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1 SYSTEMTAP OVERVIEW

1 SystemTap overview

1.1 About this guide

This guide is a comprehensive reference of SystemTap’s language constructs and syntax. The contents borrow
heavily from existing SystemTap documentation found in manual pages and the tutorial. The presentation
of information here provides the reader with a single place to find language syntax and recommended usage.
In order to successfully use this guide, you should be familiar with the general theory and operation of
SystemTap. If you are new to SystemTap, you will find the tutorial to be an excellent place to start
learning. For detailed information about tapsets, see the manual pages provided with the distribution. For
information about the entire collection of SystemTap reference material, see Section 11

1.2 Reasons to use SystemTap

SystemTap provides infrastructure to simplify the gathering of information about a running Linux kernel so
that it may be further analyzed. This analysis assists in identifying the underlying cause of a performance
or functional problem. SystemTap was designed to eliminate the need for a developer to go through the
tedious instrument, recompile, install, and reboot sequence normally required to collect this kind of data. To
do this, it provides a simple command-line interface and scripting language for writing instrumentation for
both kernel and user space. With SystemTap, developers, system administrators, and users can easily write
scripts that gather and manipulate system data that is otherwise unavailable from standard Linux tools.
Users of SystemTap will find it to be a significant improvement over older methods.

1.3 Event-action language

SystemTap’s language is strictly typed, declaration free, procedural, and inspired by dtrace and awk. Source
code points or events in the kernel are associated with handlers, which are subroutines that are executed
synchronously. These probes are conceptually similar to ”breakpoint command lists” in the GDB debugger.

There are two main outermost constructs: probes and functions. Within these, statements and expressions
use C-like operator syntax and precedence.

1.4 Sample SystemTap scripts

Following are some example scripts that illustrate the basic operation of SystemTap. For more examples, see
the examples/small demos/ directory in the source directory, the SystemTap wiki at http://sourceware.

org/systemtap/wiki/HomePage, or the SystemTap War Stories at http://sourceware.org/systemtap/

wiki/WarStories page.

1.4.1 Basic SystemTap syntax and control structures

The following code examples demonstrate SystemTap syntax and control structures.

global odds, evens

8



1 SYSTEMTAP OVERVIEW 1.4 Sample SystemTap scripts

probe begin {

# "no" and "ne" are local integers

for (i = 0; i < 10; i++) {

if (i % 2) odds [no++] = i

else evens [ne++] = i

}

delete odds[2]

delete evens[3]

exit()

}

probe end {

foreach (x+ in odds)

printf ("odds[%d] = %d", x, odds[x])

foreach (x in evens-)

printf ("evens[%d] = %d", x, evens[x])

}

This prints:

odds[0] = 1

odds[1] = 3

odds[3] = 7

odds[4] = 9

evens[4] = 8

evens[2] = 4

evens[1] = 2

evens[0] = 0

Note that all variable types are inferred, and that all locals and globals are initialized. Integers are set to 0
and strings are set to the empty string.

1.4.2 Primes between 0 and 49

function isprime (x) {

if (x < 2) return 0

for (i = 2; i < x; i++) {

if (x % i == 0) return 0

if (i * i > x) break

}

return 1

}

probe begin {

for (i = 0; i < 50; i++)

9



1.4 Sample SystemTap scripts 1 SYSTEMTAP OVERVIEW

if (isprime (i)) printf("%d\n", i)

exit()

}

This prints:

2

3

5

7

11

13

17

19

23

29

31

37

41

43

47

1.4.3 Recursive functions

function fibonacci(i) {

if (i < 1) error ("bad number")

if (i == 1) return 1

if (i == 2) return 2

return fibonacci (i-1) + fibonacci (i-2)

}

probe begin {

printf ("11th fibonacci number: %d", fibonacci (11))

exit ()

}

This prints:

11th fibonacci number: 118

Any larger number input to the function may exceed the MAXACTION or MAXNESTING limits, which
will be caught at run time and result in an error. For more about limits see Section 1.6.
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1.5 The stap command

The stap program is the front-end to the SystemTap tool. It accepts probing instructions written in its
scripting language, translates those instructions into C code, compiles this C code, and loads the resulting
kernel module into a running Linux kernel to perform the requested system trace or probe functions. You
can supply the script in a named file, from standard input, or from the command line. The SystemTap script
runs until one of the following conditions occurs:

• The user interrupts the script with a CTRL-C.

• The script executes the exit() function.

• The script encounters a sufficient number of soft errors.

• The monitored command started with the stap program’s -c option exits.

The stap command does the following:

• Translates the script

• Generates and compiles a kernel module

• Inserts the module; output to stap’s stdout

• CTRL-C unloads the module and terminates stap

For a full list of options to the stap command, see the stap(1) manual page.

1.6 Safety and security

SystemTap is an administrative tool. It exposes kernel internal data structures and potentially private user
information. It requires root privileges to actually run the kernel objects it builds using the sudo command,
applied to the staprun program.

staprun is a part of the SystemTap package, dedicated to module loading and unloading and kernel-to-user
data transfer. Since staprun does not perform any additional security checks on the kernel objects it is given,
do not give elevated privileges via sudo to untrusted users.

The translator asserts certain safety constraints. It ensures that no handler routine can run for too long,
allocate memory, perform unsafe operations, or unintentionally interfere with the kernel. Use of script
global variables is locked to protect against manipulation by concurrent probe handlers. Use of guru mode

constructs such as embedded C (see Section 3.5) can violate these constraints, leading to a kernel crash or
data corruption.

The resource use limits are set by macros in the generated C code. These may be overridden with the -D
flag. The following list describes a selection of these macros:

MAXNESTING – The maximum number of recursive function call levels. The default is 10.

MAXSTRINGLEN – The maximum length of strings. The default is 256 bytes for 32 bit machines and
512 bytes for all other machines.
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MAXTRYLOCK – The maximum number of iterations to wait for locks on global variables before declaring
possible deadlock and skipping the probe. The default is 1000.

MAXACTION – The maximum number of statements to execute during any single probe hit. The default
is 1000.

MAXMAPENTRIES – The maximum number of rows in an array if the array size is not specified
explicitly when declared. The default is 2048.

MAXERRORS – The maximum number of soft errors before an exit is triggered. The default is 0.

MAXSKIPPED – The maximum number of skipped reentrant probes before an exit is triggered. The
default is 100.

MINSTACKSPACE – The minimum number of free kernel stack bytes required in order to run a probe
handler. This number should be large enough for the probe handler’s own needs, plus a safety margin. The
default is 1024.

If something goes wrong with stap or staprun after a probe has started running, you may safely kill both
user processes, and remove the active probe kernel module with the rmmod command. Any pending trace
messages may be lost.

2 Types of SystemTap scripts

2.1 Probe scripts

Probe scripts are analogous to programs; these scripts identify probe points and associated handlers.

2.2 Tapset scripts

Tapset scripts are libraries of probe aliases and auxiliary functions.

The /usr/share/systemtap/tapset directory contains tapset scripts. While these scripts look like regular
SystemTap scripts, they cannot be run directly.

3 Components of a SystemTap script

The main construct in the scripting language identifies probes. Probes associate abstract events with a
statement block, or probe handler, that is to be executed when any of those events occur.

The following example shows how to trace entry and exit from a function using two probes.

probe kernel.function("sys_mkdir").call { log ("enter") }

probe kernel.function("sys_mkdir").return { log ("exit") }

To list the probe-able functions in the kernel, use the listing option (-l). For example:

$ stap -l ’kernel.function("*")’ | sort
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3.1 Probe definitions

The general syntax is as follows.

probe PROBEPOINT [, PROBEPOINT] { [STMT ...] }

Events are specified in a special syntax called probe points. There are several varieties of probe points defined
by the translator, and tapset scripts may define others using aliases. The provided probe points are listed
in the stapprobes(3), tapset::*(3stap), and probe::*(3stap) man pages. The STMT statement block
is executed whenever ıany of the named PROBEPOINT events occurs.

The probe handler is interpreted relative to the context of each event. For events associated with kernel code,
this context may include variables defined in the source code at that location. These target variables (or
“context variables”) are presented to the script as variables whose names are prefixed with a dollar sign ($).
They may be accessed only if the compiler used to compile the kernel preserved them, despite optimization.
This is the same constraint imposed by a debugger when working with optimized code. Other events may
have very little context.

3.2 Probe aliases

The general syntax is as follows.

probe <alias> = <probepoint> { <prologue_stmts> }

probe <alias> += <probepoint> { <epilogue_stmts> }

New probe points may be defined using aliases. A probe point alias looks similar to probe definitions, but
instead of activating a probe at the given point, it defines a new probe point name as an alias to an existing
one. New probe aliases may refer to one or more existing probe aliases. Multiple aliases may share the same
underlying probe points. The following is an example.

probe socket.sendmsg = kernel.function ("sock_sendmsg") { ... }

probe socket.do_write = kernel.function ("do_sock_write") { ... }

probe socket.send = socket.sendmsg, socket.do_write { ... }

There are two types of aliases, the prologue style and the epilogue style which are identified by the equal
sign (=) and ”+=” respectively.

A probe that uses a probe point alias will create an actual probe, with the handler of the alias pre-pended.

This pre-pending behavior serves several purposes. It allows the alias definition to pre-process the context
of the probe before passing control to the handler specified by the user. This has several possible uses,
demonstrated as follows.

# Skip probe unless given condition is met:

if ($flag1 != $flag2) next

# Supply values describing probes:

name = "foo"
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# Extract the target variable to a plain local variable:

var = $var

3.2.1 Prologue-style aliases (=)

For a prologue style alias, the statement block that follows an alias definition is implicitly added as a prologue
to any probe that refers to the alias. The following is an example.

# Defines a new probe point syscall.read, which expands to

# kernel.function("sys_read"), with the given statement as

# a prologue.

#

probe syscall.read = kernel.function("sys_read") {

fildes = $fd

}

3.2.2 Epilogue-style aliases (+=)

The statement block that follows an alias definition is implicitly added as an epilogue to any probe that
refers to the alias. It is not useful to define new variables there (since no subsequent code will see them), but
rather the code can take action based upon variables set by the prologue or by the user code. The following
is an example:

# Defines a new probe point with the given statement as an

# epilogue.

#

probe syscall.read += kernel.function("sys_read") {

if (traceme) println ("tracing me")

}

3.2.3 Probe alias usage

A probe alias is used the same way as any built-in probe type, by naming it:

probe syscall.read {

printf("reading fd=%d\n", fildes)

}

3.2.4 Alias suffixes

It is possible to include a suffix with a probe alias invocation. If only the initial part of a probe point matches
an alias, the remainder is treated as a suffix and attached to the underlying probe point(s) when the alias is
expanded. For example:
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/* Define an alias: */

probe sendrecv = tcp.sendmsg, tcp.recvmsg { ... }

/* Use the alias in its basic form: */

probe sendrecv { ... }

/* Use the alias with an additional suffix: */

probe sendrecv.return { ... }

Here, the second use of the probe alias is equivalent to writing probe tcp.sendmsg.return, tcp.recvmsg.return.

As another example, the probe points tcp.sendmsg.return and tcp.recvmsg.return are actually defined as
aliases in the tapset tcp.stp. They expand to a probe point of the form kernel.function("...").return,
so they can also be suffixed:

probe tcp.sendmsg.return.maxactive(10) {

printf("returning from sending %d bytes\n", size)

}

Here, the probe point expands to kernel.function("tcp_sendmsg").return.maxactive(10).

3.2.5 Alias suffixes and wildcards

When expanding wildcards, SystemTap generally avoids considering alias suffixes in the expansion. The
exception is when a wildcard element is encountered that does not have any ordinary expansions. Consider
the following example:

probe some_unrelated_probe = ... { ... }

probe myprobe = syscall.read { ... }

probe myprobe.test = some_unrelated_probe { ... }

probe myprobe.* { ... }

probe myprobe.ret* { ... }

Here, return would be a valid suffix for myprobe. The wildcard myprobe.* matches the ordinary alias
myprobe.test, and hence the suffix expansion myprobe.return is not included. Conversely, myprobe.ret*

does not match any ordinary aliases, so the suffix myprobe.return is included as an expansion.

3.3 Variables

Identifiers for variables and functions are alphanumeric sequences, and may include the underscore ( ) and
the dollar sign ($) characters. They may not start with a plain digit. Each variable is by default local to
the probe or function statement block where it is mentioned, and therefore its scope and lifetime is limited
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to a particular probe or function invocation. Scalar variables are implicitly typed as either string or integer.
Associative arrays also have a string or integer value, and a tuple of strings or integers serves as a key. Arrays
must be declared as global. Local arrays are not allowed.

The translator performs type inference on all identifiers, including array indexes and function parameters.
Inconsistent type-related use of identifiers results in an error.

Variables may be declared global. Global variables are shared among all probes and remain instantiated
as long as the SystemTap session. There is one namespace for all global variables, regardless of the script
file in which they are found. Because of possible concurrency limits, such as multiple probe handlers, each
global variable used by a probe is automatically read- or write-locked while the handler is running. A global
declaration may be written at the outermost level anywhere in a script file, not just within a block of code.
Global variables which are written but never read will be displayed automatically at session shutdown. The
following declaration marks var1 and var2 as global. The translator will infer a value type for each, and if
the variable is used as an array, its key types.

global var1[=<value>], var2[=<value>]

The scope of a global variable may be limited to a tapset or user script file using private keyword. The
global keyword is optional when defining a private global variable. Following declaration marks var1 and
var2 private globals.

private global var1[=<value>]

private var2[=<value>]

3.3.1 Unused variables

The SystemTap translator removes unused variables. Global variable that are never written or read are
discarded. Every local variables where the variable is only written but never read are also discarded. This
optimization prunes unused variables defined in the probe aliases, but never used in the probe handler. If
desired, this optimization can disabled with the -u option.

3.4 Auxiliary functions

General syntax:

function <name>[:<type>] ( <arg1>[:<type>], ... )[:<priority>] { <stmts> }

SystemTap scripts may define subroutines to factor out common work. Functions may take any number
of scalar arguments, and must return a single scalar value. Scalars in this context are integers or strings.
For more information on scalars, see Section 3.3 and Section 5.2. The following is an example function
declaration.

function thisfn (arg1, arg2) {

return arg1 + arg2

}
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Note the general absence of type declarations, which are inferred by the translator. If desired, a function
definition may include explicit type declarations for its return value, its arguments, or both. This is helpful
for embedded-C functions. In the following example, the type inference engine need only infer the type of
arg2, a string.

function thatfn:string(arg1:long, arg2) {

return sprintf("%d%s", arg1, arg2)

}

Functions may call others or themselves recursively, up to a fixed nesting limit. See Section 1.6.

Functions may be marked private using the private keyword to limit their scope to the tapset or user script
file they are defined in. An example definition of a private function follows:

private function three:long () { return 3 }

Functions terminating without reaching an explicit return statement will return an implicit 0 or "", deter-
mined by type inference.

Functions may be overloaded during both runtime and compile time.

Runtime overloading allows the executed function to be selected while the module is running based on
runtime conditions and is achieved using the ”next” statement in script functions and STAP NEXT macro for
embedded-C functions. For example,

function f() { if (condition) next; print("first function") }

function f() %{ STAP_NEXT; print("second function") %}

function f() { print("third function") }

During a functioncall f(), the execution will transfer to the third function if condition evaluates to true and
print ”third function”. Note that the second function is unconditionally nexted.

Parameter overloading allows the function to be executed to be selected at compile time based on the number
of arguments provided to the functioncall. For example,

function g() { print("first function") }

function g(x) { print("second function") }

g() -> "first function"

g(1) -> "second function"

Note that runtime overloading does not occur in the above example, as exactly one function will be resolved
for the functioncall. The use of a next statement inside a function while no more overloads remain will trigger
a runtime exception Runtime overloading will only occur if the functions have the same arity, functions with
the same name but different number of parameters are completely unrelated.

Execution order is determined by a priority value which may be specified. If no explicit priority is specified,
user script functions are given a higher priority than library functions. User script functions and library
functions are assigned a default priority value of 0 and 1 respectively. Functions with the same priority are
executed in declaration order. For example,
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function f():3 { if (condition) next; print("first function") }

function f():1 { if (condition) next; print("second function") }

function f():2 { print("third function") }

3.5 Embedded C

SystemTap supports a guru mode where script safety features such as code and data memory reference
protection are removed. Guru mode is set by passing the -g option to the stap command. When in guru
mode, the translator accepts C code enclosed between “%{” and “%}” markers in the top level of the script
file. The embedded C code is transcribed verbatim, without analysis, in sequence, into the top level of the
generated C code. Thus, guru mode may be useful for adding #include instructions at the top level of the
generated module, or providing auxiliary definitions for use by other embedded code.

When in guru mode, embedded C code blocks are also allowed as the body of a SystemTap function (as
described in Section 3.6), and in place of any SystemTap expression. In the latter case, the code block must
contain a valid expression according to C syntax.

Here is an example of the various permitted methods of embedded C code inclusion:

%{

#include <linux/in.h>

#include <linux/ip.h>

%} /* <-- top level */

/* Reads the char value stored at a given address: */

function __read_char:long(addr:long) %{ /* pure */

STAP_RETURN(kderef(sizeof(char), STAP_ARG_addr));

CATCH_DEREF_FAULT ();

%} /* <-- function body */

/* Determines whether an IP packet is TCP, based on the iphdr: */

function is_tcp_packet:long(iphdr) {

protocol = @cast(iphdr, "iphdr")->protocol

return (protocol == %{ IPPROTO_TCP %}) /* <-- expression */

}

3.6 Embedded C functions

General syntax:

function <name>:<type> ( <arg1>:<type>, ... )[:<priority>] %{ <C_stmts> %}

Embedded C code is permitted in a function body. In that case, the script language body is replaced
entirely by a piece of C code enclosed between “%{” and “%}” markers. The enclosed code may do anything
reasonable and safe as allowed by the C parser.

There are a number of undocumented but complex safety constraints on concurrency, resource consumption
and runtime limits that are applied to code written in the SystemTap language. These constraints are not
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applied to embedded C code, so use embedded C code with extreme caution. Be especially careful when
dereferencing pointers. Use the kread() macro to dereference any pointers that could potentially be invalid
or dangerous. If you are unsure, err on the side of caution and use kread(). The kread() macro is one of the
safety mechanisms used in code generated by embedded C. It protects against pointer accesses that could
crash the system.

For example, to access the pointer chain name = skb->dev->name in embedded C, use the following code.

struct net_device *dev;

char *name;

dev = kread(&(skb->dev));

name = kread(&(dev->name));

The memory locations reserved for input and output values are provided to a function using macros named
STAP ARG foo (for arguments named foo) and STAP RETVALUE. Errors may be signalled with STAP ERROR.
Output may be written with STAP PRINTF. The function may return early with STAP RETURN. Here are some
examples:

function integer_ops:long (val) %{

STAP_PRINTF("%d\n", STAP_ARG_val);

STAP_RETVALUE = STAP_ARG_val + 1;

if (STAP_RETVALUE == 4)

STAP_ERROR("wrong guess: %d", (int) STAP_RETVALUE);

if (STAP_RETVALUE == 3)

STAP_RETURN(0);

STAP_RETVALUE ++;

%}

function string_ops:string (val) %{

strlcpy (STAP_RETVALUE, STAP_ARG_val, MAXSTRINGLEN);

strlcat (STAP_RETVALUE, "one", MAXSTRINGLEN);

if (strcmp (STAP_RETVALUE, "three-two-one"))

STAP_RETURN("parameter should be three-two-");

%}

function no_ops () %{

STAP_RETURN(); /* function inferred with no return value */

%}

The function argument and return value types should be stated if the translator cannot infer them from
usage. The translator does not analyze the embedded C code within the function.

You should examine C code generated for ordinary script language functions to write compatible embedded-
C. Usually, all SystemTap functions and probes run with interrupts disabled, thus you cannot call functions
that might sleep within the embedded C.

3.7 Embedded C pragma comments

Embedded C blocks may contain various markers to assert optimization and safety properties.
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• /* pure */ means that the C code has no side effects and may be elided entirely if its value is not
used by script code.

• /* stable */ means that the C code always has the same value (in any given probe handler invoca-
tion), so repeated calls may be automatically replaced by memoized values. Such functions must take
no parameters, and also be /* pure */.

• /* unprivileged */ means that the C code is so safe that even unprivileged users are permitted to
use it. (This is useful, in particular, to define an embedded-C function inside a tapset that may be
used by unprivileged code.)

• /* myproc-unprivileged */ means that the C code is so safe that even unprivileged users are per-
mitted to use it, provided that the target of the current probe is within the user’s own process.

• /* guru */ means that the C code is so unsafe that a systemtap user must specify -g (guru mode) to
use this, even if the C code is being exported from a tapset.

• /* unmangled */, used in an embedded-C function, means that the legacy (pre-1.8) argument ac-
cess syntax should be made available inside the function. Hence, in addition to STAP_ARG_foo and
STAP_RETVALUE one can use THIS->foo and THIS->__retvalue respectively inside the function. This
is useful for quickly migrating code written for SystemTap version 1.7 and earlier.

• /* unmodified-fnargs */ in an embedded-C function, means that the function arguments are not
modified inside the function body.

• /* string */ in embedded-C expressions only, means that the expression has const char * type and
should be treated as a string value, instead of the default long numeric.

3.8 Accessing script level global variables

Script level global variables may be accessed in embedded-C functions and blocks. To read or write the global
variable var, the /* pragma:read:var */ or /* pragma:write:var */ marker must be first placed in the
embedded-C function or block. This provides the macros STAP_GLOBAL_GET_* and STAP_GLOBAL_SET_*

macros to allow reading and writing, respectively. For example:

global var

global var2[100]

function increment() %{

/* pragma:read:var */ /* pragma:write:var */

/* pragma:read:var2 */ /* pragma:write:var2 */

STAP_GLOBAL_SET_var(STAP_GLOBAL_GET_var()+1); //var++

STAP_GLOBAL_SET_var2(1, 1, STAP_GLOBAL_GET_var2(1, 1)+1); //var2[1,1]++

%}

Variables may be read and set in both embedded-C functions and expressions. Strings returned from
embedded-C code are decayed to pointers. Variables must also be assigned at script level to allow for
type inference. Map assignment does not return the value written, so chaining does not work.
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4 Probe points

4.1 General syntax

The general probe point syntax is a dotted-symbol sequence. This divides the event namespace into parts,
analogous to the style of the Domain Name System. Each component identifier is parameterized by a string
or number literal, with a syntax analogous to a function call.

The following are all syntactically valid probe points.

kernel.function("foo")

kernel.function("foo").return

module{"ext3"}.function("ext3_*")

kernel.function("no_such_function") ?

syscall.*

end

timer.ms(5000)

Probes may be broadly classified into synchronous or asynchronous. A synchronous event occurs when any
processor executes an instruction matched by the specification. This gives these probes a reference point
(instruction address) from which more contextual data may be available. Other families of probe points
refer to asynchronous events such as timers, where no fixed reference point is related. Each probe point
specification may match multiple locations, such as by using wildcards or aliases, and all are probed. A
probe declaration may contain several specifications separated by commas, which are all probed.

4.1.1 Prefixes

Prefixes specify the probe target, such as kernel, module, timer, and so on.

4.1.2 Suffixes

Suffixes further qualify the point to probe, such as .return for the exit point of a probed function. The
absence of a suffix implies the function entry point.

4.1.3 Wildcarded file names, function names

A component may include an asterisk (*) character, which expands to other matching probe points. An
example follows.

kernel.syscall.*

kernel.function("sys_*)

4.1.4 Optional probe points

A probe point may be followed by a question mark (?) character, to indicate that it is optional, and that
no error should result if it fails to expand. This effect passes down through all levels of alias or wildcard
expansion.
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The following is the general syntax.

kernel.function("no_such_function") ?

4.1.5 Brace expansion

Brace expansion is a mechanism which allows a list of probe points to be generated. It is very similar to
shell expansion. A component may be surrounded by a pair of curly braces to indicate that the comma-
separated sequence of one or more subcomponents will each constitute a new probe point. The braces may
be arbitrarily nested. The ordering of expanded results is based on product order.

The question mark (?), exclamation mark (!) indicators and probe point conditions may not be placed in
any expansions that are before the last component.

The following is an example of brace expansion.

syscall.{write,read}

# Expands to

syscall.write, syscall.read

{kernel,module("nfs")}.function("nfs*")!

# Expands to

kernel.function("nfs*")!, module("nfs").function("nfs*")!

4.2 Built-in probe point types (DWARF probes)

This family of probe points uses symbolic debugging information for the target kernel or module, as may
be found in executables that have not been stripped, or in the separate debuginfo packages. They allow
logical placement of probes into the execution path of the target by specifying a set of points in the source
or object code. When a matching statement executes on any processor, the probe handler is run in that
context.

Points in a kernel are identified by module, source file, line number, function name or some combination of
these.

Here is a list of probe point specifications currently supported:

kernel.function(PATTERN)

kernel.function(PATTERN).call

kernel.function(PATTERN).return

kernel.function(PATTERN).return.maxactive(VALUE)

kernel.function(PATTERN).inline

kernel.function(PATTERN).label(LPATTERN)

module(MPATTERN).function(PATTERN)

module(MPATTERN).function(PATTERN).call

module(MPATTERN).function(PATTERN).return.maxactive(VALUE)

module(MPATTERN).function(PATTERN).inline

kernel.statement(PATTERN)

kernel.statement(ADDRESS).absolute

22



4 PROBE POINTS 4.2 Built-in probe point types (DWARF probes)

module(MPATTERN).statement(PATTERN)

The .function variant places a probe near the beginning of the named function, so that parameters are
available as context variables.

The .return variant places a probe at the moment of return from the named function, so the return value
is available as the $return context variable. The entry parameters are also available, though the function
may have changed their values. Return probes may be further qualified with .maxactive, which specifies
how many instances of the specified function can be probed simultaneously. You can leave off .maxactive
in most cases, as the default (KRETACTIVE) should be sufficient. However, if you notice an excessive
number of skipped probes, try setting .maxactive to incrementally higher values to see if the number of
skipped probes decreases.

The .inline modifier for .function filters the results to include only instances of inlined functions. The .call
modifier selects the opposite subset. The .exported modifier filters the results to include only exported
functions. Inline functions do not have an identifiable return point, so .return is not supported on .inline
probes.

The .statement variant places a probe at the exact spot, exposing those local variables that are visible
there.

In the above probe descriptions, MPATTERN stands for a string literal that identifies the loaded kernel
module of interest and LPATTERN stands for a source program label. Both MPATTERN and LPATTERN
may include asterisk (*), square brackets ”[]”, and question mark (?) wildcards.

PATTERN stands for a string literal that identifies a point in the program. It is composed of three parts:

1. The first part is the name of a function, as would appear in the nm program’s output. This part may
use the asterisk and question mark wildcard operators to match multiple names.

2. The second part is optional, and begins with the ampersand (@) character. It is followed by the path
to the source file containing the function, which may include a wildcard pattern, such as mm/slab*. In
most cases, the path should be relative to the top of the linux source directory, although an absolute
path may be necessary for some kernels. If a relative pathname doesn’t work, try absolute.

3. The third part is optional if the file name part was given. It identifies the line number in the source
file, preceded by a “:” or “+”. The line number is assumed to be an absolute line number if preceded
by a “:”, or relative to the entry of the function if preceded by a “+”. All the lines in the function can
be matched with “:*”. A range of lines x through y can be matched with “:x-y”.

Alternately, specify PATTERN as a numeric constant to indicate a relative module address or an absolute
kernel address.

Some of the source-level variables, such as function parameters, locals, or globals visible in the compilation
unit, are visible to probe handlers. Refer to these variables by prefixing their name with a dollar sign within
the scripts. In addition, a special syntax allows limited traversal of structures, pointers, arrays, taking the
address of a variable or pretty printing a whole structure.

$var refers to an in-scope variable var. If it is a type similar to an integer, it will be cast to a 64-bit
integer for script use. Pointers similar to a string (char *) are copied to SystemTap string values by the
kernel string() or user string() functions.

@var("varname") is an alternative syntax for $varname. It can also be used to access global variables
in a particular compile unit (CU). @var("varname@src/file.c") refers to the global (either file local or
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external) variable varname defined when the file src/file.c was compiled. The CU in which the variable is
resolved is the first CU in the module of the probe point which matches the given file name at the end
and has the shortest file name path (e.g. given @var("foo@bar/baz.c") and CUs with file name paths
src/sub/module/bar/baz.c and src/bar/baz.c the second CU will be chosen to resolve foo).

The notation @var("varname", "/path/to/exe-or-so) is also supported to explicitly specify an executable
or library file path in which the global or top-level static variable resides.

$var->field or @var("var@file.c")->field traverses a structure’s field. The indirection operator may
be repeated to follow additional levels of pointers.

$var[N] or @var("var@file.c")[N] indexes into an array. The index is given with a literal number.

&$var or &@var("var@file.c") provides the address of a variable as a long. It can also be used in com-
bination with field access or array indexing to provide the address of a particular field or an element in an
array with &var->field, &@var("var@file.c")[N] or a combination of those accessors.

Using a single $ or a double $$ suffix provides a shallow or deep string representation of the variable data
type. Using a single $, as in $var$, will provide a string that only includes the values of all basic type values
of fields of the variable structure type but not any nested complex type values (which will be represented
with {...}). Using a double $$, as in @var("var")$$ will provide a string that also includes all values of
nested data types.

$$vars expands to a character string that is equivalent to sprintf("parm1=%x ... parmN=%x var1=%x

... varN=%x", $parm1, ..., $parmN, $var1, ..., $varN)

$$locals expands to a character string that is equivalent to sprintf("var1=%x ... varN=%x", $var1,

..., $varN)

$$parms expands to a character string that is equivalent to sprintf("parm1=%x ... parmN=%x", $parm1,

..., $parmN)

4.2.1 kernel.function, module().function

The .function variant places a probe near the beginning of the named function, so that parameters are
available as context variables.

General syntax:

kernel.function("func[@file]")

module("modname").function("func[@file]")

Examples:

# Refers to all kernel functions with "init" or "exit"

# in the name:

kernel.function("*init*"), kernel.function("*exit*")

# Refers to any functions within the "kernel/time.c"

# file that span line 240:

kernel.function("*@kernel/time.c:240")
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# Refers to all functions in the ext3 module:

module("ext3").function("*")

4.2.2 kernel.statement, module().statement

The .statement variant places a probe at the exact spot, exposing those local variables that are visible
there.

General syntax:

kernel.statement("func@file:linenumber")

module("modname").statement("func@file:linenumber")

Example:

# Refers to the statement at line 296 within the

# kernel/time.c file:

kernel.statement("*@kernel/time.c:296")

# Refers to the statement at line bio_init+3 within the fs/bio.c file:

kernel.statement("bio_init@fs/bio.c+3")

4.3 Function return probes

The .return variant places a probe at the moment of return from the named function, so that the return
value is available as the $return context variable. The entry parameters are also accessible in the context of
the return probe, though their values may have been changed by the function. Inline functions do not have
an identifiable return point, so .return is not supported on .inline probes.

4.4 DWARF-less probing

In the absence of debugging information, you can still use the kprobe family of probes to examine the entry
and exit points of kernel and module functions. You cannot look up the arguments or local variables of a
function using these probes. However, you can access the parameters by following this procedure:

When you’re stopped at the entry to a function, you can refer to the function’s arguments by number. For
example, when probing the function declared:

asmlinkage ssize_t sys_read(unsigned int fd, char __user * buf, size_t

count)

You can obtain the values of fd, buf, and count, respectively, as uint arg(1), pointer arg(2), and
ulong arg(3). In this case, your probe code must first call asmlinkage(), because on some architectures
the asmlinkage attribute affects how the function’s arguments are passed.

When you’re in a return probe, $return isn’t supported without DWARF, but you can call returnval()

to get the value of the register in which the function value is typically returned, or call returnstr() to get
a string version of that value.
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And at any code probepoint, you can call register("regname") to get the value of the specified CPU register
when the probe point was hit. u register("regname") is like register("regname"), but interprets the
value as an unsigned integer.

SystemTap supports the following constructs:

kprobe.function(FUNCTION)

kprobe.function(FUNCTION).return

kprobe.module(NAME).function(FUNCTION)

kprobe.module(NAME).function(FUNCTION).return

kprobe.statement(ADDRESS).absolute

Use .function probes for kernel functions and .module probes for probing functions of a specified module.
If you do not know the absolute address of a kernel or module function, use .statement probes. Do not use
wildcards in FUNCTION and MODULE names. Wildcards cause the probe to not register. Also, statement
probes are available only in guru mode.

4.5 Userspace probing

Support for userspace probing is supported on kernels that are configured to include the utrace or uprobes
extensions.

4.5.1 Begin/end variants

Constructs:

process.begin

process("PATH").begin

process(PID).begin

process.thread.begin

process("PATH").thread.begin

process(PID).thread.begin

process.end

process("PATH").end

process(PID).end

process.thread.end

process("PATH").thread.end

process(PID).thread.end

The .begin variant is called when a new process described by PID or PATH is created. If no PID or PATH

argument is specified (for example process.begin), the probe flags any new process being spawned.

The .thread.begin variant is called when a new thread described by PID or PATH is created.

The .end variant is called when a process described by PID or PATH dies.

The .thread.end variant is called when a thread described by PID or PATH dies.
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4.5.2 Syscall variants

Constructs:

process.syscall

process("PATH").syscall

process(PID).syscall

process.syscall.return

process("PATH").syscall.return

process(PID).syscall.return

The .syscall variant is called when a thread described by PID or PATH makes a system call. The system
call number is available in the $syscall context variable. The first six arguments of the system call are
available in the $argN parameter, for example $arg1, $arg2, and so on.

The .syscall.return variant is called when a thread described by PID or PATH returns from a system call.
The system call number is available in the $syscall context variable. The return value of the system call
is available in the $return context variable.

4.5.3 Function/statement variants

Constructs:

process("PATH").function("NAME")

process("PATH").statement("*@FILE.c:123")

process("PATH").function("*").return

process("PATH").function("myfun").label("foo")

Full symbolic source-level probes in userspace programs and shared libraries are supported. These are exactly
analogous to the symbolic DWARF-based kernel or module probes described previously and expose similar
contextual $-variables. See Section 4.2 for more information

Here is an example of prototype symbolic userspace probing support:

# stap -e ’probe process("ls").function("*").call {

log (probefunc()." ".$$parms)

}’ \

-c ’ls -l’

To run, this script requires debugging information for the named program and utrace support in the kernel.
If you see a ”pass 4a-time” build failure, check that your kernel supports utrace.

4.5.4 Absolute variant

A non-symbolic probe point such as process(PID).statement(ADDRESS).absolute is analogous to
kernel.statement(ADDRESS).absolute in that both use raw, unverified virtual addresses and provide no
$variables. The target PID parameter must identify a running process and ADDRESS must identify a valid
instruction address. All threads of the listed process will be probed. This is a guru mode probe.
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4.5.5 Process probe paths

For all process probes, PATH names refer to executables that are searched the same way that shells do:
the explicit path specified if the path name begins with a slash (/) character sequence; otherwise $PATH is
searched. For example, the following probe syntax:

probe process("ls").syscall {}

probe process("./a.out").syscall {}

works the same as:

probe process("/bin/ls").syscall {}

probe process("/my/directory/a.out").syscall {}

If a process probe is specified without a PID or PATH parameter, all user threads are probed. However, if
systemtap is invoked in target process mode, process probes are restricted to the process hierarchy associated
with the target process. If stap is running in --unprivileged mode, only processes owned by the current
user are selected.

4.5.6 Target process mode

Target process mode (invoked with stap -c CMD or -x PID) implicitly restricts all process.* probes to
the given child process. It does not affect kernel.* or other probe types. The CMD string is normally run
directly, rather than from a “/bin/sh -c” sub-shell, since utrace and uprobe probes receive a fairly ”clean”
event stream. If meta-characters such as redirection operators are present in CMD, “/bin/sh -c CMD” is still
used, and utrace and uprobe probes will receive events from the shell. For example:

% stap -e ’probe process.syscall, process.end {

printf("%s %d %s\n", execname(), pid(), pp())}’ \

-c ls

Here is the output from this command:

ls 2323 process.syscall

ls 2323 process.syscall

ls 2323 process.end

If PATH names a shared library, all processes that map that shared library can be probed. If dwarf debugging
information is installed, try using a command with this syntax:

probe process("/lib64/libc-2.8.so").function("....") { ... }

This command probes all threads that call into that library. Typing “stap -c CMD” or “stap -x PID”
restricts this to the target command and descendants only. You can use $$vars and others. You can provide
the location of debug information to the stap command with the -d DIRECTORY option. To qualify a probe
point to a location in a library required by a particular process try using a command with this syntax:

probe process("...").library("...").function("....") { ... }
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The library name may use wildcards.

The first syntax in the following will probe the functions in the program linkage table of a particular process.
The second syntax will also add the program linkage tables of libraries required by that process. .plt(”...”)
can be specified to match particular plt entries.

probe process("...").plt { ... }

probe process("...").plt process("...").library("...").plt { ... }

4.5.7 Static userspace probing

You can probe symbolic static instrumentation compiled into programs and shared libraries with the following
syntax:

process("PATH").mark("LABEL")

The .mark variant is called from a static probe defined in the application by STAP PROBE1(handle,LABEL,arg1).
STAP PROBE1 is defined in the sdt.h file. The parameters are:

Parameter Definition
handle the application handle
LABEL corresponds to the .mark argument
arg1 the argument

Use STAP PROBE1 for probes with one argument. Use STAP PROBE2 for probes with 2 arguments, and so on.
The arguments of the probe are available in the context variables $arg1, $arg2, and so on.

As an alternative to the STAP PROBE macros, you can use the dtrace script to create custom macros. The
sdt.h file also provides dtrace compatible markers through DTRACE PROBE and an associated python dtrace

script. You can use these in builds based on dtrace that need dtrace -h or -G functionality.

4.6 Java probes

Support for probing Java methods is available using Byteman as a backend. Byteman is an instrumentation
tool from the JBoss project which systemtap can use to monitor invocations for a specific method or line in
a Java program.

Systemtap does so by generating a Byteman script listing the probes to instrument and then invoking the
Byteman bminstall utility. A custom option -D OPTION (see the Byteman documentation for more details)
can be passed to bminstall by invoking systemtap with option -J OPTION. The systemtap option -j is also
provided as a shorthand for -J org.jboss.byteman.compile.to.bytecode.

This Java instrumentation support is currently a prototype feature with major limitations: Java probes
attach only to one Java process at a time; other Java processes beyond the first one to be observed are
ignored. Moreover, Java probing currently does not work across users; the stap script must run (with
appropriate permissions) under the same user as the Java process being probed. (Thus a stap script under
root currently cannot probe Java methods in a non-root-user Java process.)

There are four probe point variants supported by the translator:

java("PNAME").class("CLASSNAME").method("PATTERN")
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java("PNAME").class("CLASSNAME").method("PATTERN").return

java(PID).class("CLASSNAME").method("PATTERN")

java(PID).class("CLASSNAME").method("PATTERN").return

The first two probe points refer to Java processes by the name of the Java process. The PATTERN parameter
specifies the signature of the Java method to probe. The signature must consist of the exact name of the
method, followed by a bracketed list of the types of the arguments, for instance myMethod(int,double,Foo).
Wildcards are not supported.

The probe can be set to trigger at a specific line within the method by appending a line number with colon,
just as in other types of probes: myMethod(int,double,Foo):245.

The CLASSNAME parameter identifies the Java class the method belongs to, either with or without the
package qualification. By default, the probe only triggers on descendants of the class that do not override
the method definition of the original class. However, CLASSNAME can take an optional caret prefix, as
in class("^org.my.MyClass"), which specifies that the probe should also trigger on all descendants of
MyClass that override the original method. For instance, every method with signature foo(int) in program
org.my.MyApp can be probed at once using

java("org.my.MyApp").class("^java.lang.Object").method("foo(int)")

The last two probe points work analogously, but refer to Java processes by PID. (PIDs for already running
processes can be obtained using the jps utility.)

Context variables defined within java probes include $provider (which identifies the class providing the
definition of the triggered method) and $name (which gives the signature of the method). Arguments to the
method can be accessed using context variables $arg1$ through $arg10, for up to the first 10 arguments of
a method.

4.7 PROCFS probes

These probe points allow procfs pseudo-files in /proc/systemtap/MODNAME to be created, read and written.
Specify the name of the systemtap module as MODNAME . There are four probe point variants supported by
the translator:

procfs("PATH").read

procfs("PATH").write

procfs.read

procfs.write

PATH is the file name to be created, relative to /proc/systemtap/MODNAME. If no PATH is specified (as in the
last two variants in the previous list), PATH defaults to ”command”.

When a user reads /proc/systemtap/MODNAME/PATH, the corresponding procfs read probe is triggered. As-
sign the string data to be read to a variable named $value, as follows:

procfs("PATH").read { $value = "100\n" }

When a user writes into /proc/systemtap/MODNAME/PATH, the corresponding procfs write probe is triggered.
The data the user wrote is available in the string variable named $value, as follows:

procfs("PATH").write { printf("User wrote: %s", $value) }
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4.8 Marker probes

This family of probe points connects to static probe markers inserted into the kernel or a module. These
markers are special macro calls in the kernel that make probing faster and more reliable than with DWARF-
based probes. DWARF debugging information is not required to use probe markers.

Marker probe points begin with a kernel prefix which identifies the source of the symbol table used for
finding markers. The suffix names the marker itself: mark.("MARK"). The marker name string, which can
contain wildcard characters, is matched against the names given to the marker macros when the kernel or
module is compiled. Optionally, you can specify format("FORMAT"). Specifying the marker format string
allows differentiation between two markers with the same name but different marker format strings.

The handler associated with a marker probe reads any optional parameters specified at the macro call site
named $arg1 through $argNN, where NN is the number of parameters supplied by the macro. Number and
string parameters are passed in a type-safe manner.

The marker format string associated with a marker is available in $format. The marker name string is
available in $name.

Here are the marker probe constructs:

kernel.mark("MARK")

kernel.mark("MARK").format("FORMAT")

For more information about marker probes, see http://sourceware.org/systemtap/wiki/UsingMarkers.

4.9 Tracepoints

This family of probe points hooks to static probing tracepoints inserted into the kernel or kernel modules. As
with marker probes, these tracepoints are special macro calls inserted by kernel developers to make probing
faster and more reliable than with DWARF-based probes. DWARF debugging information is not required
to probe tracepoints. Tracepoints have more strongly-typed parameters than marker probes.

Tracepoint probes begin with kernel. The next part names the tracepoint itself: trace("name"). The
tracepoint name string, which can contain wildcard characters, is matched against the names defined by the
kernel developers in the tracepoint header files.

The handler associated with a tracepoint-based probe can read the optional parameters specified at the
macro call site. These parameters are named according to the declaration by the tracepoint author. For
example, the tracepoint probe kernel.trace("sched switch") provides the parameters $rq, $prev, and
$next. If the parameter is a complex type such as a struct pointer, then a script can access fields with the
same syntax as DWARF $target variables. Tracepoint parameters cannot be modified; however, in guru
mode a script can modify fields of parameters.

The name of the tracepoint is available in $$name, and a string of name=value pairs for all parameters of
the tracepoint is available in $$vars or $$parms.

4.10 Syscall probes

The syscall.* aliases define several hundred probes. They use the following syntax:
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syscall.NAME

syscall.NAME.return

Generally, two probes are defined for each normal system call as listed in the syscalls(2) manual page: one
for entry and one for return. System calls that never return do not have a corresponding .return probe.

Each probe alias defines a variety of variables. Look at the tapset source code to find the most reliable
source of variable definitions. Generally, each variable listed in the standard manual page is available as a
script-level variable. For example, syscall.open exposes file name, flags, and mode. In addition, a standard
suite of variables is available at most aliases, as follows:

• argstr: A pretty-printed form of the entire argument list, without parentheses.

• name: The name of the system call.

• retstr: For return probes, a pretty-printed form of the system call result.

Not all probe aliases obey all of these general guidelines. Please report exceptions that you encounter as a
bug.

4.11 Timer probes

You can use intervals defined by the standard kernel jiffies timer to trigger probe handlers asynchronously.
A jiffy is a kernel-defined unit of time typically between 1 and 60 msec. Two probe point variants are
supported by the translator:

timer.jiffies(N)

timer.jiffies(N).randomize(M)

The probe handler runs every N jiffies. If the randomize component is given, a linearly distributed random
value in the range [-M . . . +M] is added to N every time the handler executes. N is restricted to a reasonable
range (1 to approximately 1,000,000), and M is restricted to be less than N. There are no target variables
provided in either context. Probes can be run concurrently on multiple processors.

Intervals may be specified in units of time. There are two probe point variants similar to the jiffies timer:

timer.ms(N)

timer.ms(N).randomize(M)

Here, N and M are specified in milliseconds, but the full options for units are seconds (s or sec), milliseconds
(ms or msec), microseconds (us or usec), nanoseconds (ns or nsec), and hertz (hz). Randomization is not
supported for hertz timers.

The resolution of the timers depends on the target kernel. For kernels prior to 2.6.17, timers are limited to
jiffies resolution, so intervals are rounded up to the nearest jiffies interval. After 2.6.17, the implementation
uses hrtimers for greater precision, though the resulting resolution will be dependent upon architecture. In
either case, if the randomize component is given, then the random value will be added to the interval before
any rounding occurs.

Profiling timers are available to provide probes that execute on all CPUs at each system tick. This probe
takes no parameters, as follows.
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timer.profile.tick

Full context information of the interrupted process is available, making this probe suitable for implementing
a time-based sampling profiler.

It is recommended to use the tapset probe timer.profile rather than timer.profile.tick. This probe
point behaves identically to timer.profile.tick when the underlying functionality is available, and falls
back to using perf.sw.cpu_clock on some recent kernels which lack the corresponding profile timer facility.

The following is an example of timer usage.

# Refers to a periodic interrupt, every 1000 jiffies:

timer.jiffies(1000)

# Fires every 5 seconds:

timer.sec(5)

# Refers to a periodic interrupt, every 1000 +/- 200 jiffies:

timer.jiffies(1000).randomize(200)

4.12 Special probe points

The probe points begin and end are defined by the translator to refer to the time of session startup and
shutdown. There are no target variables available in either context.

4.12.1 begin

The begin probe is the start of the SystemTap session. All begin probe handlers are run during the startup
of the session.

4.12.2 end

The end probe is the end of the SystemTap session. All end probes are run during the normal shutdown of
a session, such as in the aftermath of a SystemTap exit function call, or an interruption from the user. In
the case of an shutdown triggered by error, end probes are not run.

4.12.3 error

The error probe point is similar to the end probe, except the probe handler runs when the session ends if
an error occurred. In this case, an end probe is skipped, but each error probe is still attempted. You can
use an error probe to clean up or perform a final action on script termination.

Here is a simple example:

probe error { println ("Oops, errors occurred. Here’s a report anyway.")

foreach (coin in mint) { println (coin) } }
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4.12.4 begin, end, and error probe sequence

begin, end, and error probes can be specified with an optional sequence number that controls the order in
which they are run. If no sequence number is provided, the sequence number defaults to zero and probes
are run in the order that they occur in the script file. Sequence numbers may be either positive or negative,
and are especially useful for tapset writers who want to do initialization in a begin probe. The following
are examples.

# In a tapset file:

probe begin(-1000) { ... }

# In a user script:

probe begin { ... }

The user script begin probe defaults to sequence number zero, so the tapset begin probe will run first.

4.12.5 never

The never probe point is defined by the translator to mean never. Its statements are analyzed for symbol
and type correctness, but its probe handler is never run. This probe point may be useful in conjunction with
optional probes. See Section 4.1.4.

5 Language elements

5.1 Identifiers

Identifiers are used to name variables and functions. They are an alphanumeric sequence that may include
the underscore ( ) and dollar sign ($) characters. They have the same syntax as C identifiers, except that
the dollar sign is also a legal character. Identifiers that begin with a dollar sign are interpreted as references
to variables in the target software, rather than to SystemTap script variables. Identifiers may not start with
a plain digit.

5.2 Data types

The SystemTap language includes a small number of data types, but no type declarations. A variable’s
type is inferred from its use. To support this inference, the translator enforces consistent typing of function
arguments and return values, array indices and values. There are no implicit type conversions between
strings and numbers. Inconsistent type-related use of an identifier signals an error.

5.2.1 Literals

Literals are either strings or integers. Literal integers can be expressed as decimal, octal, or hexadecimal,
using C notation. Type suffixes (e.g., L or U ) are not used.
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5.2.2 Integers

Integers are decimal, hexadecimal, or octal, and use the same notation as in C. Integers are 64-bit signed
quantities, although the parser also accepts (and wraps around) values above positive 263 but below 264.

5.2.3 Strings

Strings are enclosed in quotation marks (“string”), and pass through standard C escape codes with back-
slashes. A string literal may be split into several pieces, which are glued together, as follows.

str1 = "foo" "bar"

/* --> becomes "foobar" */

str2 = "a good way to do a multi-line\n"

"string literal"

/* --> becomes "a good way to do a multi-line\nstring literal" */

str3 = "also a good way to " @1 " splice command line args"

/* --> becomes "also a good way to foo splice command line args",

assuming @1 is given as foo on the command line */

Observe that script arguments can also be glued into a string literal.

Strings are limited in length to MAXSTRINGLEN. For more information about this and other limits, see
Section 1.6.

5.2.4 Associative arrays

See Section 7

5.2.5 Statistics

See Section 8

5.3 Semicolons

The semicolon is the null statement, or do nothing statement. It is optional, and useful as a separator
between statements to improve detection of syntax errors and to reduce ambiguities in grammar.

5.4 Comments

Three forms of comments are supported, as follows.

# ... shell style, to the end of line

// ... C++ style, to the end of line

/* ... C style ... */
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5.5 Whitespace

As in C, spaces, tabs, returns, newlines, and comments are treated as whitespace. Whitespace is ignored by
the parser.

5.6 Expressions

SystemTap supports a number of operators that use the same general syntax, semantics, and precedence as
in C and awk. Arithmetic is performed per C rules for signed integers. If the parser detects division by zero
or an overflow, it generates an error. The following subsections list these operators.

5.6.1 Binary numeric operators

* / % + - > > > > > < < & ^ | && ||

5.6.2 Binary string operators

. (string concatenation)

5.6.3 Numeric assignment operators

= *= /= %= += -= > >= < <= &= ^= |=

5.6.4 String assignment operators

= .=

5.6.5 Unary numeric operators

+ - ! ~ ++ --

5.6.6 Numeric & string comparison, regular expression matching operators

< > <= >= == != =~ !~

The =~ and !~ operators perform regular expression matching. The second operand must be a string literal
containing a syntactically valid regular expression. The =~ operator returns 1 on a successful match and 0 on
a failed match. The !~ operator returns 1 on a failed match. The regular expression syntax supports most
of the features of POSIX Extended Regular Expressions, except for subexpression reuse (\1) functionality.
After a successful match, the matched substring and subexpressions can be extracted using the matched

tapset function. The ngroups tapset function returns the number of subexpressions in the last successfully
matched regular expression.
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5.6.7 Ternary operator

cond ? exp1 : exp2

5.6.8 Grouping operator

( exp )

5.6.9 Function call

General syntax:

fn ([ arg1, arg2, ... ])

5.6.10 $ptr->member

ptr is a kernel pointer available in a probed context.

5.6.11 Pointer typecasting

Typecasting is supported using the @cast() operator. A script can define a pointer type for a long value,
then access type members using the same syntax as with $target variables. After a pointer is saved into
a script integer variable, the translator loses the necessary type information to access members from that
pointer. The @cast() operator tells the translator how to read a pointer.

The following statement interprets p as a pointer to a struct or union named type name and dereferences
the member value:

@cast(p, "type_name"[, "module"])->member

The optional module parameter tells the translator where to look for information about that type. You can
specify multiple modules as a list with colon (:) separators. If you do not specify the module parameter,
the translator defaults to either the probe module for dwarf probes or to kernel for functions and all other
probe types.

The following statement retrieves the parent PID from a kernel task struct:

@cast(pointer, "task_struct", "kernel")->parent->tgid

The translator can create its own module with type information from a header surrounded by angle brackets
(< >) if normal debugging information is not available. For kernel headers, prefix it with kernel to use the
appropriate build system. All other headers are built with default GCC parameters into a user module. The
following statements are examples.

@cast(tv, "timeval", "<sys/time.h>")->tv_sec

@cast(task, "task_struct", "kernel<linux/sched.h>")->tgid
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In guru mode, the translator allows scripts to assign new values to members of typecasted pointers.

Typecasting is also useful in the case of void* members whose type might be determinable at run time.

probe foo {

if ($var->type == 1) {

value = @cast($var->data, "type1")->bar

} else {

value = @cast($var->data, "type2")->baz

}

print(value)

}

5.6.12 <value> in <array name>

This expression evaluates to true if the array contains an element with the specified index.

5.6.13 [ <value>, ... ] in <array name>

The number of index values must match the number of indexes previously specified.

5.7 Literals passed in from the stap command line

Literals are either strings enclosed in double quotes (” ”) or integers. For information about integers, see
Section 5.2.2. For information about strings, see Section 5.2.3.

Script arguments at the end of a command line are expanded as literals. You can use these in all contexts
where literals are accepted. A reference to a nonexistent argument number is an error.

5.7.1 $1 . . . $<NN> for literal pasting

Use $1 ... $<NN> for pasting the entire argument string into the input stream, which will be further
lexically tokenized.

5.7.2 @1 . . . @<NN> for strings

Use @1 ... @<NN> for casting an entire argument as a string literal.

5.7.3 Examples

For example, if the following script named example.stp

probe begin { printf("%d, %s\n", $1, @2) }

is invoked as follows
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# stap example.stp ’5+5’ mystring

then 5+5 is substituted for $1 and ”mystring” for @2. The output will be

10, mystring

5.8 Conditional compilation

5.8.1 Conditions

One of the steps of parsing is a simple preprocessing stage. The preprocessor supports conditionals with a
general form similar to the ternary operator (Section 5.6.7).

%( CONDITION %? TRUE-TOKENS %)

%( CONDITION %? TRUE-TOKENS %: FALSE-TOKENS %)

The CONDITION is a limited expression whose format is determined by its first keyword. The following is
the general syntax.

%( <condition> %? <code> [ %: <code> ] %)

5.8.2 Conditions based on available target variables

The predicate @defined() is available for testing whether a particular $variable/expression is resolvable at
translation time. The following is an example of its use:

probe foo { if (@defined($bar)) log ("$bar is available here") }

5.8.3 Conditions based on kernel version: kernel v, kernel vr

If the first part of a conditional expression is the identifier kernel v or kernel vr, the second part must be
one of six standard numeric comparison operators “<”, “<=”, “==”, “!=”, “>”, or “>=”, and the third
part must be a string literal that contains an RPM-style version-release value. The condition returns true if
the version of the target kernel (as optionally overridden by the -r option) matches the given version string.
The comparison is performed by the glibc function strverscmp.

kernel v refers to the kernel version number only, such as “2.6.13”.

kernel vr refers to the kernel version number including the release code suffix, such as “2.6.13-1.322FC3smp”.

5.8.4 Conditions based on architecture: arch

If the first part of the conditional expression is the identifier arch which refers to the processor architecture,
then the second part is a string comparison operator ”==” or ”!=”, and the third part is a string literal for
matching it. This comparison is a simple string equality or inequality. The currently supported architecture
strings are i386, i686, x86 64, ia64, s390, and powerpc.
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5.8.5 Conditions based on privilege level: systemtap privilege

If the first part of the conditional expression is the identifier systemtap privilege which refers to the
privilege level the systemtap script is being compiled with, then the second part is a string comparison
operator ”==” or ”!=”, and the third part is a string literal for matching it. This comparison is a simple
string equality or inequality. The possible privilege strings to consider are "stapusr" for unprivileged scripts,
and "stapsys" or "stapdev" for privileged scripts. (In general, to test for a privileged script it is best to
use != "stapusr".)

This condition can be used to write scripts that can be run in both privileged and unprivileged modes, with
additional functionality made available in the privileged case.

5.8.6 True and False Tokens

TRUE-TOKENS and FALSE-TOKENS are zero or more general parser tokens, possibly including nested
preprocessor conditionals, that are pasted into the input stream if the condition is true or false. For example,
the following code induces a parse error unless the target kernel version is newer than 2.6.5.

%( kernel_v <= "2.6.5" %? **ERROR** %) # invalid token sequence

The following code adapts to hypothetical kernel version drift.

probe kernel.function (

%( kernel_v <= "2.6.12" %? "__mm_do_fault" %:

%( kernel_vr == "2.6.13-1.8273FC3smp" %? "do_page_fault" %: UNSUPPORTED %)

%)) { /* ... */ }

%( arch == "ia64" %?

probe syscall.vliw = kernel.function("vliw_widget") {}

%)

The following code adapts to the presence of a kernel CONFIG option.

%( CONFIG_UPROBE == "y" %?

probe process.syscall {}

%)

5.9 Preprocessor macros

This feature lets scripts eliminate some types of repetition.

5.9.1 Local macros

The preprocessor also supports a simple macro facility.

Macros taking zero or more arguments are defined using the following construct:
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@define NAME %( BODY %)

@define NAME(PARAM_1, PARAM_2, ...) %( BODY %)

Macro arguments are referred to in the body by prefixing the argument name with an @ symbol. Likewise,
once defined, macros are invoked by prefixing the macro name with an @ symbol:

@define foo %( x %)

@define add(a,b) %( ((@a)+(@b)) %)

@foo = @add(2,2)

Macro expansion is currently performed in a separate pass before conditional compilation. Therefore, both
TRUE- and FALSE-tokens in conditional expressions will be macroexpanded regardless of how the condition
is evaluated. This can sometimes lead to errors:

// The following results in a conflict:

%( CONFIG_UPROBE == "y" %?

@define foo %( process.syscall %)

%:

@define foo %( **ERROR** %)

%)

// The following works properly as expected:

@define foo %(

%( CONFIG_UPROBE == "y" %? process.syscall %: **ERROR** %)

%)

The first example is incorrect because both @defines are evaluated in a pass prior to the conditional being
evaluated.

5.9.2 Library macros

Normally, a macro definition is local to the file it occurs in. Thus, defining a macro in a tapset does not
make it available to the user of the tapset.

Publically available library macros can be defined by including .stpm files on the tapset search path. These
files may only contain @define constructs, which become visible across all tapsets and user scripts.

6 Statement types

Statements enable procedural control flow within functions and probe handlers. The total number of state-
ments executed in response to any single probe event is limited to MAXACTION, which defaults to 1000.
See Section 1.6.
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6.1 break and continue

Use break or continue to exit or iterate the innermost nesting loop statement, such as within a while,

for, or foreach statement. The syntax and semantics are the same as those used in C.

6.2 try/catch

Use try/catch to handle most kinds of run-time errors within the script instead of aborting the probe
handler in progress. The semantics are similar to C++ in that try/catch blocks may be nested. The error
string may be captured by optionally naming a variable which is to receive it.

try {

/* do something */

/* trigger error like kread(0), or divide by zero, or error("foo") */

} catch (msg) { /* omit (msg) entirely if not interested */

/* println("caught error ", msg) */

/* handle error */

}

/* execution continues */

6.3 delete

delete removes an element.

The following statement removes from ARRAY the element specified by the index tuple. The value will no
longer be available, and subsequent iterations will not report the element. It is not an error to delete an
element that does not exist.

delete ARRAY[INDEX1, INDEX2, ...]

The following syntax removes all elements from ARRAY:

delete ARRAY

The following statement removes the value of SCALAR. Integers and strings are cleared to zero and null
(””) respectively, while statistics are reset to their initial empty state.

delete SCALAR

6.4 EXP (expression)

An expression executes a string- or integer-valued expression and discards the value.
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6.5 for

General syntax:

for (EXP1; EXP2; EXP3) STMT

The for statement is similar to the for statement in C. The for expression executes EXP1 as initialization.
While EXP2 is non-zero, it executes STMT, then the iteration expression EXP3.

6.6 foreach

General syntax:

foreach (VAR in ARRAY) STMT

The foreach statement loops over each element of a named global array, assigning the current key to VAR.
The array must not be modified within the statement. If you add a single plus (+) or minus (-) operator
after the VAR or the ARRAY identifier, the iteration order will be sorted by the ascending or descending
index or value.

The following statement behaves the same as the first example, except it is used when an array is indexed
with a tuple of keys. Use a sorting suffix on at most one VAR or ARRAY identifier.

foreach ([VAR1, VAR2, ...] in ARRAY) STMT

You can combine the first and second syntax to capture both the full tuple and the keys at the same time
as follows.

foreach (VAR = [VAR1, VAR2, ...] in ARRAY) STMT

The following statement is the same as the first example, except that the limit keyword limits the number
of loop iterations to EXP times. EXP is evaluated once at the beginning of the loop.

foreach (VAR in ARRAY limit EXP) STMT

6.7 if

General syntax:

if (EXP) STMT1 [ else STMT2 ]

The if statement compares an integer-valued EXP to zero. It executes the first STMT if non-zero, or the
second STMT if zero.

The if command has the same syntax and semantics as used in C.
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6.8 next

The next statement returns immediately from the enclosing probe handler. When used in functions, the
execution will be immediately transferred to the next overloaded function.

6.9 ; (null statement)

General syntax:

statement1

;

statement2

The semicolon represents the null statement, or do nothing. It is useful as an optional separator between
statements to improve syntax error detection and to handle certain grammar ambiguities.

6.10 return

General syntax:

return EXP

The return statement returns the EXP value from the enclosing function. If the value of the function is not
returned, then a return statement is not needed, and the function will have a special unknown type with no
return value.

6.11 { } (statement block)

This is the statement block with zero or more statements enclosed within brackets. The following is the
general syntax:

{ STMT1 STMT2 ... }

The statement block executes each statement in sequence in the block. Separators or terminators are
generally not necessary between statements. The statement block uses the same syntax and semantics as in
C.

6.12 while

General syntax:

while (EXP) STMT

The while statement uses the same syntax and semantics as in C. In the statement above, while the integer-
valued EXP evaluates to non-zero, the parser will execute STMT.
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7 Associative arrays

Associative arrays are implemented as hash tables with a maximum size set at startup. Associative arrays
are too large to be created dynamically for individual probe handler runs, so they must be declared as global.
The basic operations for arrays are setting and looking up elements. These operations are expressed in awk
syntax: the array name followed by an opening bracket ([), a comma-separated list of up to nine index index
expressions, and a closing bracket (]). Each index expression may be a string or a number, as long as it is
consistently typed throughout the script.

7.1 Examples

# Increment the named array slot:

foo [4,"hello"] ++

# Update a statistic:

processusage [uid(),execname()] ++

# Set a timestamp reference point:

times [tid()] = get_cycles()

# Compute a timestamp delta:

delta = get_cycles() - times [tid()]

7.2 Types of values

Array elements may be set to a number, a string, or an aggregate. The type must be consistent throughout
the use of the array. The first assignment to the array defines the type of the elements. Unset array elements
may be fetched and return a null value (zero or empty string) as appropriate, but they are not seen by a
membership test.

7.3 Array capacity

Array sizes can be specified explicitly or allowed to default to the maximum size as defined by MAXMAPEN-
TRIES. See Section 1.6 for details on changing MAXMAPENTRIES.

You can explicitly specify the size of an array as follows:

global ARRAY[<size>]

If you do not specify the size parameter, then the array is created to hold MAXMAPENTRIES number of
elements.

7.4 Array wrapping

Arrays may be wrapped using the percentage symbol (%) causing previously entered elements to be over-
written if more elements are inserted than the array can hold. This works for both regular and statistics
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typed arrays.

You can mark arrays for wrapping as follows:

global ARRAY1%[<size>], ARRAY2%

7.5 Iteration, foreach

Like awk, SystemTap’s foreach creates a loop that iterates over key tuples of an array, not only values. The
iteration may be sorted by any single key or a value by adding an extra plus symbol (+) or minus symbol
(-) to the code or limited to only a few elements with the limit keyword. The following are examples.

# Simple loop in arbitrary sequence:

foreach ([a,b] in foo)

fuss_with(foo[a,b])

# Loop in increasing sequence of value:

foreach ([a,b] in foo+) { ... }

# Loop in decreasing sequence of first key:

foreach ([a-,b] in foo) { ... }

# Print the first 10 tuples and values in the array in decreasing sequence

foreach (v = [i,j] in foo- limit 10)

printf("foo[%d,%s] = %d\n", i, j, v)

The break and continue statements also work inside foreach loops. Since arrays can be large but probe
handlers must execute quickly, you should write scripts that exit iteration early, if possible. For simplicity,
SystemTap forbids any modification of an array during iteration with a foreach.

For a full description of foreach see subsection 6.6.

7.6 Deletion

The delete statement can either remove a single element by index from an array or clear an entire array at
once. See subsection 6.3 for details and examples.

8 Statistics (aggregates)

Aggregate instances are used to collect statistics on numerical values, when it is important to accumulate
new data quickly and in large volume. These instances operate without exclusive locks, and store only
aggregated stream statistics. Aggregates make sense only for global variables. They are stored individually
or as elements of an associative array. For information about wrapping associative arrays with statistics
elements, see section 7.4
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8.1 The aggregation (<<<) operator

The aggregation operator is “<<<”, and its effect is similar to an assignment or a C++ output streaming
operation. The left operand specifies a scalar or array-index l-value, which must be declared global. The
right operand is a numeric expression. The meaning is intuitive: add the given number as a sample to the
set of numbers to compute their statistics. The specific list of statistics to gather is given separately by the
extraction functions. The following is an example.

a <<< delta_timestamp

writes[execname()] <<< count

8.2 Extraction functions

For each instance of a distinct extraction function operating on a given identifier, the translator computes a
set of statistics. With each execution of an extraction function, the aggregation is computed for that moment
across all processors. The first argument of each function is the same style of l-value as used on the left side
of the aggregation operation.

8.3 Integer extractors

The following functions provide methods to extract information about aggregate.

8.3.1 @count(s)

This statement returns the number of samples accumulated in aggregate s.

8.3.2 @sum(s)

This statement returns the total sum of all samples in aggregate s.

8.3.3 @min(s)

This statement returns the minimum of all samples in aggregate s.

8.3.4 @max(s)

This statement returns the maximum of all samples in aggregate s.

8.3.5 @avg(s)

This statement returns the average value of all samples in aggregate s.
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8.4 Histogram extractors

The following functions provide methods to extract histogram information. Printing a histogram with the
print family of functions renders a histogram object as a tabular ”ASCII art” bar chart.

8.4.1 @hist linear

The statement @hist linear(v,L,H,W) represents a linear histogram of aggregate v, where L and H rep-
resent the lower and upper end of a range of values and W represents the width (or size) of each bucket
within the range. The low and high values can be negative, but the overall difference (high minus low) must
be positive. The width parameter must also be positive.

In the output, a range of consecutive empty buckets may be replaced with a tilde (˜) character. This can be
controlled on the command line with -DHIST ELISION=<num>, where <num> specifies how many empty
buckets at the top and bottom of the range to print. The default is 2. A <num> of 0 removes all empty
buckets. A negative <num> disables removal.

For example, if you specify -DHIST ELISION=3 and the histogram has 10 consecutive empty buckets, the
first 3 and last 3 empty buckets will be printed and the middle 4 empty buckets will be represented by a
tilde (˜).

The following is an example.

global reads

probe netdev.receive {

reads <<< length

}

probe end {

print(@hist_linear(reads, 0, 10240, 200))

}

This generates the following output.

value |-------------------------------------------------- count

0 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 1650

200 | 8

400 | 0

600 | 0

~

1000 | 0

1200 | 0

1400 | 1

1600 | 0

1800 | 0

This shows that 1650 network reads were of a size between 0 and 199 bytes, 8 reads were between 200 and
399 bytes, and 1 read was between 1200 and 1399 bytes. The tilde (˜) character indicates the bucket for 800
to 999 bytes was removed because it was empty. Empty buckets for 2000 bytes and larger were also removed
because they were empty.
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8.4.2 @hist log

The statement @hist log(v) represents a base-2 logarithmic histogram. Empty buckets are replaced with
a tilde (˜) character in the same way as @hist linear() (see above).

The following is an example.

global reads

probe netdev.receive {

reads <<< length

}

probe end {

print(@hist_log(reads))

}

This generates the following output.

value |-------------------------------------------------- count

8 | 0

16 | 0

32 | 254

64 | 3

128 | 2

256 | 2

512 | 4

1024 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 16689

2048 | 0

4096 | 0

8.5 Deletion

The delete statement (subsection 6.3) applied to an aggregate variable will reset it to the initial empty
state.

9 Formatted output

9.1 print

General syntax:

print ()

This function prints a single value of any type.
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9.2 printf

General syntax:

printf (fmt:string, ...)

The printf function takes a formatting string as an argument, and a number of values of corresponding
types, and prints them all. The format must be a literal string constant. The printf formatting directives
are similar to those of C, except that they are fully checked for type by the translator.

The formatting string can contain tags that are defined as follows:

%[flags][width][.precision][length]specifier

Where specifier is required and defines the type and the interpretation of the value of the corresponding
argument. The following table shows the details of the specifier parameter:

Table 1: printf specifier values
Specifier Output Example

d or i Signed decimal 392
o Unsigned octal 610
s String sample
u Unsigned decimal 7235
x Unsigned hexadecimal (lowercase letters) 7fa
X Unsigned hexadecimal (uppercase letters) 7FA
p Pointer address 0x0000000000bc614e
b Writes a binary value as text using the computer’s native

byte order. The field width specifies the number of bytes
to write. Valid specifications are %b, %1b, %2b, %4b and
%8b. The default width is 8 (64-bits).

See below

% A % followed by another % character will write % to
stdout.

%

The tag can also contain flags, width, .precision and modifiers sub-specifiers, which are optional and
follow these specifications:
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Table 2: printf flag values
Flags Description

- (minus sign) Left-justify within the given field width. Right justification is the default
(see width sub-specifier).

+ (plus sign) Precede the result with a plus or minus sign even for positive numbers.
By default, only negative numbers are preceded with a minus sign.

(space) If no sign is going to be written, a blank space is inserted before the value.
# Used with o, x or X specifiers the value is preceded with 0, 0x or 0X

respectively for non-zero values.
0 Left-pads the number with zeroes instead of spaces, where padding is

specified (see width sub-specifier).

Table 3: printf width values
Width Description

(number) Minimum number of characters to be printed. If the value to be printed is
shorter than this number, the result is padded with blank spaces. The
value is not truncated even if the result is larger.

Table 4: printf precision values
Precision Description

.number For integer specifiers (d, i, o, u, x, X): precision specifies the
minimum number of digits to be written. If the value to be written is
shorter than this number, the result is padded with leading zeros. The
value is not truncated even if the result is longer. A precision of 0 means
that no character is written for the value 0. For s: this is the maximum
number of characters to be printed. By default all characters are printed
until the ending null character is encountered. When no precision is
specified, the default is 1. If the period is specified without an explicit
value for precision, 0 is assumed.

Binary Write Examples

The following is an example of using the binary write functions:

probe begin {

for (i = 97; i < 110; i++)

printf("%3d: %1b%1b%1b\n", i, i, i-32, i-64)

exit()

}

This prints:

97: aA!
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98: bB"

99: cC#

100: dD$

101: eE%

102: fF&

103: gG’

104: hH(

105: iI)

106: jJ*

107: kK+

108: lL,

109: mM-

Another example:

stap -e ’probe begin{printf("%b%b", 0xc0dedbad, \

0x12345678);exit()}’ | hexdump -C

This prints:

00000000 ad db de c0 00 00 00 00 78 56 34 12 00 00 00 00 |........xV4.....|

00000010

Another example:

probe begin{

printf("%1b%1b%1blo %1b%1brld\n", 72,101,108,87,111)

exit()

}

This prints:

Hello World

9.3 printd

General syntax:

printd (delimiter:string, ...)

This function takes a string delimiter and two or more values of any type, then prints the values with the
delimiter interposed. The delimiter must be a literal string constant.

For example:
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printd("/", "one", "two", "three", 4, 5, 6)

prints:

one/two/three/4/5/6

9.4 printdln

General syntax:

printdln (delimiter:string, ...)

This function operates like printd, but also appends a newline.

9.5 println

General syntax:

println ()

This function prints a single value like print, but also appends a newline.

9.6 sprint

General syntax:

sprint:string ()

This function operates like print, but returns the string rather than printing it.

9.7 sprintf

General syntax:

sprintf:string (fmt:string, ...)

This function operates like printf, but returns the formatted string rather than printing it.

10 Tapset-defined functions

Unlike built-in functions, tapset-defined functions are implemented in tapset scripts. These are individually
documented in the in tapset::*(3stap), function::*(3stap), and probe::*(3stap) man pages, and
implemented under /usr/share/systemtap/tapset.
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11 For Further Reference

For more information, see:

• The SystemTap tutorial at http://sourceware.org/systemtap/tutorial/

• The SystemTap wiki at http://sourceware.org/systemtap/wiki

• The SystemTap documentation page at http://sourceware.org/systemtap/documentation.html

• From an unpacked source tarball or GIT directory, the examples in in the src/examples directory, the
tapsets in the src/tapset directory, and the test scripts in the src/testsuite directory.

• The man pages for tapsets. For a list, run the command ‘‘man -k tapset::”.

• The man pages for individual probe points. For a list, run the command ‘‘man -k probe::”.

• The man pages for individual systemtap functions. For a list, run the command ‘‘man -k function::”.
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