Browse free open source Python UML Tools and projects below. Use the toggles on the left to filter open source Python UML Tools by OS, license, language, programming language, and project status.

  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Secure remote access solution to your private network, in the cloud or on-prem. Icon
    Secure remote access solution to your private network, in the cloud or on-prem.

    Deliver secure remote access with OpenVPN.

    OpenVPN is here to bring simple, flexible, and cost-effective secure remote access to companies of all sizes, regardless of where their resources are located.
    Get started — no credit card required.
  • 1
    PyMC3

    PyMC3

    Probabilistic programming in Python

    PyMC3 allows you to write down models using an intuitive syntax to describe a data generating process. Fit your model using gradient-based MCMC algorithms like NUTS, using ADVI for fast approximate inference — including minibatch-ADVI for scaling to large datasets, or using Gaussian processes to build Bayesian nonparametric models. PyMC3 includes a comprehensive set of pre-defined statistical distributions that can be used as model building blocks. Sometimes an unknown parameter or variable in a model is not a scalar value or a fixed-length vector, but a function. A Gaussian process (GP) can be used as a prior probability distribution whose support is over the space of continuous functions. PyMC3 provides rich support for defining and using GPs. Variational inference saves computational cost by turning a problem of integration into one of optimization. PyMC3's variational API supports a number of cutting edge algorithms, as well as minibatch for scaling to large datasets.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 2
    SageMaker Training Toolkit

    SageMaker Training Toolkit

    Train machine learning models within Docker containers

    Train machine learning models within a Docker container using Amazon SageMaker. Amazon SageMaker is a fully managed service for data science and machine learning (ML) workflows. You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. To train a model, you can include your training script and dependencies in a Docker container that runs your training code. A container provides an effectively isolated environment, ensuring a consistent runtime and reliable training process. The SageMaker Training Toolkit can be easily added to any Docker container, making it compatible with SageMaker for training models. If you use a prebuilt SageMaker Docker image for training, this library may already be included. Write a training script (eg. train.py). Define a container with a Dockerfile that includes the training script and any dependencies.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 3
    AWS Deep Learning Containers

    AWS Deep Learning Containers

    A set of Docker images for training and serving models in TensorFlow

    AWS Deep Learning Containers (DLCs) are a set of Docker images for training and serving models in TensorFlow, TensorFlow 2, PyTorch, and MXNet. Deep Learning Containers provide optimized environments with TensorFlow and MXNet, Nvidia CUDA (for GPU instances), and Intel MKL (for CPU instances) libraries and are available in the Amazon Elastic Container Registry (Amazon ECR). The AWS DLCs are used in Amazon SageMaker as the default vehicles for your SageMaker jobs such as training, inference, transforms etc. They've been tested for machine learning workloads on Amazon EC2, Amazon ECS and Amazon EKS services as well. This project is licensed under the Apache-2.0 License. Ensure you have access to an AWS account i.e. setup your environment such that awscli can access your account via either an IAM user or an IAM role.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 4
    statsmodels

    statsmodels

    Statsmodels, statistical modeling and econometrics in Python

    statsmodels is a Python module that provides classes and functions for the estimation of many different statistical models, as well as for conducting statistical tests, and statistical data exploration. An extensive list of result statistics are available for each estimator. The results are tested against existing statistical packages to ensure that they are correct. The package is released under the open source Modified BSD (3-clause) license. Generalized linear models with support for all of the one-parameter exponential family distributions. Markov switching models (MSAR), also known as Hidden Markov Models (HMM). Vector autoregressive models, VAR and structural VAR. Vector error correction model, VECM. Robust linear models with support for several M-estimators. statsmodels supports specifying models using R-style formulas and pandas DataFrames.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Cloud SQL for MySQL, PostgreSQL, and SQL Server Icon
    Cloud SQL for MySQL, PostgreSQL, and SQL Server

    Focus on your application, and leave the database to us

    Fully managed, cost-effective relational database service for PostgreSQL, MySQL, and SQL Server. Try Enterprise Plus edition for a 99.99% availability SLA and category-leading performance.
    Try it for free
  • 5
    PyText

    PyText

    A natural language modeling framework based on PyTorch

    PyText is a deep-learning based NLP modeling framework built on PyTorch. PyText addresses the often-conflicting requirements of enabling rapid experimentation and of serving models at scale. It achieves this by providing simple and extensible interfaces and abstractions for model components, and by using PyTorch’s capabilities of exporting models for inference via the optimized Caffe2 execution engine. We use PyText at Facebook to iterate quickly on new modeling ideas and then seamlessly ship them at scale. Distributed-training support built on the new C10d backend in PyTorch 1.0. Mixed precision training support through APEX (trains faster with less GPU memory on NVIDIA Tensor Cores). Extensible components that allows easy creation of new models and tasks.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    SageMaker Hugging Face Inference Toolkit

    SageMaker Hugging Face Inference Toolkit

    Library for serving Transformers models on Amazon SageMaker

    SageMaker Hugging Face Inference Toolkit is an open-source library for serving Transformers models on Amazon SageMaker. This library provides default pre-processing, predict and postprocessing for certain Transformers models and tasks. It utilizes the SageMaker Inference Toolkit for starting up the model server, which is responsible for handling inference requests. For the Dockerfiles used for building SageMaker Hugging Face Containers, see AWS Deep Learning Containers. The SageMaker Hugging Face Inference Toolkit implements various additional environment variables to simplify your deployment experience. The Hugging Face Inference Toolkit allows user to override the default methods of the HuggingFaceHandlerService. SageMaker Hugging Face Inference Toolkit is licensed under the Apache 2.0 License.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    torchvision

    torchvision

    Datasets, transforms and models specific to Computer Vision

    The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision. We recommend Anaconda as Python package management system. Torchvision currently supports Pillow (default), Pillow-SIMD, which is a much faster drop-in replacement for Pillow with SIMD, if installed will be used as the default. Also, accimage, if installed can be activated by calling torchvision.set_image_backend('accimage'), libpng, which can be installed via conda conda install libpng or any of the package managers for debian-based and RHEL-based Linux distributions, and libjpeg, which can be installed via conda conda install jpeg or any of the package managers for debian-based and RHEL-based Linux distributions. It supports libjpeg-turbo as well. libpng and libjpeg must be available at compilation time in order to be available. TorchVision also offers a C++ API that contains C++ equivalent of python models.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    DAE Tools Project

    DAE Tools Project

    Object-oriented equation-based modelling and optimisation software

    DAE Tools is a cross-platform equation-based object-oriented modelling, simulation and optimisation software. It is not a modelling language nor a collection of numerical libraries but rather a higher level structure – an architectural design of interdependent software components providing an API for: - Model development/specification - Activities on developed models, such as simulation, optimisation, sensitivity analysis and parameter estimation - Processing of the results, such as plotting and exporting to various file formats - Report generation - Code generation, co-simulation and model exchange The following class of problems can be solved by DAE Tools: - Initial value problems of implicit form - Index-1 DAE systems - With lumped or distributed parameters - Steady-state or dynamic - Continuous with some elements of event-driven systems
    Leader badge
    Downloads: 19 This Week
    Last Update:
    See Project
  • 9
    Modelio-Open is a project hosting a set of open source extensions (SoaML, SysML and UML Testing Profile) for a previous version (1.2) of the Modelio Free tool . Currently, the lastest version (2.x) of Modelio modeling and generation tool is available at http://modelio.org/downloads/download-modelio.html. All extensions are downloadable at http://forge.modelio.org/projects.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Turn Your Content into Interactive Magic - For Free Icon
    Turn Your Content into Interactive Magic - For Free

    From Canva to Slides, Desmos to YouTube, Lumio works with the tech tools you are already using.

    Transform anything you share into an engaging digital experience - for free. Instantly convert your PDFs, slides, and files into dynamic, interactive sessions with built-in collaboration tools, activities, and real-time assessment. From teaching to training to team building, make every presentation unforgettable. Used by millions for education, business, and professional development.
    Start Free Forever
  • 10
    SPE is a python IDE with auto indentation&completion,call tips,syntax coloring&highlighting,uml viewer,class explorer,source index,todo list,pycrust shell,file browsers,drag&drop,Blender support.Spe ships with wxGlade,PyChecker and Kiki.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 11
    This project provides a set of Python tools for creating various kinds of neural networks, which can also be powered by genetic algorithms using grammatical evolution. MLP, backpropagation, recurrent, sparse, and skip-layer networks are supported.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 12
    Pretty Damn Quick (PDQ) analytically solves queueing network models of computer and manufacturing systems, data networks, etc., written in conventional programming languages. Generic or customized reports of predicted performance measures are output.
    Leader badge
    Downloads: 3 This Week
    Last Update:
    See Project
  • 13
    setupdocx

    setupdocx

    Multidocument automation by templates - for sphinx, mkdocs, epydoc ...

    The ‘setupdocx‘ provides a control layer for continuous documentation by the simplified creation, packaging, and installation of documentation. The provided commands are distributed as entry points and optional base classes for further customization into 'setup.py' - setuptools / distutils. Manages arbitrary document templates for the supported builder, supports multiple builds with arbitrary document layouts, designs, and patched contents. The current release supports the following commands: - build_docx - Enhanced documentation. - install_docx - Installs local documentation. - dist_docx - Documentation packaging. - build_apidoc - Standalone Generator for API Documentation - build_apiref - Standalone Generator for API Reference
    Downloads: 3 This Week
    Last Update:
    See Project
  • 14
    This project contains a set of tools for formal verification and static analysis of VHDL design.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 15
    KML is a knowledge base with support of logical modeling. Advanced model is used to represent knowledge as a set of statements similar to natural language sentences. This project hosts a set of model storage library and server (vrb-ols) and clients.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    Travel Market Simulator

    Travel Market Simulator

    Travel Market Simulator

    That project aims at studying the impact of IT systems interactions on traveller demand and airline revenues. Passenger demand is generated (Monte Carlo) and injected into simulated CRS and airline IT systems. Differential analysis is then performed on various changes compared to a bottom line scenario.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    Our goal is to develop a full working solver for ATA (with 1 clock) in Python, with MTL to ATA support. The decidability for the emptiness problem was proposed by Lasota and Walukiewicz. The MTL to ATA was proposed by Ouaknine and Worrell.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    In Systems Biology models are created in various formats (Matlab, Java, C/C++, Python, ...). "Annotate Your Model" will help you to link your model to biological web resources by creating a CSV file containing MIRIAM annotations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Framework applying all MDE (Model Driven Engineering) concepts with : a core MetaMeta Model based on the OMG's MOF, a model transformation engine, a code generation engine (in discussion...) and a set of MetaModel suitable for use with this framework.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    C++ Standard Airline IT Object Library
    That project aims at providing a clean API, and the corresponding C++ implementation, for the basis of Airline IT Business Object Model (BOM), ie, to be used by several other Open Source projects, such as RMOL, Air-Sched, Travel-CCM, OpenTREP, etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Coral is a tool and a development platform to create and transform models and modeling languages. It can be used to edit UML models, to develop editors for other modeling languages and to implement MDA and QVT-like model transformations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    DeepCTR-Torch

    DeepCTR-Torch

    Easy-to-use,Modular and Extendible package of deep-learning models

    DeepCTR-Torch is an easy-to-use, Modular and Extendible package of deep-learning-based CTR models along with lots of core components layers that can be used to build your own custom model easily.It is compatible with PyTorch.You can use any complex model with model.fit() and model.predict(). With the great success of deep learning, DNN-based techniques have been widely used in CTR estimation tasks. The data in the CTR estimation task usually includes high sparse,high cardinality categorical features and some dense numerical features. Low-order Extractor learns feature interaction through product between vectors. Factorization-Machine and it’s variants are widely used to learn the low-order feature interaction. High-order Extractor learns feature combination through complex neural network functions like MLP, Cross Net, etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23

    Farmer Apps

    Suite of applications for farmers of all types.

    This is a suite of tools for farmers it includes local market prices for their sales, weather reports, other features useful to farmers.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Gaphor is a UML modeling environment written in Python. Gaphor is small and very extensible. The repository is located at http://github.com/gaphor/gaphor.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    A Python programming environment providing memory sizing, profiling and analysis, and a specification language that can formally specify aspects of Python programs and generate tests and documentation from a common source.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.