Menu

[r2194]: / trunk / toolkits / basemap / examples / test.py  Maximize  Restore  History

Download this file

517 lines (491 with data), 18.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
# make plots of etopo bathymetry/topography data on
# various map projections, drawing coastlines, state and
# country boundaries, filling continents and drawing
# parallels/meridians
from matplotlib.toolkits.basemap import Basemap, shiftgrid
from pylab import *
# read in topo data (on a regular lat/lon grid)
# longitudes go from 20 to 380.
topodatin = array(load('etopo20data.gz'),'d')
lonsin = array(load('etopo20lons.gz'),'d')
latsin = array(load('etopo20lats.gz'),'d')
# shift data so lons go from -180 to 180 instead of 20 to 380.
topoin,lons = shiftgrid(180.,topodatin,lonsin,start=False)
lats = latsin
print 'min/max etopo20 data:'
print min(ravel(topoin)),max(ravel(topoin))
# setup cylindrical equidistant map projection (global domain).
m = Basemap(llcrnrlon=-180.,llcrnrlat=-90,urcrnrlon=180.,urcrnrlat=90.,\
resolution='c',area_thresh=10000.,projection='cyl')
# setup figure with same aspect ratio as map.
fig=m.createfigure()
ax = fig.add_axes([0.1,0.1,0.75,0.75])
# plot image over map.
im = m.imshow(topoin,cm.jet)
cax = axes([0.875, 0.1, 0.05, 0.75]) # setup colorbar axes.
colorbar(tickfmt='%d', cax=cax) # draw colorbar
axes(ax) # make the original axes current again
m.drawcoastlines()
#m.drawcountries()
#m.drawstates()
#m.fillcontinents()
# draw parallels
delat = 30.
circles = arange(0.,90.+delat,delat).tolist()+\
arange(-delat,-90.-delat,-delat).tolist()
m.drawparallels(circles,labels=[1,0,0,1])
# draw meridians
delon = 60.
meridians = arange(-180,180,delon)
m.drawmeridians(meridians,labels=[1,0,0,1])
title('Cylindrical Equidistant')
print 'plotting Cylindrical Equidistant example, close plot window to proceed ...'
show()
# setup miller cylindrical map projection.
m = Basemap(llcrnrlon=-180.,llcrnrlat=-90,urcrnrlon=180.,urcrnrlat=90.,\
resolution='c',area_thresh=10000.,projection='mill')
# transform to nx x ny regularly spaced native projection grid
nx = len(lons); ny = len(lats)
topodat = m.transform_scalar(topoin,lons,lats,nx,ny)
# setup figure with same aspect ratio as map.
#fig=m.createfigure()
fig.add_axes([0.1,0.1,0.75,0.75])
# plot image over map.
im = m.imshow(topodat,cm.jet)
m.drawcoastlines()
# draw parallels
m.drawparallels(circles,labels=[1,1,1,1])
# draw meridians
m.drawmeridians(meridians,labels=[1,1,1,1])
title('Miller Cylindrical',y=1.1)
print 'plotting Miller Cylindrical example, close plot window to proceed ...'
show()
# setup mercator map projection (-80 to +80).
m = Basemap(llcrnrlon=-180.,llcrnrlat=-80,urcrnrlon=180.,urcrnrlat=80.,\
resolution='c',area_thresh=10000.,projection='merc',\
lon_0=0.5*(lons[0]+lons[-1]),lat_ts=20.)
# transform to nx x ny regularly spaced native projection grid
nx = len(lons); ny = int(80.*len(lats)/90.)
topodat = m.transform_scalar(topoin,lons,lats,nx,ny)
# setup figure with same aspect ratio as map.
fig=m.createfigure()
fig.add_axes([0.1,0.1,0.75,0.75])
# plot image over map.
im = m.imshow(topodat,cm.jet)
m.drawcoastlines()
m.drawcountries()
m.drawstates()
m.fillcontinents()
# draw parallels
m.drawparallels(circles,labels=[1,1,1,1])
# draw meridians
m.drawmeridians(meridians,labels=[1,1,1,1])
title('Mercator',y=1.1)
print 'plotting Mercator example, close plot window to proceed ...'
show()
# setup cassini-soldner basemap.
m = Basemap(llcrnrlon=-6,llcrnrlat=49,urcrnrlon=4,urcrnrlat=59,\
resolution='l',area_thresh=1000.,projection='cass',\
lat_0=54.,lon_0=-2.)
fig=m.createfigure()
fig.add_axes([0.125,0.2,0.6,0.6])
# transform to nx x ny regularly spaced native projection grid
nx = int((m.xmax-m.xmin)/20000.)+1; ny = int((m.ymax-m.ymin)/20000.)+1
topodat = m.transform_scalar(topoin,lons,lats,nx,ny)
# plot image over map.
im = m.imshow(topodat,cm.jet)
# get current axis instance.
ax = gca()
cax = axes([0.8, 0.2, 0.075, 0.6]) # setup colorbar axes.
colorbar(tickfmt='%d', cax=cax) # draw colorbar
axes(ax) # make the original axes current again
m.drawcoastlines()
# draw parallels
delat = 2.
circles = arange(40.,70.,delat)
m.drawparallels(circles,labels=[1,0,0,1],fontsize=10)
# draw meridians
delon = 2.
meridians = arange(-10,10,delon)
m.drawmeridians(meridians,labels=[1,0,0,1],fontsize=10)
title('Cassini-Soldner Projection')
print 'plotting Cassini-Soldner example, close plot window to proceed ...'
show()
# setup gnomonic basemap.
m = Basemap(llcrnrlon=-95.,llcrnrlat=-52,urcrnrlon=-35.,urcrnrlat=15.,\
resolution='c',area_thresh=10000.,projection='gnom',\
lat_0=-10.,lon_0=-60.)
fig=m.createfigure()
fig.add_axes([0.125,0.2,0.6,0.6])
# transform to nx x ny regularly spaced native projection grid
nx = int((m.xmax-m.xmin)/40000.)+1; ny = int((m.ymax-m.ymin)/40000.)+1
topodat = m.transform_scalar(topoin,lons,lats,nx,ny)
# plot image over map.
im = m.imshow(topodat,cm.jet)
# get current axis instance.
ax = gca()
cax = axes([0.8, 0.2, 0.075, 0.6]) # setup colorbar axes.
colorbar(tickfmt='%d', cax=cax) # draw colorbar
axes(ax) # make the original axes current again
m.drawcoastlines()
m.drawcountries()
# draw parallels
delat = 20.
circles = arange(-80.,100.,delat)
m.drawparallels(circles,labels=[1,0,0,1],fontsize=10)
# draw meridians
delon = 20.
meridians = arange(-180,180,delon)
m.drawmeridians(meridians,labels=[1,0,0,1],fontsize=10)
title('Gnomonic Projection')
print 'plotting Gnomonic example, close plot window to proceed ...'
show()
# setup transverse mercator basemap.
m = Basemap(llcrnrlon=170.,llcrnrlat=-45,urcrnrlon=10.,urcrnrlat=45.,\
resolution='c',area_thresh=10000.,projection='tmerc',\
lat_0=0.,lon_0=-90.)
fig=m.createfigure()
fig.add_axes([0.125,0.2,0.6,0.6])
# transform to nx x ny regularly spaced native projection grid
nx = int((m.xmax-m.xmin)/40000.)+1; ny = int((m.ymax-m.ymin)/40000.)+1
topodat = m.transform_scalar(topoin,lons,lats,nx,ny)
# plot image over map.
im = m.imshow(topodat,cm.jet)
# get current axis instance.
ax = gca()
cax = axes([0.8, 0.2, 0.075, 0.6]) # setup colorbar axes.
colorbar(tickfmt='%d', cax=cax) # draw colorbar
axes(ax) # make the original axes current again
m.drawcoastlines()
# draw parallels
delat = 20.
circles = arange(-80.,100.,delat)
m.drawparallels(circles,labels=[1,0,0,0],fontsize=10)
# draw meridians
delon = 20.
meridians = arange(-180,180,delon)
m.drawmeridians(meridians,labels=[1,0,0,0],fontsize=10)
title('Transverse Mercator Projection')
print 'plotting Transverse Mercator example, close plot window to proceed ...'
show()
# setup oblique mercator basemap.
m = Basemap(llcrnrlon=-130.,llcrnrlat=39,urcrnrlon=-124.,urcrnrlat=60.,\
resolution='l',area_thresh=1000.,projection='omerc',\
lon_2=-140,lat_2=55,lon_1=-120,lat_1=40)
fig=m.createfigure()
fig.add_axes([0.125,0.2,0.6,0.6])
# transform to nx x ny regularly spaced native projection grid
nx = int((m.xmax-m.xmin)/20000.)+1; ny = int((m.ymax-m.ymin)/20000.)+1
topodat = m.transform_scalar(topoin,lons,lats,nx,ny)
# plot image over map.
im = m.imshow(topodat,cm.jet)
# get current axis instance.
ax = gca()
cax = axes([0.8, 0.2, 0.075, 0.6]) # setup colorbar axes.
colorbar(tickfmt='%d', cax=cax) # draw colorbar
axes(ax) # make the original axes current again
m.drawcoastlines()
m.drawcountries()
m.drawstates()
# draw parallels
delat = 3.
circles = arange(40,60,delat)
m.drawparallels(circles,labels=[1,0,0,0],fontsize=10)
# draw meridians
delon = 3.
meridians = arange(-140,-120,delon)
m.drawmeridians(meridians,labels=[0,0,0,1],fontsize=10)
title('Oblique Mercator Projection')
print 'plotting Oblique Mercator example, close plot window to proceed ...'
show()
# setup polyconic basemap.
m = Basemap(llcrnrlon=-35.,llcrnrlat=-30,urcrnrlon=80.,urcrnrlat=50.,\
resolution='c',area_thresh=1000.,projection='poly',\
lat_0=0.,lon_0=20.)
fig=m.createfigure()
fig.add_axes([0.125,0.2,0.6,0.6])
# transform to nx x ny regularly spaced native projection grid
nx = int((m.xmax-m.xmin)/40000.)+1; ny = int((m.ymax-m.ymin)/40000.)+1
topodat = m.transform_scalar(topoin,lons,lats,nx,ny)
# plot image over map.
im = m.imshow(topodat,cm.jet)
# get current axis instance.
ax = gca()
cax = axes([0.8, 0.2, 0.075, 0.6]) # setup colorbar axes.
colorbar(tickfmt='%d', cax=cax) # draw colorbar
axes(ax) # make the original axes current again
m.drawcoastlines()
m.drawcountries()
# draw parallels
delat = 20.
circles = arange(-80.,100.,delat)
m.drawparallels(circles,labels=[1,0,0,0],fontsize=10)
# draw meridians
delon = 20.
meridians = arange(-180,180,delon)
m.drawmeridians(meridians,labels=[1,0,0,1],fontsize=10)
title('Polyconic Projection')
print 'plotting Polyconic example, close plot window to proceed ...'
show()
# setup equidistant conic
m = Basemap(llcrnrlon=-90.,llcrnrlat=18,urcrnrlon=-70.,urcrnrlat=26.,\
resolution='l',area_thresh=1000.,projection='eqdc',\
lat_1=21.,lat_2=23.,lon_0=-80.)
# transform to nx x ny regularly spaced native projection grid
nx = int((m.xmax-m.xmin)/40000.)+1; ny = int((m.ymax-m.ymin)/40000.)+1
topodat = m.transform_scalar(topoin,lons,lats,nx,ny)
# setup figure with same aspect ratio as map.
fig=m.createfigure()
ax = fig.add_axes([0.1,0.1,0.7,0.7])
# plot image over map.
im = m.imshow(topodat,cm.jet)
cax = axes([0.875, 0.1, 0.05, 0.7]) # setup colorbar axes.
colorbar(tickfmt='%d', cax=cax) # draw colorbar
axes(ax) # make the original axes current again
m.drawcoastlines()
m.drawcountries()
m.drawstates()
m.fillcontinents(color='olive')
# draw parallels
delat = 2.
circles = arange(17,27,delat)
m.drawparallels(circles,labels=[1,0,0,0])
# draw meridians
delon = 5.
meridians = arange(-100,-60,delon)
m.drawmeridians(meridians,labels=[0,0,0,1])
title('Equidistant Conic')
print 'plotting Equidistant Conic example, close plot window to proceed ...'
show()
# setup lambert conformal map projection (North America).
m = Basemap(llcrnrlon=-145.5,llcrnrlat=1,urcrnrlon=-2.566,urcrnrlat=46.352,\
resolution='c',area_thresh=10000.,projection='lcc',\
lat_1=50.,lon_0=-107.)
# transform to nx x ny regularly spaced native projection grid
nx = int((m.xmax-m.xmin)/40000.)+1; ny = int((m.ymax-m.ymin)/40000.)+1
topodat = m.transform_scalar(topoin,lons,lats,nx,ny)
# setup figure with same aspect ratio as map.
fig=m.createfigure()
ax = fig.add_axes([0.1,0.1,0.7,0.7])
# plot image over map.
im = m.imshow(topodat,cm.jet)
cax = axes([0.875, 0.1, 0.05, 0.7]) # setup colorbar axes.
colorbar(tickfmt='%d', cax=cax) # draw colorbar
axes(ax) # make the original axes current again
m.drawcoastlines()
m.drawcountries()
m.drawstates()
#m.fillcontinents()
# draw parallels
delat = 20.
circles = arange(0.,90.+delat,delat).tolist()+\
arange(-delat,-90.-delat,-delat).tolist()
m.drawparallels(circles,labels=[1,1,0,1])
# draw meridians
delon = 30.
meridians = arange(10.,360.,delon)
m.drawmeridians(meridians,labels=[1,1,0,1])
title('Lambert Conformal Conic')
print 'plotting Lambert Conformal example, close plot window to proceed ...'
show()
# setup albers equal area map projection (Europe).
m = Basemap(llcrnrlon=-10.,llcrnrlat=20,urcrnrlon=55.,urcrnrlat=75,\
resolution='l',projection='aea',\
lat_1=40.,lat_2=60,lon_0=35.)
# transform to nx x ny regularly spaced native projection grid
nx = int((m.xmax-m.xmin)/40000.)+1; ny = int((m.ymax-m.ymin)/40000.)+1
topodat = m.transform_scalar(topoin,lons,lats,nx,ny)
# setup figure with same aspect ratio as map.
fig=m.createfigure()
ax = fig.add_axes([0.1,0.1,0.7,0.7])
# plot image over map.
im = m.imshow(topodat,cm.jet)
im.set_clim(-4000.,3000.) # adjust range of colors.
cax = axes([0.875, 0.1, 0.05, 0.7]) # setup colorbar axes.
colorbar(tickfmt='%d', cax=cax) # draw colorbar
axes(ax) # make the original axes current again
m.drawcoastlines()
m.drawcountries()
# draw parallels
delat = 20.
circles = arange(0.,90.+delat,delat).tolist()+\
arange(-delat,-90.-delat,-delat).tolist()
m.drawparallels(circles,labels=[1,1,1,1])
# draw meridians
delon = 30.
meridians = arange(10.,360.,delon)
m.drawmeridians(meridians,labels=[1,1,1,1])
title('Albers Equal Area Conic',y=1.075)
print 'plotting Albers Equal Area example, close plot window to proceed ...'
show()
# setup stereographic map projection (Southern Hemisphere).
m = Basemap(llcrnrlon=-60.,llcrnrlat=20.826,urcrnrlon=120.,urcrnrlat=20.826,\
resolution='c',area_thresh=10000.,projection='stere',\
lat_0=-90.,lon_0=75.,lat_ts=-90.)
# transform to nx x ny regularly spaced native projection grid
nx = int((m.xmax-m.xmin)/40000.)+1; ny = int((m.ymax-m.ymin)/40000.)+1
topodat = m.transform_scalar(topoin,lons,lats,nx,ny)
# setup figure with same aspect ratio as map.
fig=m.createfigure()
ax = fig.add_axes([0.1,0.1,0.7,0.7])
# plot image over map.
im = m.imshow(topodat,cm.jet)
cax = axes([0.875, 0.1, 0.05, 0.7]) # setup colorbar axes.
colorbar(tickfmt='%d', cax=cax) # draw colorbar
axes(ax) # make the original axes current again
m.drawcoastlines()
m.drawcountries()
#m.fillcontinents()
# draw parallels
m.drawparallels(circles)
# draw meridians
m.drawmeridians(meridians,labels=[1,1,1,1])
title('Polar Stereographic',y=1.075)
print 'plotting Stereographic example, close plot window to proceed ...'
show()
# setup lambert azimuthal map projection (Northern Hemisphere).
m = Basemap(llcrnrlon=-150.,llcrnrlat=-20.826,urcrnrlon=30.,urcrnrlat=-20.826,\
resolution='c',area_thresh=10000.,projection='laea',\
lat_0=90.,lon_0=-105.)
# transform to nx x ny regularly spaced native projection grid
nx = int((m.xmax-m.xmin)/40000.)+1; ny = int((m.ymax-m.ymin)/40000.)+1
topodat = m.transform_scalar(topoin,lons,lats,nx,ny)
# setup figure with same aspect ratio as map.
fig=m.createfigure()
ax = fig.add_axes([0.1,0.1,0.7,0.7])
# plot image over map.
im = m.imshow(topodat,cm.jet)
cax = axes([0.875, 0.1, 0.05, 0.7]) # setup colorbar axes.
colorbar(tickfmt='%d', cax=cax) # draw colorbar
axes(ax) # make the original axes current again
m.drawcoastlines()
m.drawcountries()
m.drawstates()
#m.fillcontinents()
# draw parallels
m.drawparallels(circles)
# draw meridians
m.drawmeridians(meridians,labels=[1,1,1,1])
title('Lambert Azimuthal Equal Area',y=1.075)
print 'plotting Lambert Azimuthal example, close plot window to proceed ...'
show()
# setup azimuthal equidistant map projection (Northern Hemisphere).
m = Basemap(llcrnrlon=-150.,llcrnrlat=40.,urcrnrlon=30.,urcrnrlat=40.,\
resolution='c',area_thresh=10000.,projection='aeqd',\
lat_0=90.,lon_0=-105.)
# transform to nx x ny regularly spaced native projection grid
nx = int((m.xmax-m.xmin)/40000.)+1; ny = int((m.ymax-m.ymin)/40000.)+1
topodat = m.transform_scalar(topoin,lons,lats,nx,ny)
# setup figure with same aspect ratio as map.
fig=m.createfigure()
ax = fig.add_axes([0.1,0.1,0.7,0.7])
# plot image over map.
im = m.imshow(topodat,cm.jet)
cax = axes([0.875, 0.1, 0.05, 0.7]) # setup colorbar axes.
colorbar(tickfmt='%d', cax=cax) # draw colorbar
axes(ax) # make the original axes current again
m.drawcoastlines()
m.drawcountries()
m.drawstates()
#m.fillcontinents()
# draw parallels
m.drawparallels(circles)
# draw meridians
m.drawmeridians(meridians,labels=[1,1,1,1])
title('Azimuthal Equidistant',y=1.075)
print 'plotting Azimuthal Equidistant example, close plot window to proceed ...'
show()
# projections with elliptical boundaries (orthographic, mollweide and robinson)
# can't use imshow, since it expects a rectangular image.
# instead use pcolor or contourf, and plot data
# directly on lat/lon grid without interpolation.
# shift lons and lats by 1/2 grid increment (so values represent the vertices
# of the grid box surrounding the data value, as pcolor expects).
delon = lonsin[1]-lonsin[0]
delat = latsin[1]-latsin[0]
lons = zeros(len(lonsin)+1,'d')
lats = zeros(len(latsin)+1,'d')
lons[0:len(lonsin)] = lonsin-0.5*delon
lons[-1] = lonsin[-1]+0.5*delon
lats[0:len(latsin)] = latsin-0.5*delat
lats[-1] = latsin[-1]+0.5*delat
# setup of basemap ('ortho' = orthographic projection)
m = Basemap(projection='ortho',
resolution='c',area_thresh=10000.,lat_0=30,lon_0=-60)
fig=m.createfigure()
ax = fig.add_axes([0.1,0.1,0.7,0.7])
# pcolor plot (slow)
#x,y = m(*meshgrid(lons,lats))
#p = m.pcolor(x,y,topodatin,shading='flat')
# filled contours (faster)
x,y = m(*meshgrid(lonsin,latsin))
cs = m.contourf(x,y,topodatin,20,cmap=cm.jet)
cax = axes([0.875, 0.1, 0.05, 0.7]) # setup colorbar axes
colorbar(tickfmt='%d', cax=cax) # draw colorbar
axes(ax) # make the original axes current again
# draw coastlines and political boundaries.
m.drawcoastlines()
# draw parallels and meridians (labelling is
# not implemented for orthographic).
parallels = arange(-80.,90,20.)
m.drawparallels(parallels)
meridians = arange(0.,360.,20.)
m.drawmeridians(meridians)
# draw boundary around map region.
m.drawmapboundary()
title('Orthographic')
print 'plotting Orthographic example, close plot window to proceed ...'
show()
# setup of basemap ('moll' = mollweide projection)
m = Basemap(projection='moll',
resolution='c',area_thresh=10000.,lon_0=0.5*(lonsin[0]+lonsin[-1]))
fig=m.createfigure()
ax = fig.add_axes([0.1,0.1,0.7,0.7])
# pcolor plot (slow)
#x,y = m(*meshgrid(lons,lats))
#p = m.pcolor(x,y,topodatin,shading='flat')
# filled contours (faster)
x,y = m(*meshgrid(lonsin,latsin))
cs = m.contourf(x,y,topodatin,20,cmap=cm.jet)
cax = axes([0.875, 0.1, 0.05, 0.7]) # setup colorbar axes
colorbar(tickfmt='%d', cax=cax) # draw colorbar
axes(ax) # make the original axes current again
# draw coastlines and political boundaries.
m.drawcoastlines()
# draw parallels and meridians
parallels = arange(-60.,90,30.)
m.drawparallels(parallels,labels=[1,0,0,0])
meridians = arange(0.,360.,30.)
m.drawmeridians(meridians)
# draw boundary around map region.
m.drawmapboundary()
title('Mollweide')
print 'plotting Mollweide example, close plot window to proceed ...'
show()
# setup of basemap ('robin' = robinson projection)
m = Basemap(projection='robin',
resolution='c',area_thresh=10000.,lon_0=0.5*(lonsin[0]+lonsin[-1]))
fig=m.createfigure()
ax = fig.add_axes([0.1,0.1,0.7,0.7])
# pcolor plot (slow)
#x,y = m(*meshgrid(lons,lats))
#p = m.pcolor(x,y,topodatin,shading='flat')
# filled contours (faster)
x,y = m(*meshgrid(lonsin,latsin))
cs = m.contourf(x,y,topodatin,20,cmap=cm.jet)
cax = axes([0.875, 0.1, 0.05, 0.7]) # setup colorbar axes
colorbar(tickfmt='%d', cax=cax) # draw colorbar
axes(ax) # make the original axes current again
# draw coastlines and political boundaries.
m.drawcoastlines()
# draw parallels and meridians
parallels = arange(-60.,90,30.)
m.drawparallels(parallels,labels=[1,0,0,0])
meridians = arange(0.,360.,60.)
m.drawmeridians(meridians,labels=[0,0,0,1])
# draw boundary around map region.
m.drawmapboundary()
title('Robinson')
print 'plotting Robinson example, close plot window to proceed ...'
show()
print 'done'
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.