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Chapter 2

Sample Size

2.1 The Basic Formula

Introduction

The �rst question faced by a statistical consultant, and frequently the last,
is, "How many subjects (animals, units) do I need?" This usually results in
exploring the size of the treatment e�ects the researcher has in mind and the
variability of the observational units. Researchers are usually less interested
in questions of Type I error, Type II error, and one-sided versus two-sided
alternatives. You will not go far astray if you start with the basic sample size
formula for two groups, with a two-sided alternative, normal distribution with
variances homogeneous.

Rule of Thumb

The basic formula is:

n =
16

�2

where,

� =
�1 � �2

�

is the treatment di�erence to be detected in units of the standard deviation.

Illustration

If the standardized distance is expected to be 0.5 then 16=0:52 = 64 subjects
per treatment will be needed. If the study requires only one group then a total
of 32 subjects will be needed.
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4 CHAPTER 2. SAMPLE SIZE

Derivation

For � = 0:05, � = 0:20 the values of z1��=2+z1�� are 1.96 and 0.84 respectively
and 2(z1��=2+ z1��)2 = 15:68 which can be rounded up to 16. So a quick rule
of thumb for sample size calculations is:

n =
16

�2
:

Discussion and Extensions

This formula is convenient to memorize. The key is to think in terms of stan-
dardized units of �. The multiplier can be calculated for other values of Type I
and Type II error. In addition, for a given sample size the detectable di�erence
can be calculated.

2.2 Sample Size and Coe�cient of Variation

Introduction

Consider the answer to the following question posed in a consulting session,
"What kind of treatment e�ect are you anticipating?"
"Oh, I'm looking for a 20% change in the mean."
"Mm, and how much variability is there in your observations?"
"About 30%"
How are we going to address this question? It turns out, fortuitously, that

the question can be answered.

Rule of Thumb

The sample size formula becomes:

n =
8(CV )2

(PC)2
[1 + (1� PC)2]:

where PC is the proportionate change in means (PC = (�1 � �2)=�1) and
CV is the coe�cient of variation (CV = �1=�1 = �2=�2).

Illustration

For the situation described in the consulting session the sample size becomes,

n =
8(0:302)

(0:20)2
[1 + (1� 0:20)2]:

= 29:52 ' 30

and the researcher will need to aim for about 30 subjects per group. If the
treatment is to be compared with a standard, that is, only one group is needed
then the sample size required will be 15.
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Derivation

Since the coe�cient of variation is assumed to be constant this implies that the
variances of the two populations are not the same and the variance �2 in the
sample size formula is replaced by the average of the two population variances:
(�2

1
+�2

2
)=2. Replacing �i by �iCV for i = 1; 2 and simplifying the algebra leads

to the equation above.

Discussion and Extensions

Sometimes the researcher will not have any idea of the variability inherent in
the system. For biological variables a variability on the order of 35% is not
uncommon and you will be able to begin the discussion by assuming a sample
size formula of:

n ' 1

(PC)2
[1 + (1� PC)2]:

References

For additional discussion see van Belle and Martin (1993).

2.3 Sample Size Con�dence Interval Width

Introduction

Frequently the question is asked to calculate a sample size for a �xed con�dence
interval width. We consider two situations where the con�dence in the original
scale is w and is w� = w=� in units of the standard deviation

Rule of Thumb

For w and w� as de�ned above the sample size formulae are:

n =
16 � �2
w2

;

and,

n =
16

(w�)2
:

Illustration

If � = 4 and the con�dence interval width desired is 2 then the required sample
size is 64. In terms of standardized units the value for w� = 0:5 leading to the
same answer.
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Derivation

The width, w, of a 95% con�dence interval is,

w = 2 � 1:96 �p
n
:

Solving for n and rounding up to 16 leads to the result for w, substituting
w = � �w� leads to the result for w�.

Discussion and Extensions

The sample size formula for the con�dence interval width is identical to the
formula for sample sizes comparing two groups. Thus you have to memorize
only one formula. If you switch back and forth between these two formulations
in a consulting session you must point out that you are moving from two sample
to one sample situations.

This formulation can also be used for setting up a con�dence interval on a
di�erence of two means. You can show that the multiplier changes from 16 to
32. This makes sense because the variance of two independent means is twice
the variance of each mean.

2.4 Sample Size and the Poisson Distribution

Introduction

A rather elegant result for sample size calculations can be derived in the case
of Poisson variables. It is based on the square root transformation of Poisson
random variables.

Rule of Thumb

n =
4

(
p
�1 �

p
�2)2

:

where �1 and �2 are the means of the Poisson distribution.

Illustration

Suppose two Poisson distributed populations are to be compared. The hypoth-
esized means are 30 and 36. Then the number of sampling units per group are
required to be 4=(

p
30�

p
36)2 = 14:6 = 15 observations per group.

Derivation

Let Yi be Poisson with mean �i for i =1, 2. Then it is known that
p
Yi is

approximately normal (� =
p
�i; � = 0:5) Using equation (1) the sample size

formula for the Poisson case becomes:
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Discussion and Extensions

The sample size formula can be rewritten as:

=
2

(�1 + �2)=2�
p
�1�2

:

This is a very interesting result, the denominator is the di�erence between
the arithmetic and the geometric means of the two Poisson distributions! The
denominator is always positive since the arithmetic mean is larger than the
geometric mean (xxxx inequality). So n is the number of observations per
group that are needed to detect a di�erence in Poisson means as speci�ed.

Now suppose that the means �1 and �2 are means per unit time (or unit
volume) and that the observations are observed for a period of time, T. Then
Yi are Poisson with mean �iT . Hence the sample size required can be shown to
be:

n =
2

T [(�1 + �2)=2�
p
�1�2]

:

This formula is worth contemplating. By increasing the observation period T
we reduce the sample size proportionately, not as the square root! Suppose we
choose T so that the number per sample is 1. To achieve that e�ect we must
choose T to be of length:

T =
2

(�1 + �2)=2�
p
�1�2

:

This, again is reasonable since the sum of independent Poisson variables is
Poisson.

2.5 Poisson Distribution With Background Ra-

diation

Introduction

The Poisson distribution is a commonmodel for describing radioactive scenarios.
Frequently there is background radiation over and above which a signal is to be
detected. It turns out that the higher the background radiation the larger the
sample size is needed to detect di�erences between two groups.

Rule of Thumb

Suppose that the background level of radiation is �� and let �1 and �2 now be
the additional radiation over background. Then, Xi is Poisson ((�� + �i)).The
rule-of-thumb sample size formula is:

n =
16(�� + (�1 + �2)=2)

(�1 � �2)2
:
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Illustration

Suppose the means of the two populations are 1 and 2 with no background
radiation. Then the sampling e�ort is n = 24. Now assume a background level
of 1.5. Then the sample sizes per group become 48. Thus the sample size has
doubled with a background radiation halfway between the two means.

Derivation

The variance of the response in the two populations is estimated by �� + (�1 +
�2)=2. Thi formula is based on the normal approximation to the Poisson distri-
bution.

Discussion and Extensions

We did not use the square root transformation. The reason is that the back-
ground radiation level is more transparently displayed in the original scale and,
second, if the square root transformation is used then an expansion in terms in
the �0s produces exactly the formula above. The denominator does not include
the background radiation but the numerator does. Since the sample size is pro-
portional to the numerator, increasing levels of background radiation require
larger sample sizes to detect the same di�erence in radiation levels. When the
square root transformation formula is used in the �rst example the sample size
is 23.3, and in the second example, 47.7. These values are virtually identical
to 24 and 48. While the formula is based on the normal approximation to the
Poisson distribution the e�ect of background radiation is very clear.

2.6 Sample Size and the Binomial Distribution

Introduction

The binomial distribution provides a model for the occurrence of independent
Bernoulli trials. The sample size formula in equation (1) can be used for an ap-
proximation to the sample size question involving two independent samples. We
use the same labels for variables as in the Poisson case. Let Yi be independent
binomial random variables with probability of success �i, respectively. Assume
that equal samples are required.

Rule of Thumb

n =
4

(�1 � �2)2
:

Illustration

For �1 = 0:5 and �2 = 0:7 the required sample size per group is n = 100.
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Derivation

� =
�1 � �2

�
;

where,
� =
p
1=2[�1(1� �1) + �2(1 � �2)]:

An upper limit on the required sample size is obtained at the maximum values
of �i which occurs at �i = 1=2 for i = 1; 2. For these values � = 1=2 and the
sample size formula becomes as above.

Discussion and Extensions

Some care should be taken with this approximation. It is reasonably good for
values of n that come out between 10 and 100. For larger (or smaller) resulting
sample sizes using this approximation, more exact formulae should be used. For
more extreme values use tables of exact values given by Haseman (1978) or use
more exact formulae (see Fisher and van Belle, 1993). Note that the tables by
Haseman are for one-tailed tests of the hypotheses.

References

Haseman (1978) contains tables for \exact" sample sizes based on the hyperge-
ometric distribution. See also Fisher and van Belle (1993)

2.7 Sample Size and Precision

Introduction

In some cases it may be useful to have unequal sample sizes. For example,
in epidemiological studies in may not be possible to get more cases but more
controls are available. Suppose n subjects are required per group but only n1
are available for one of the groups where we assume that n1 < n. We desire
to know the number of subject, kn1 required in the second group in order to
obtain the same precision as with n in each group.

Rule of Thumb

The required value of k is,

k =
n

(2n1 � n)
:

Illustration

Suppose that sample size calculations indicate that n = 16 cases and controls
are needed in a case-control study. However, only 12 cases are available. How
many controls will be needed to obtain the same precision? The answer is
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k = 16=8 = 2 so that 24 controls will be needed to obtain the same precision as
with 16 cases and controls.

Derivation

For two independent samples of size n, the variance of the estimate of di�erence
(assuming equal variances) is proportional to,

1

n
+

1

n
:

Given a sample size n1 < n available for the �rst sample and a sample size kn
for the second sample, then equating the variances for the two designs,

1

n
+

1

n
=

1

n1
+

1

kn1
;

and solving for k produces the result.

Discussion and Extensions

This approach can be generalized to situations where the variances are not
equal. The derivations are simplest when one variance is �xed and the second
variance is considered a multiple of the �rst variance (analogous to the sample
size calculation).

Now consider two designs, one with n observations in each group and the
other with n and kn observations in each group.

The relative precision of these two designs is,

SEk

SE1

=

s
1

2

�
1 +

1

k

�
;

where SEk and SE1 are the standard errors of the designs with kn and n
subjects in the two groups respectively.

For k = 1 we are back to the usual two-sample situation with equal sample
size. If we make k = 1 the relative precision is

p
0:5 = 0:71. Hence, the best

we can do is to decrease the standard error of the di�erence by 29%. For k = 4
we are already at 0:79 so that from the point of view of precision there is no
reason to go beyond four or �ve more subjects in the second group than the �rst
group. This will come close to the maximum possible precision in each group.

2.8 Sample Size and Cost

Introduction

In some two sample situations the cost per observation is not equal and the
challenge then is to choose the sample sizes in such a way so as to minimize
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cost and maximize precision, or minimize the standard error of the di�erence
(or, equivalently, minimize the variance of the di�erence). Suppose the cost per
observation in the �rst sample is c1 and in the second sample is c2. How should
the two sample sizes n1 and n2 be chosen?

Rule of Thumb

The ratio of the two sample size is:

n2
n1

=

r
c1
c2
:

This is known as the square root rule: pick sample sizes inversely proportional
to square root of the cost of the observations. If costs are not too di�erent then
equal sample sizes are suggested (because the square root of the ratio will be
closer to 1).

Illustration

Suppose the cost per observation for the �rst sample is 160 and the cost per
observation for the second sample is 40. Then the rule of thumb states that
you should take twice as many observations in the second group as compared
to the �rst. To calculate the speci�c sample sizes, suppose that on an equal
sample basis 16 observations are needed. To get equal precision with n1 and
2n1 we solve the same equation as in the previous section to produce 12 and 24
observations, respectively.

Derivation

The cost, C, of the experiment is:

C = c1n1 + c2n2;

where n1 and n2 the number of observations in the two groups, respectively,
and are to be chosen to minimize:

1

n1
+

1

n2

subject to the total cost being C. This is a linear programming problem with
solutions:

n1 =
C

c1 +
p
c1c2

;

and

n2 =
C

c2 +
p
c1c2

:

When ratios are taken the result follows.
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Discussion and Extensions

The argument is similar as that in connection with the unequal sample size rule
of thumb.

2.9 The Rule of Threes

Introduction

The rule of threes can be used to address the following type of question, \I am
told by my physician that I need a serious operation and have been informed
that there has not been a fatal outcome in the twenty operations carried out by
the physician. Does this information give me an estimate of the potential post
operative mortality?" The answer is \yes!"

Rule of Thumb

Given no observed events in n trials, a 95% upper bound on the rate of occur-
rence is,

3

n
:

Illustration

Given no observed events in 20 trials a 95% upper bound on the rate of occur-
rence is 3=20 = 0:15. Hence, with no fatalities in twenty operations the rate
could still be as high as 0:15.

Derivation

Formally, we assume Y is Poisson(�). We use n samples. For the Poisson we
have the useful property that the sum of independent Poisson variable is also
Poisson. Hence in this case, Y1 + Y2 + :::+ Yn is Poisson (n�) and the question
of at least one Yi not equal to zero is the probability that the sum,

P
Yi, is

greater than zero. We want this probability to be, say, 0.95 so that:

P (
X

Yi = 0) = e�n� = 0:05:

Taking logarithms we get:

n� = �ln(0:05) = 2:996 = 3

Solving for � we get:

� =
3

n
:

This is one version of the "rule of threes."
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Discussion and Extensions

We solved the equation n� = 3 for �. We could have solved it for n as well. To
illustrate this derivation, consider the following question, '"The concentration
of cryptosporidium in a water source is � per liter. How many liters must I take
to make sure that I have at least one organism?" The answer is, "Take n = 3=�
liters to be 95% certain that there is at least one organism in your sample.

For an interesting discussion see Hanley and Lippman-Hand (1983). For
other applications see Fisher and van Belle (1993).

References
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2.10 WEB sites

In the next few years there will be an explosion of statistical resources available
on WEB sites. Here are some that are already available. All of these programs
allow you to calculate sample sizes for various designs.

1. Designing clinical trials
http://hedwig.mgh.harvard.edu/size.html

2. Martindale's \The Reference Desk: Calculators On-Line"
This is a superb resource for all kinds of calculators. If you use this URL
you will go directly to the statistical calculators. It will be worth your
while to browse all the resources that are available.
http://www-sci.lib.uci.edu/HSG/RefCalculators2.html#STAT

3. Power Calculator
http://www.stat.ucla.edu/~ jbond/HTMLPOWER/index.html

4. Russ Lenth's power and sample-size page
http://www.stat.uiowa.edu/~ rlenth/Power/index.html

5. Power analysis for ANOVA designs
http://www.math.yorku.ca/SCS/Demos/power/


