Menu

[r4448]: / branches / transforms / src / _path.cpp  Maximize  Restore  History

Download this file

795 lines (655 with data), 24.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
#include "agg_py_path_iterator.h"
#include "agg_py_transforms.h"
#include "CXX/Extensions.hxx"
#include "agg_conv_curve.h"
#include "agg_conv_stroke.h"
#include "agg_conv_transform.h"
#include "agg_path_storage.h"
#include "agg_trans_affine.h"
// MGDTODO: Un-CXX-ify this module
struct XY {
double x;
double y;
XY(double x_, double y_) : x(x_), y(y_) {}
};
// the extension module
class _path_module : public Py::ExtensionModule<_path_module>
{
public:
_path_module()
: Py::ExtensionModule<_path_module>( "_path" )
{
add_varargs_method("point_in_path", &_path_module::point_in_path,
"point_in_path(x, y, path, trans)");
add_varargs_method("point_on_path", &_path_module::point_on_path,
"point_on_path(x, y, r, path, trans)");
add_varargs_method("get_path_extents", &_path_module::get_path_extents,
"get_path_extents(path, trans)");
add_varargs_method("get_path_collection_extents", &_path_module::get_path_collection_extents,
"get_path_collection_extents(trans, paths, transforms, offsets, offsetTrans)");
add_varargs_method("point_in_path_collection", &_path_module::point_in_path_collection,
"point_in_path_collection(x, y, r, trans, paths, transforms, offsets, offsetTrans, filled)");
add_varargs_method("path_in_path", &_path_module::path_in_path,
"point_in_path_collection(a, atrans, b, btrans)");
add_varargs_method("clip_path_to_rect", &_path_module::clip_path_to_rect,
"clip_path_to_rect(path, bbox, inside)");
add_varargs_method("affine_transform", &_path_module::affine_transform,
"affine_transform(vertices, transform)");
add_varargs_method("count_bboxes_overlapping_bbox", &_path_module::count_bboxes_overlapping_bbox,
"count_bboxes_overlapping_bbox(bbox, bboxes)");
initialize("Helper functions for paths");
}
virtual ~_path_module() {}
private:
Py::Object point_in_path(const Py::Tuple& args);
Py::Object point_on_path(const Py::Tuple& args);
Py::Object get_path_extents(const Py::Tuple& args);
Py::Object get_path_collection_extents(const Py::Tuple& args);
Py::Object point_in_path_collection(const Py::Tuple& args);
Py::Object path_in_path(const Py::Tuple& args);
Py::Object clip_path_to_rect(const Py::Tuple& args);
Py::Object affine_transform(const Py::Tuple& args);
Py::Object count_bboxes_overlapping_bbox(const Py::Tuple& args);
};
//
// The following function was found in the Agg 2.3 examples (interactive_polygon.cpp).
// It has been generalized to work on (possibly curved) polylines, rather than
// just polygons. The original comments have been kept intact.
// -- Michael Droettboom 2007-10-02
//
//======= Crossings Multiply algorithm of InsideTest ========================
//
// By Eric Haines, 3D/Eye Inc, erich@eye.com
//
// This version is usually somewhat faster than the original published in
// Graphics Gems IV; by turning the division for testing the X axis crossing
// into a tricky multiplication test this part of the test became faster,
// which had the additional effect of making the test for "both to left or
// both to right" a bit slower for triangles than simply computing the
// intersection each time. The main increase is in triangle testing speed,
// which was about 15% faster; all other polygon complexities were pretty much
// the same as before. On machines where division is very expensive (not the
// case on the HP 9000 series on which I tested) this test should be much
// faster overall than the old code. Your mileage may (in fact, will) vary,
// depending on the machine and the test data, but in general I believe this
// code is both shorter and faster. This test was inspired by unpublished
// Graphics Gems submitted by Joseph Samosky and Mark Haigh-Hutchinson.
// Related work by Samosky is in:
//
// Samosky, Joseph, "SectionView: A system for interactively specifying and
// visualizing sections through three-dimensional medical image data",
// M.S. Thesis, Department of Electrical Engineering and Computer Science,
// Massachusetts Institute of Technology, 1993.
//
// Shoot a test ray along +X axis. The strategy is to compare vertex Y values
// to the testing point's Y and quickly discard edges which are entirely to one
// side of the test ray. Note that CONVEX and WINDING code can be added as
// for the CrossingsTest() code; it is left out here for clarity.
//
// Input 2D polygon _pgon_ with _numverts_ number of vertices and test point
// _point_, returns 1 if inside, 0 if outside.
template<class T>
bool point_in_path_impl(double tx, double ty, T& path) {
int yflag0, yflag1, inside_flag;
double vtx0, vty0, vtx1, vty1, sx, sy;
double x, y;
path.rewind(0);
inside_flag = 0;
unsigned code = 0;
do {
if (code != agg::path_cmd_move_to)
code = path.vertex(&x, &y);
sx = vtx0 = x;
sy = vty0 = y;
// get test bit for above/below X axis
yflag0 = (vty0 >= ty);
vtx1 = x;
vty1 = x;
inside_flag = 0;
do {
code = path.vertex(&x, &y);
// The following cases denote the beginning on a new subpath
if (code == agg::path_cmd_stop || (code & agg::path_cmd_end_poly) == agg::path_cmd_end_poly) {
x = sx; y = sy;
} else if (code == agg::path_cmd_move_to)
break;
yflag1 = (vty1 >= ty);
// Check if endpoints straddle (are on opposite sides) of X axis
// (i.e. the Y's differ); if so, +X ray could intersect this edge.
// The old test also checked whether the endpoints are both to the
// right or to the left of the test point. However, given the faster
// intersection point computation used below, this test was found to
// be a break-even proposition for most polygons and a loser for
// triangles (where 50% or more of the edges which survive this test
// will cross quadrants and so have to have the X intersection computed
// anyway). I credit Joseph Samosky with inspiring me to try dropping
// the "both left or both right" part of my code.
if (yflag0 != yflag1) {
// Check intersection of pgon segment with +X ray.
// Note if >= point's X; if so, the ray hits it.
// The division operation is avoided for the ">=" test by checking
// the sign of the first vertex wrto the test point; idea inspired
// by Joseph Samosky's and Mark Haigh-Hutchinson's different
// polygon inclusion tests.
if ( ((vty1-ty) * (vtx0-vtx1) >=
(vtx1-tx) * (vty0-vty1)) == yflag1 ) {
inside_flag ^= 1;
}
}
// Move to the next pair of vertices, retaining info as possible.
yflag0 = yflag1;
vtx0 = vtx1;
vty0 = vty1;
vtx1 = x;
vty1 = y;
} while (code != agg::path_cmd_stop &&
(code & agg::path_cmd_end_poly) != agg::path_cmd_end_poly);
yflag1 = (vty1 >= ty);
if (yflag0 != yflag1) {
if ( ((vty1-ty) * (vtx0-vtx1) >=
(vtx1-tx) * (vty0-vty1)) == yflag1 ) {
inside_flag ^= 1;
}
}
if (inside_flag != 0)
return true;
} while (code != agg::path_cmd_stop);
return (inside_flag != 0);
}
inline bool point_in_path(double x, double y, PathIterator& path, const agg::trans_affine& trans) {
typedef agg::conv_transform<PathIterator> transformed_path_t;
typedef agg::conv_curve<transformed_path_t> curve_t;
if (path.total_vertices() < 3)
return false;
transformed_path_t trans_path(path, trans);
curve_t curved_path(trans_path);
return point_in_path_impl(x, y, curved_path);
}
inline bool point_on_path(double x, double y, double r, PathIterator& path, const agg::trans_affine& trans) {
typedef agg::conv_transform<PathIterator> transformed_path_t;
typedef agg::conv_curve<transformed_path_t> curve_t;
typedef agg::conv_stroke<curve_t> stroke_t;
transformed_path_t trans_path(path, trans);
curve_t curved_path(trans_path);
stroke_t stroked_path(curved_path);
stroked_path.width(r * 2.0);
return point_in_path_impl(x, y, stroked_path);
}
Py::Object _path_module::point_in_path(const Py::Tuple& args) {
args.verify_length(4);
double x = Py::Float(args[0]);
double y = Py::Float(args[1]);
PathIterator path(args[2]);
agg::trans_affine trans = py_to_agg_transformation_matrix(args[3]);
if (::point_in_path(x, y, path, trans))
return Py::Int(1);
return Py::Int(0);
}
Py::Object _path_module::point_on_path(const Py::Tuple& args) {
args.verify_length(5);
double x = Py::Float(args[0]);
double y = Py::Float(args[1]);
double r = Py::Float(args[2]);
PathIterator path(args[3]);
agg::trans_affine trans = py_to_agg_transformation_matrix(args[4]);
if (::point_on_path(x, y, r, path, trans))
return Py::Int(1);
return Py::Int(0);
}
void get_path_extents(PathIterator& path, const agg::trans_affine& trans,
double* x0, double* y0, double* x1, double* y1) {
typedef agg::conv_transform<PathIterator> transformed_path_t;
typedef agg::conv_curve<transformed_path_t> curve_t;
double x, y;
unsigned code;
transformed_path_t tpath(path, trans);
curve_t curved_path(tpath);
curved_path.rewind(0);
while ((code = curved_path.vertex(&x, &y)) != agg::path_cmd_stop) {
if ((code & agg::path_cmd_end_poly) == agg::path_cmd_end_poly)
continue;
if (x < *x0) *x0 = x;
if (y < *y0) *y0 = y;
if (x > *x1) *x1 = x;
if (y > *y1) *y1 = y;
}
}
Py::Object _path_module::get_path_extents(const Py::Tuple& args) {
args.verify_length(2);
PathIterator path(args[0]);
agg::trans_affine trans = py_to_agg_transformation_matrix(args[1]);
double x0 = std::numeric_limits<double>::infinity();
double y0 = std::numeric_limits<double>::infinity();
double x1 = -std::numeric_limits<double>::infinity();
double y1 = -std::numeric_limits<double>::infinity();
::get_path_extents(path, trans, &x0, &y0, &x1, &y1);
Py::Tuple result(4);
result[0] = Py::Float(x0);
result[1] = Py::Float(y0);
result[2] = Py::Float(x1);
result[3] = Py::Float(y1);
return result;
}
Py::Object _path_module::get_path_collection_extents(const Py::Tuple& args) {
args.verify_length(5);
//segments, trans, clipbox, colors, linewidths, antialiaseds
agg::trans_affine master_transform = py_to_agg_transformation_matrix(args[0]);
Py::SeqBase<Py::Object> paths = args[1];
Py::SeqBase<Py::Object> transforms_obj = args[2];
Py::Object offsets_obj = args[3];
agg::trans_affine offset_trans = py_to_agg_transformation_matrix(args[4], false);
PyArrayObject* offsets = NULL;
double x0, y0, x1, y1;
try {
offsets = (PyArrayObject*)PyArray_FromObject(offsets_obj.ptr(), PyArray_DOUBLE, 0, 2);
if (!offsets ||
(PyArray_NDIM(offsets) == 2 && PyArray_DIM(offsets, 1) != 2) ||
(PyArray_NDIM(offsets) == 1 && PyArray_DIM(offsets, 0) != 0)) {
throw Py::ValueError("Offsets array must be Nx2");
}
size_t Npaths = paths.length();
size_t Noffsets = offsets->dimensions[0];
size_t N = std::max(Npaths, Noffsets);
size_t Ntransforms = std::min(transforms_obj.length(), N);
size_t i;
// Convert all of the transforms up front
typedef std::vector<agg::trans_affine> transforms_t;
transforms_t transforms;
transforms.reserve(Ntransforms);
for (i = 0; i < Ntransforms; ++i) {
agg::trans_affine trans = py_to_agg_transformation_matrix
(transforms_obj[i], false);
trans *= master_transform;
transforms.push_back(trans);
}
// The offset each of those and collect the mins/maxs
x0 = std::numeric_limits<double>::infinity();
y0 = std::numeric_limits<double>::infinity();
x1 = -std::numeric_limits<double>::infinity();
y1 = -std::numeric_limits<double>::infinity();
agg::trans_affine trans;
for (i = 0; i < N; ++i) {
PathIterator path(paths[i % Npaths]);
if (Ntransforms) {
trans = transforms[i % Ntransforms];
} else {
trans = master_transform;
}
if (Noffsets) {
double xo = *(double*)PyArray_GETPTR2(offsets, i % Noffsets, 0);
double yo = *(double*)PyArray_GETPTR2(offsets, i % Noffsets, 1);
offset_trans.transform(&xo, &yo);
trans *= agg::trans_affine_translation(xo, yo);
}
::get_path_extents(path, trans, &x0, &y0, &x1, &y1);
}
} catch (...) {
Py_XDECREF(offsets);
throw;
}
Py_XDECREF(offsets);
Py::Tuple result(4);
result[0] = Py::Float(x0);
result[1] = Py::Float(y0);
result[2] = Py::Float(x1);
result[3] = Py::Float(y1);
return result;
}
Py::Object _path_module::point_in_path_collection(const Py::Tuple& args) {
args.verify_length(9);
//segments, trans, clipbox, colors, linewidths, antialiaseds
double x = Py::Float(args[0]);
double y = Py::Float(args[1]);
double radius = Py::Float(args[2]);
agg::trans_affine master_transform = py_to_agg_transformation_matrix(args[3]);
Py::SeqBase<Py::Object> paths = args[4];
Py::SeqBase<Py::Object> transforms_obj = args[5];
Py::SeqBase<Py::Object> offsets_obj = args[6];
agg::trans_affine offset_trans = py_to_agg_transformation_matrix(args[7]);
bool filled = Py::Int(args[8]);
PyArrayObject* offsets = (PyArrayObject*)PyArray_FromObject(offsets_obj.ptr(), PyArray_DOUBLE, 0, 2);
if (!offsets ||
(PyArray_NDIM(offsets) == 2 && PyArray_DIM(offsets, 1) != 2) ||
(PyArray_NDIM(offsets) == 1 && PyArray_DIM(offsets, 0) != 0)) {
throw Py::ValueError("Offsets array must be Nx2");
}
size_t Npaths = paths.length();
size_t Noffsets = offsets->dimensions[0];
size_t N = std::max(Npaths, Noffsets);
size_t Ntransforms = std::min(transforms_obj.length(), N);
size_t i;
// Convert all of the transforms up front
typedef std::vector<agg::trans_affine> transforms_t;
transforms_t transforms;
transforms.reserve(Ntransforms);
for (i = 0; i < Ntransforms; ++i) {
agg::trans_affine trans = py_to_agg_transformation_matrix
(transforms_obj[i], false);
trans *= master_transform;
transforms.push_back(trans);
}
Py::List result;
agg::trans_affine trans;
for (i = 0; i < N; ++i) {
PathIterator path(paths[i % Npaths]);
if (Ntransforms) {
trans = transforms[i % Ntransforms];
} else {
trans = master_transform;
}
if (Noffsets) {
double xo = *(double*)PyArray_GETPTR2(offsets, i % Noffsets, 0);
double yo = *(double*)PyArray_GETPTR2(offsets, i % Noffsets, 1);
offset_trans.transform(&xo, &yo);
trans *= agg::trans_affine_translation(xo, yo);
}
if (filled) {
if (::point_in_path(x, y, path, trans))
result.append(Py::Int((int)i));
} else {
if (::point_on_path(x, y, radius, path, trans))
result.append(Py::Int((int)i));
}
}
return result;
}
bool path_in_path(PathIterator& a, const agg::trans_affine& atrans,
PathIterator& b, const agg::trans_affine& btrans) {
typedef agg::conv_transform<PathIterator> transformed_path_t;
typedef agg::conv_curve<transformed_path_t> curve_t;
if (a.total_vertices() < 3)
return false;
transformed_path_t b_path_trans(b, btrans);
curve_t b_curved(b_path_trans);
double x, y;
b_curved.rewind(0);
while (b_curved.vertex(&x, &y) != agg::path_cmd_stop) {
if (!::point_in_path(x, y, a, atrans))
return false;
}
return true;
}
Py::Object _path_module::path_in_path(const Py::Tuple& args) {
args.verify_length(4);
PathIterator a(args[0]);
agg::trans_affine atrans = py_to_agg_transformation_matrix(args[1]);
PathIterator b(args[2]);
agg::trans_affine btrans = py_to_agg_transformation_matrix(args[3]);
return Py::Int(::path_in_path(a, atrans, b, btrans));
}
/** The clip_path_to_rect code here is a clean-room implementation of the
Sutherland-Hodgman clipping algorithm described here:
http://en.wikipedia.org/wiki/Sutherland-Hodgman_clipping_algorithm
*/
typedef std::vector<XY> Polygon;
namespace clip_to_rect_filters {
/* There are four different passes needed to create/remove vertices
(one for each side of the rectangle). The differences between those
passes are encapsulated in these functor classes.
*/
struct bisectx {
double m_x;
bisectx(double x) : m_x(x) {}
void bisect(double sx, double sy, double px, double py, double* bx, double* by) const {
*bx = m_x;
double dx = px - sx;
double dy = py - sy;
*by = sy + dy * ((m_x - sx) / dx);
}
};
struct xlt : public bisectx {
xlt(double x) : bisectx(x) {}
bool is_inside(double x, double y) const {
return x <= m_x;
}
};
struct xgt : public bisectx {
xgt(double x) : bisectx(x) {}
bool is_inside(double x, double y) const {
return x >= m_x;
}
};
struct bisecty {
double m_y;
bisecty(double y) : m_y(y) {}
void bisect(double sx, double sy, double px, double py, double* bx, double* by) const {
*by = m_y;
double dx = px - sx;
double dy = py - sy;
*bx = sx + dx * ((m_y - sy) / dy);
}
};
struct ylt : public bisecty {
ylt(double y) : bisecty(y) {}
bool is_inside(double x, double y) const {
return y <= m_y;
}
};
struct ygt : public bisecty {
ygt(double y) : bisecty(y) {}
bool is_inside(double x, double y) const {
return y >= m_y;
}
};
}
template<class Filter>
void clip_to_rect_one_step(const Polygon& polygon, Polygon& result, const Filter& filter) {
double sx, sy, px, py, bx, by;
bool sinside, pinside;
result.clear();
if (polygon.size() == 0)
return;
sx = polygon.back().x;
sy = polygon.back().y;
for (Polygon::const_iterator i = polygon.begin(); i != polygon.end(); ++i) {
px = i->x;
py = i->y;
sinside = filter.is_inside(sx, sy);
pinside = filter.is_inside(px, py);
if (sinside ^ pinside) {
filter.bisect(sx, sy, px, py, &bx, &by);
result.push_back(XY(bx, by));
}
if (pinside) {
result.push_back(XY(px, py));
}
sx = px; sy = py;
}
}
void clip_to_rect(PathIterator& path,
double x0, double y0, double x1, double y1,
bool inside, std::vector<Polygon>& results) {
double xmin, ymin, xmax, ymax;
if (x0 < x1) {
xmin = x0; xmax = x1;
} else {
xmin = x1; xmax = x0;
}
if (y0 < y1) {
ymin = y0; ymax = y1;
} else {
ymin = y1; ymax = y0;
}
if (!inside) {
std::swap(xmin, xmax);
std::swap(ymin, ymax);
}
Polygon polygon1, polygon2;
double x, y;
unsigned code = 0;
path.rewind(0);
do {
// Grab the next subpath and store it in polygon1
polygon1.clear();
do {
if (code == agg::path_cmd_move_to)
polygon1.push_back(XY(x, y));
code = path.vertex(&x, &y);
if (code == agg::path_cmd_stop)
break;
if (code != agg::path_cmd_move_to)
polygon1.push_back(XY(x, y));
} while ((code & agg::path_cmd_end_poly) != agg::path_cmd_end_poly);
// The result of each step is fed into the next (note the
// swapping of polygon1 and polygon2 at each step).
clip_to_rect_one_step(polygon1, polygon2, clip_to_rect_filters::xlt(xmax));
clip_to_rect_one_step(polygon2, polygon1, clip_to_rect_filters::xgt(xmin));
clip_to_rect_one_step(polygon1, polygon2, clip_to_rect_filters::ylt(ymax));
clip_to_rect_one_step(polygon2, polygon1, clip_to_rect_filters::ygt(ymin));
// Empty polygons aren't very useful, so skip them
if (polygon1.size())
results.push_back(polygon1);
} while (code != agg::path_cmd_stop);
}
Py::Object _path_module::clip_path_to_rect(const Py::Tuple &args) {
args.verify_length(3);
PathIterator path(args[0]);
Py::Object bbox_obj = args[1];
bool inside = Py::Int(args[2]);
double x0, y0, x1, y1;
if (!py_convert_bbox(bbox_obj.ptr(), x0, y0, x1, y1))
throw Py::TypeError("Argument 2 to clip_to_rect must be a Bbox object.");
std::vector<Polygon> results;
::clip_to_rect(path, x0, y0, x1, y1, inside, results);
int dims[2];
dims[1] = 2;
PyObject* py_results = PyList_New(results.size());
if (!py_results)
throw Py::RuntimeError("Error creating results list");
try {
for (std::vector<Polygon>::const_iterator p = results.begin(); p != results.end(); ++p) {
size_t size = p->size();
dims[0] = p->size();
PyArrayObject* pyarray = (PyArrayObject*)PyArray_FromDims(2, dims, PyArray_DOUBLE);
for (size_t i = 0; i < size; ++i) {
((double *)pyarray->data)[2*i] = (*p)[i].x;
((double *)pyarray->data)[2*i+1] = (*p)[i].y;
}
if (PyList_SetItem(py_results, p - results.begin(), (PyObject *)pyarray) != -1) {
throw Py::RuntimeError("Error creating results list");
}
}
} catch (...) {
Py_XDECREF(py_results);
throw;
}
return Py::Object(py_results, true);
}
Py::Object _path_module::affine_transform(const Py::Tuple& args) {
args.verify_length(2);
Py::Object vertices_obj = args[0];
Py::Object transform_obj = args[1];
PyArrayObject* vertices = NULL;
PyArrayObject* transform = NULL;
PyArrayObject* result = NULL;
try {
vertices = (PyArrayObject*)PyArray_FromObject
(vertices_obj.ptr(), PyArray_DOUBLE, 1, 2);
if (!vertices ||
(PyArray_NDIM(vertices) == 2 && PyArray_DIM(vertices, 1) != 2) ||
(PyArray_NDIM(vertices) == 1 && PyArray_DIM(vertices, 0) != 2))
throw Py::ValueError("Invalid vertices array.");
transform = (PyArrayObject*) PyArray_FromObject
(transform_obj.ptr(), PyArray_DOUBLE, 2, 2);
if (!transform || PyArray_NDIM(transform) != 2 || PyArray_DIM(transform, 0) != 3 || PyArray_DIM(transform, 1) != 3)
throw Py::ValueError("Invalid transform.");
double a, b, c, d, e, f;
{
size_t stride0 = PyArray_STRIDE(transform, 0);
size_t stride1 = PyArray_STRIDE(transform, 1);
char* row0 = PyArray_BYTES(transform);
char* row1 = row0 + stride0;
a = *(double*)(row0);
row0 += stride1;
c = *(double*)(row0);
row0 += stride1;
e = *(double*)(row0);
b = *(double*)(row1);
row1 += stride1;
d = *(double*)(row1);
row1 += stride1;
f = *(double*)(row1);
}
// I would have preferred to use PyArray_FromDims here, but on
// 64-bit platforms, PyArray_DIMS() does not return the same thing
// that PyArray_FromDims wants, requiring a copy, which I would
// like to avoid in this critical section.
result = (PyArrayObject*)PyArray_SimpleNew
(PyArray_NDIM(vertices), PyArray_DIMS(vertices), PyArray_DOUBLE);
if (PyArray_NDIM(vertices) == 2) {
size_t n = PyArray_DIM(vertices, 0);
char* vertex_in = PyArray_BYTES(vertices);
double* vertex_out = (double*)PyArray_DATA(result);
size_t stride0 = PyArray_STRIDE(vertices, 0);
size_t stride1 = PyArray_STRIDE(vertices, 1);
double x;
double y;
for (size_t i = 0; i < n; ++i) {
x = *(double*)(vertex_in);
y = *(double*)(vertex_in + stride1);
*vertex_out++ = a*x + c*y + e;
*vertex_out++ = b*x + d*y + f;
vertex_in += stride0;
}
} else {
char* vertex_in = PyArray_BYTES(vertices);
double* vertex_out = (double*)PyArray_DATA(result);
size_t stride0 = PyArray_STRIDE(vertices, 0);
double x;
double y;
x = *(double*)(vertex_in);
y = *(double*)(vertex_in + stride0);
*vertex_out++ = a*x + c*y + e;
*vertex_out++ = b*x + d*y + f;
}
} catch (...) {
Py_XDECREF(vertices);
Py_XDECREF(transform);
Py_XDECREF(result);
}
Py_XDECREF(vertices);
Py_XDECREF(transform);
return Py::Object((PyObject*)result, true);
}
Py::Object _path_module::count_bboxes_overlapping_bbox(const Py::Tuple& args) {
args.verify_length(2);
Py::Object bbox = args[0];
Py::SeqBase<Py::Object> bboxes = args[1];
double ax0, ay0, ax1, ay1;
double bx0, by0, bx1, by1;
long count = 0;
if (py_convert_bbox(bbox.ptr(), ax0, ay0, ax1, ay1)) {
if (ax1 < ax0)
std::swap(ax0, ax1);
if (ay1 < ay0)
std::swap(ay0, ay1);
size_t num_bboxes = bboxes.size();
for (size_t i = 0; i < num_bboxes; ++i) {
Py::Object bbox_b = bboxes[i];
if (py_convert_bbox(bbox_b.ptr(), bx0, by0, bx1, by1)) {
if (bx1 < bx0)
std::swap(bx0, bx1);
if (by1 < by0)
std::swap(by0, by1);
if (not ((bx1 <= ax0) or
(by1 <= ay0) or
(bx0 >= ax1) or
(by0 >= ay1)))
++count;
} else {
throw Py::ValueError("Non-bbox object in bboxes list");
}
}
} else {
throw Py::ValueError("First argument to count_bboxes_overlapping_bbox must be a Bbox object.");
}
return Py::Int(count);
}
extern "C"
DL_EXPORT(void)
init_path(void)
{
import_array();
static _path_module* _path = NULL;
_path = new _path_module;
};
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.