresolved function call
The script calls a function with N arguments that does not exist. The function may exist with different

arity.

16

semantic error: array locals not supported: . . .

An array operation is present for which no matching global declaration was found. Similar messages
appear if an array is used with inconsistent arities.

semantic error: variable ’foo’ modified during ’foreach’
The array foo is being modified (being assigned to or deleted from) within an active foreach loop.

This invalid operation is also detected within a function called from within the loop.

A.4 Probing errors

semantic error: probe point mismatch at position N, while resolving probe point foo

A probe point was named that neither directly understood by systemtap, nor defined as an alias by a

tapset script. The divergence from the “tree” of probe point namespace is at position N (starting with

zero at left).

semantic error: no match for probe point, while resolving probe point foo

A probe point cannot be resolved for any of a variety of reasons. It may be a debuginfo-based probe
point such as kernel.function("foobar") where no foobar function was found. This can occur if

the script specifies a wildcard on function names, or an invalid file name or source line number.

semantic error: unresolved target-symbol expression
A target variable was referred to in a probe handler that was not resolvable. Or, a target variable is not

valid at all in a context such as a script function. This variable may have been elided by an optimizing
compiler, or may not have a suitable type, or there might just be an annoying bug somewhere. Try

again with a slightly different probe point (use statement() instead of function()) to search for a
more cooperative neighbour in the same area.

semantic error: libdwfl failure . . .

There was a problem processing the debugging information. It may simply be missing, or may have
some consistency / correctness problems. Later compilers tend to produce better debugging informa-

tion, so if you can upgrade and recompile your kernel/application, it may help.

semantic error: cannot find foo debuginfo
Similarly, suitable debugging information was not found. Check that your kernel build/installation
includes a matching version of debugging data.

A.5 Runtime errors

Usually, run-time errors cause a script to terminate. Some of these may be caught with the try { ... } catch { ... }

construct.

WARNING: Number of errors: N, skipped probes: M

Errors and/or skipped probes occurred during this run.

division by 0
The script code performed an invalid division.

aggregate element not found
An statistics extractor function other than @count was invoked on an aggregate that has not had any

values accumulated yet. This is similar to a division by zero.

aggregation overflow
An array containing aggregate values contains too many distinct key tuples at this time.

17

MAXNESTING exceeded
Too many levels of function call nesting were attempted.

MAXACTION exceeded
The probe handler attempted to execute too many statements.

kernel/user string copy fault at 0xaddr

The probe handler attempted to copy a string from kernel or user space at an invalid address.

pointer dereference fault
There was a fault encountered during a pointer dereference operation such as a target variable evalu-
ation.

B Acknowledgments

The author thanks Martin Hunt, Will Cohen, and Jim Keniston for improvement advice for this paper.

18

