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Abstract

The concept of Rationalizability has been used in the last fifteen years to study
stability of equilibria on models with a continuum of agents such as competitive
markets, macroeconomic dynamics and currency attacks. However, Rationalizability
has been formally defined in a general setting only for games with a finite number
of players. We propose then a definition for Point-Rationalizable Strategies in the
context of Games with a Continuum of Players. In a special class of these games,
where the payoff of a player depends only on his own strategy and an aggregate value
that represents the state of the game, state that is obtained from the actions of all the
players, we define the sets of Point-Rationalizable States and Rationalizable States.
These sets are characterized and some of their properties are explored. We study as
well standard Rationalizability in a subclass of these games.
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1 Introduction

The concept of Strong Rationality was first introduced by Guesnerie (1992) in a model
of a standard market with a continuum of producers. An equilibrium of the market is there
said to be Strongly Rational, or Eductively Stable, if it is the only Rationalizable Solution of
the economic system. Inspired in the work of Muth (1961), the purpose of such an exercise
was to give a rationale for the Rational Expectations Hypothesis. Strong rationality has
been studied as well in macroeconomic models in terms of stability of equilibria. See for
instance Evans and Guesnerie (1993), where they study Eductive Stability in a general
linear model of Rational Expectations or Evans and Guesnerie 2003; 2005 for dynamics in
macroeconomics. More examples of applications of Strong Rationality can be found in the
recent book by Chamley (2004) where he presents models of Stag Hunts in the context of
coordination in games with strategic complementarities.

The Rationalizable Solution of the economic system assessed by Guesnerie in the def-
inition of Strong Rationality, refers to the concept of Rationalizable Strategies as defined
by Pearce (1984) in the context of games with a finite number of players and finite sets
of strategies. Rationalizable Strategies were formally introduced by Bernheim (1984) and
Pearce (1984) as the “adequate” solution concept under the premises that players are ra-
tional utility maximizers that take decisions independently and that rationality is common
knowledge. Adequate because Rationalizable Strategy Profiles are outcomes of a game
that cannot be discarded based only on agents’ rationality and common knowledge. The
work of Pearce focused mainly in refinements of equilibria of extensive form finite games,
while Bernheim gave a definition and characterization in the context of general normal
form games, along with comparison between the set of Nash Equilibria and the set of Ra-
tionalizable Strategy Profiles. In both papers and later treatments, however, the definition
and characterization of rationalizable “solutions” were developed for games with a finite
number of players.

On the other hand, each one of the works that are mentioned in the first paragraph of
this introduction including the seminal work by Guesnerie (1992), feature intuitive and/or
context-specific definitions of the concept of Rationalizable Solution, adapting the original
definitions and characterizations of Rationalizable Strategies, based on the intuitions be-
hind them, to models with a continuum of agents. It is this gap between the established
theory and its’ economic applications that motivate this work. Since there is no established
definition for Rationalizable Strategies, or Rationalizability for what matters, in a general
framework with a continuum of agents, in this paper then we link the game-theoretical
concept of Rationalizability to its’ applications in macroeconomics and economic models,
proposing a general definition in the context of games with a continuum of players.

To motivate this presentation let us describe the model and illustrate how the Ratio-
nalizability concept is presented in Guesnerie’s 1992 work.

Example 1. Consider that we have a group of farmers, represented by the [0, 1] ≡ I interval,
that participate in a market in which production decisions are taken one period before
production is sold. Each farmer i ∈ I has a cost function ci : R+ → R. The price p at which

2



the good is sold is obtained from the (given) inverse demand function P : R+ → [0, pmax]
evaluated in total aggregate production p = P

(∫
q(i) di

)
where q(i) is farmer i’s production.

Since an individual change in production does not change the value of the price, the
product is sold at price-taking behavior, so each farmer i ∈ I maximizes his payoff function
u(i, · , · ) : R+ × [0, pmax] → R defined by u(i, q(i) , p) ≡ pq(i) − ci(q(i)). An equilibrium
of this system is a price p∗ such that p∗ = P

(∫
q∗(i) di

)
and u(i, q∗(i) , p∗) ≥ u(i, q, p∗) ∀

q ∈ R, ∀ i ∈ I.
At the moment of taking the production decision, farmers do not actually know the

value of the price at which their production will be sold. Consequently they have to rely
on forecasts of the price or of the production decision of the other farmers. The concept
in scrutiny in our work is related to how this (these) forecast(s) is (are) generated.

Forecasts of farmers should be rational in the sense that no unreasonable price should be
given positive probability of being achieved. It is in this setting that Guesnerie introduces
the concept of strong rationality or eductive stability 1 as the uniqueness of rationalizable
prices which are obtained from the elimination of the unreasonable forecasts of possible
outcomes. To obtain these rationalizable prices, Guesnerie describes, in what he calls
the eductive procedure, how the unreasonable prices can be eliminated using an iterative
process of elimination of non-best-response strategies.

Now let us illustrate how the eductive process works in this setting. From the farmers
problem we can obtain for each farmer his supply function s(i, · ) : [0, pmax] → R+. The
structure of the payoff function implies that for a given forecast µ of a farmer i over the
value of the price, his optimal production is obtained evaluating his supply function in
the expectation under µ of the price, Eµ [p] : s(i,Eµ [p]). Farmers know that a price
higher than pmax gives no demand and so prices higher than those are unreasonable. Since
all farmers can obtain this conclusion, all farmers know that the other farmers should
not have forecasts that give positive weight to prices that are greater than pmax. The
expectation of each of the farmers’ forecasts then cannot be greater than pmax and so
under necessary measurability hypothesis we can claim that aggregate supply can not be
greater than S(pmax) =

∫ 1

0
s(i, pmax) di. Since all farmers know that aggregate supply can

not be greater than S(pmax), they know then that the price, obtained through the inverse
demand function, can not be smaller than p1

min = P (S(pmax)). All farmers know then that
forecasts are constrained by the interval [p1

min, pmax]. They have discarded all the prices
above pmax and below p1

min. This same reasoning can be made now starting from this new
interval.

In Figure 1 we can see the aggregate supply function depicted along with the demand
function. We have seen that to eliminate unreasonable prices in this model we only need
these two functions. The process, as described in the Figure, continues until the farmers
eliminate all the prices except the unique equilibrium price p∗. We say then that this price
is (globally) eductively stable. Note that the eductive process could “fail”, in the sense

1An equilibrium of an economic system is said to be strongly rational or eductively stable if it is the only
Rationalizable outcome of the system. We will refer equivalently to outcomes as begin strongly rational
or eductively stable.
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Figure 1: The eductive process

that it could give more than only the equilibrium point. This could happen for instance
if S(pmax) ≥ P−1(0). In this situation the rationalizable set would be the whole interval
[0, pmax], since farmers would not be able to eliminate prices belonging to this interval.

For more details on the example the reader is referred to the paper of Guesnerie (1992).
The iterative process of elimination of unreasonable prices is inspired by the work of Pearce.
However, Pearce’s definition of Rationalizability is stressed in the particular framework of
a game with a finite number of players where the sets of actions are finite. The ap-
proach followed by Pearce assesses rationality and common knowledge of rationality, by
considering an iterative process of elimination of non-best-responses (or non-expected-
utility-maximizers). This process is overtaken on the set of mixed strategies of the players.
Starting with the whole set of mixed strategy profiles, players eliminate at each step of the
process the mixed strategies that are not best response to some product probability mea-
sure over the set of remaining profiles of mixed strategies of the opponents. This process
ends in a finite number of iterations and delivers a set that Pearce defines to be the set of
Rationalizable Strategies.

Still, this argument may not be valid in more general contexts. Bernheim’s approach
to Rationalizable Strategies relies the formalization of the ideas of system of beliefs and
consistent system of beliefs. A system of beliefs for a player represents the possible forecasts
of the player concerning the forecasts over forecasts of his opponents, concerning what
any player would do. These forecasts take the form of borel measurable subsets of the
players’ strategy sets. If a system of beliefs gives only singletons, then it is called a
system of point beliefs. Rationality and common knowledge of rationality then imply that a
system of beliefs must satisfy a consistency condition. A consistent system of beliefs simply
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emphasizes the idea that players should consider in their forecast that the opponents are
rational and so are optimizing with respect to some forecasts of their own.

According to Bernheim, a strategy si is a Rationalizable Strategy for player i if there
exists some consistent system of beliefs for this player and some subjective product proba-
bility measure over the set of strategy profiles of the opponents, that gives zero probability
to actions of the opponents of i that are ruled out by this system of beliefs and such that
the strategy si maximizes expected payoff with respect to this probability measure. In the
particular case where the system is of point beliefs, Bernheim calls si a Point-Rationalizable
Strategy.

In this context, the Rationalizable Set as defined by Bernheim may fail to be the result
of the iterated elimination of non-best-responses as described by Pearce. Bernheim proves
that in a game with a finite number of players, compact strategy sets and continuous
payoff functions, the set of Rationalizable Strategy Profiles is in fact the result of the
iterative elimination of strategies that are not best-replies to forecasts considering all of
the remaining strategy profiles 2. This result proves as well, as Bernheim and Pearce claim,
that their definitions are indeed equivalent 3. The characterizations of rationalizability
presented by Bernheim are actually related to two properties that rationalizable sets should
be asked to fulfill. This is, the rationalizable set must (i) be a subset (hopefully equal) of
the set that results from the iterated elimination process, but above all it should (ii) be
a fixed point of this process, or, at least, it should be contained in its image through the
process 4.

Recent papers address the issue of the set obtained as the limit of processes of iterated
elimination of non-best-response-strategies, not being a fixed point of the iterated process
in general normal form games with finite number of players; and go beyond to explore
more complex iterated processes of elimination of strategies (see for instance Dufwenberg
and Stegeman (2002), Apt (2007), Chen et al. (2007) 5). The problem rises then only if
the assumptions on utility functions and strategy sets are relaxed (namely the cases for
unbounded strategy sets and/or discontinuous utility functions).

The question surfaces on how should this process be defined in the context of a con-
tinuum of players? When can we claim that the result of the iterative elimination process
gives a set that we may call Rationalizable?

Example 1 gives clear insight on how to face these questions. The particular structure
of this example allows us to look at outcomes on the set of prices (or aggregate production),
instead of the set of strategy profiles (production profiles), as is done in Pearce or Bernheim.

2See Propositions 3.1 and 3.2 in Bernheim (1984). Proposition 3.2 states that the set of Rationalizable
Strategies is as well the largest set that satisfies being a fixed point of the process of elimination of strategies.
Proposition 3.1 gives an analogous characterization for Point-Rationalizable Strategies considering in the
definition of the process of elimination of non-best-response-strategies only the Dirac measures over the
remaining sets, instead of all the measures.

3Proposition 3.2 in Bernheim (1984). Then, what Pearce defines as the rationalizable set, is named by
Bernheim the set of rationalizable mixed strategies.

4This pertains to some type of best response property that the rationalizable set must satisfy.
5Dufwenberg and Stegeman (2002) and Chen et al. (2007) put emphasis in Reny’s 1999 better-reply

secure games.
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This allows for a special characterization of the rationalizable set as the limit of an iterative
process of elimination of unreasonable prices, and not necessarily production profiles. The
eductive procedure consists in eliminating the prices that do not emerge as a consequence
of farmers taking productions decisions that are best responses to the remaining strategy
profiles, or equivalently, remaining values of aggregate production or prices 6.

There are three main issues to take into account when we pass from the finite to the
continuous player sets. The first one is how to address forecasts. In the finite player case
it is direct to use product measures as forecasts and take expectation over payoff functions
to make decisions. This is not evident in the continuum case. The second issue stems from
the first one and is related to the space in which one should seek the rationalizable set.
The set of strategy profiles may not be appealing in contexts where the set of players is
a continuum. The third one relates to give conditions to have a well defined process of
iterated elimination of outcomes. As we have already said, Guesnerie’s approach is Pearce’s
approach in a situation with a continuum of players. This approach is a reasonable and
natural way to overtake the rationalizability argument. Nevertheless, and in the light
of Bernheim’s Proposition 3.2, we see that care is needed to claim that the limit of the
process of iterated elimination is in fact a set that we could call of rationalizable outcomes.
Moreover, the process itself could well be undefined without proper assumptions. Of course,
as we prove below in Theorems 3.6 and 4.5, this is not an issue in Guesnerie’s setting.

We make the emphasis then in two features of this example 7: (i) there is a continuum
of producers that interact and (ii) payoffs of producers depend on an aggregate value that
cannot be affected unilaterally by any agent, this aggregate variable has all the relevant
information that producers need to take a decision. We are interested in defining Ratio-
nalizability in a general setting considering these features. We will adapt the concept of
Rationalizable Strategy from the finite game-theoretical world to the context of a class of
non-atomic non-cooperative games with a continuum of players. One part of the task then
is to find a suitable model of game with a continuum of players, in which one could be able
to define and characterize Rationalizable Outcomes.

In what follows, we will present a framework of a general class of non-cooperative games
with a continuum of players, in which we explore the ideas of rationalizability. We will
begin by loosely defining the concept of Point-Rationalizable Strategies in a general setting.
Then we will turn to the special case where payoffs depend on players’ own actions and
the average of the actions taken by all the players. We will call this average the state
of the game, and we will define the sets of Point-Rationalizable States and Rationalizable

6A second characteristic of this setting is that the eductive procedure can be done by simply eliminating
prices that are beyond the upper and lower bounds that are obtained in each iteration. However, this comes
from the monotonicity properties of the aggregation operator (the integral) and the supply function of the
farmers. It is not always the case that the eductive process works this way. This second feature of example
1 is more related to the ordered structure of the games studied in Milgrom and Roberts (1990) and so is
left for a further treatment Guesnerie and Jara-Moroni (2007).

7Similar features and structure can be found as well in Evans and Guesnerie (1993), in Chapter 11 of
Chamley (2004), in Stag Hunt models (see also Morris and Shin (1998)), Chatterji and Ghosal (2004) and
in Guesnerie (2005), among others.
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States. This last approach is not evident nor a generalization of finite player games, since
in “small” games, and as opposed to what we do here, players can actually affect directly
and unilaterally the payoff of other players. Our main results are Theorems 3.6 and 4.5
where we characterize these sets as the results of iterated elimination of states. More
precisely, we extend Propositions 3.1 and 3.2 in Bernheim (1984) to (Point-)Rationalizable
States in the context of games with compact strategy sets, continuous utility functions
and a continuum of players. The need for these two Theorems comes from the proof of
Proposition 3.2, where a convergent subsequence extraction argument is used, argument
that is no longer valid in the context of a continuum of players. A different limit concept is
needed to conclude. Moreover, certain measurability properties must be required to have
a well defined process of iterated elimination. Consequently, we will get a setting with a
continuum of players in which it is possible to study rationalizability and general properties
of (locally) strongly rational equilibria as in the economic applications.

The remainder of the paper is as follows: in section 2 we introduce games with a contin-
uum of players and some notation; in section 3 we define Point-Rationalizable Strategies
in the context of these games and, for the particular class of games with an aggregate
state, we define as well Point-Rationalizable States. The main result of this section is the
study of the set of Point-Rationalizable States, for which we give a characterization and
show its’ convexity and compactness. In 3.4 we introduce the concept of Strongly Point
Rational Equilibrium and explore the relation between Point-Rationalizable Strategies and
States. We argue in favor of the use of this last approach, states instead of strategies, in
the context of these games. In section 4 we define and characterize Rationalizable States.
Before concluding, we explore the concept of Rationalizability in terms of strategy profiles,
in the particular setting in which (pure) strategies are chosen from finite sets and payoffs
depend on the integral of the profile of mixed strategies Schmeidler (1973). We close the
presentation with comments and conclusions in section 5.

2 Games With a Continuum of Players

Since the concept of Strong Rationality introduced by Guesnerie in his paper, relies
on a concept that comes from the game-theory literature, our interest is to look at the
setting described in the example as a strategic interaction situation. This idea of strategic
interaction is then: payoffs of agents depend on the actions of other agents. This interaction
would occur through the aggregation of the production and the evaluation in the price
function. The payoff of a single farmer depends on the production of all the farmers
through P and u(i, · , · ), as follows: each farmer i ∈ I chooses a production q(i) in the
positive interval. The price is determined by evaluating the price function in the value of
total production, that is on the integral of the production profile. Each agent i ∈ I obtains
payoff u(i, q(i) , p). The second feature we need in the mathematical formulation, is that
it allows to model the inability of single agents to influence the state of the system, in
this case the price, or for what matters, total production, which calls for a mathematical
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formulation where the weight of single agent is small compared to the whole set or the
remaining agents. These two features are captured in the mathematical model presented
below.

We consider then games with a continuum of players. Schmeidler (1973) introduced
a concept of equilibrium and gave existence results in games where a strategy profile is
an equivalence class of measurable functions from the set of players into a strategy set,
and the payoff function of a player depends on his own strategy and the strategy profile
played. A different approach was presented later by Mas-Colell (1984) 8 and more general
frameworks can be found in Khan and Papageorgiou (1987) and Khan et al. (1997) as well.
For a comprehensive review of games with many players see Khan and Sun (2002). We will
focus mainly in Schmeidler’s general setting and specially in games where payoffs depend
on an “average” of the actions taken by all the players Rath (1992).

In a Non-Atomic Game the set of players is a non-atomic measure space (I, I, λ) where
I is the set of interacting agents i ∈ I and λ is a non atomic measure on I. This is,
∀E ∈ I such that λ(E) > 0, ∃F ∈ I such that 0 < λ(F ) < λ(E). We will consider the set
of players I as the unit interval in R and the non-atomic measure λ to be the Lebesgue
measure.

Given a set X ⊆ Rn we will denote the set of equivalence classes of measurable functions
from I to X as XI . We identify then, for a general set X of available actions, XI with the
set of strategy profiles. So a strategy profile is a measurable function from I to X, the set
of strategies. By doing this we are assuming that all players have the same strategy set.
We will denote S the set of strategies and we will not make a difference a priori between
pure or mixed strategies. However, since we assume that S is in Rn it is better to think of
this set as a set of pure strategies. We will come back to this issue on section 4.

For each player i ∈ I, we will denote by π(i, · , · ) : S × SI → R the general payoff
functions of a game, that depend on the action of each player as an element of the set S
and the profile of strategies as an element of the set SI described as above. To specify
how the functions π(i, · , · ) depend on these variables, we will use auxiliary functions that
depend on the action taken by the player in his strategy set S and some vector taken
from a set X ⊂ RK , that is obtained from the strategy profile s. The functions π(i, · , · )
will be obtained then by an operation between these auxiliary functions and some other
mathematical objects9.

2.1 Payoff Functions that Depend on the Integral of the Strategy
Profile

Our aim is to capture the relevant features of a wide variety of models that are similar
to the one described in Example 1, in the Introduction. Consider then the class of models

8In Mas-Colell (1984) what matters is not strategy profiles but a distribution on the product set of
payoff functions and strategies.

9See equations 2.1 and 4.5.
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where there is a set A ⊆ RK and a variable a ∈ A that represent, respectively, the set
of states and the state of an economic system. For each agent i ∈ I, the payoff function
is now defined on the product of S and A, u(i, · , · ) : S × A → R and depends on his
own action s(i) ∈ S and the state of the system a ∈ A. Finally, we have an aggregation
operator: A : SI → A that gives the state of the system a = A(s) when agents take the
action profile s.

In the example, the state of the system could have been identified with aggregate
production or the price, and the aggregation operator would have been the integral of the
production profile or the evaluation of the price function on such a quantity (respectively).

Agents’ impossibility of affecting unilaterally the state of the system is formalized by
the following property of A:

A(s) = A(s′) ∀ s, s′ ∈ domA such that λ({l ∈ I : s(l) 6= s′(l)}) = 0

That is, since A is defined on SI , for all strategy profiles that are in the same equivalence
class of SI , the value of the mapping A is the same.

To capture this setting, let S be now a compact subset of Rn. The aggregation operator
is chosen for convenience to be the integral with respect to the Lebesgue measure:

A(s) ≡
∫
I

s(i) di

so that SI , the set of measurable functions from I to S, is contained in domA, the set of
integrable functions from I to Rn, and the set A is A ≡ co {S} 10.

The payoff functions π(i, · , · ) mentioned above in the description of a game are calcu-
lated by composing the functions u(i, · , · ) and A of the economic system, that is

π(i, s(i) , s) := u(i, s(i) , A(s))

≡ u

(
i, s(i) ,

∫
I

s(i) di

)
.

(2.1)

In this way we are in Rath’s extension of Schmeidler’s formulation of games with a contin-
uum of players, where, in a particular class of these games, agents’ utility functions depend
on their own actions, that are elements of a general compact set, and an “average” of all
agents’ actions. The description of a game will be given then by a mapping that associates
each player i ∈ I with a real valued continuous function u(i, · , · ) defined on S ×A.

10The aggregation operator can as well be the integral of the strategy profile with respect to any measure
that is absolutely continuous with respect to the lebesgue measure, or the composition of this result with
a continuous function. That is,

A(s) ≡ G
(∫

I

s(i) dλ̄(i)
)

where λ̄ is absolutely continuous with respect to the lebesgue measure and G : co {S} → A is a continuous
function; the results in this work could well be extended to this setting. For instance Theorem 3.6 holds
and if G is affine, Corollary 3.7 holds.
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We denote the set of real valued bounded continuous functions defined on a space X by
Cb(X). Let US×A := Cb(S ×A) denote the set of real valued continuous functions defined
on S ×A endowed with the sup norm topology.

To denote games with a continuum of players that have an aggregate state as above,
we will use the notation u. Throughout the document when we refer to such games, we
will be using the assumption that the function u : I → US×A that associates players with
their payoff functions is measurable Rath (1992).

This is in opposition to when we refer to more general games related to the function
π that to each player i ∈ I associates a payoff function π(i) : S × SI → R over which we
make no general assumptions. We will note then equivalently u(i) and u(i, · , · ). Since
the set S is compact, so is A and so the payoff functions u(i) are as well bounded. We
will call states the elements of the set A. Under this description of the game, the fact
that payoffs depend on the strategy profiles is given by the rules of the game, and not the
payoff function, i.e. the fact that the state of the game is calculated with the integral of
the strategy profile.

A Nash Equilibrium of a game π is a strategy profile s∗ ∈ SI such that λ-almost-
everywhere in I:

π(i, s∗(i) , s∗) ≥ π(i, y, s∗) ∀ y ∈ S,

This is simply re-stated for a game u as a strategy profile s∗ ∈ SI such that λ-almost-
everywhere in I:

u

(
i, s∗(i) ,

∫
I

s∗ di

)
≥ u

(
i, y,

∫
I

s∗ di

)
∀ y ∈ S,

In this framework Rath shows that for every game there exists a Nash Equilibrium.

Theorem 2.1 (Rath, 1992). Every game u has a (pure strategy) Nash Equilibrium.

We present a proof for this Theorem in the Appendix. The proof in Rath’s paper uses
Kakutani’s fixed point theorem on the mapping Γ that maps a state a ∈ A into all the
possible states that rise as the consequence of agents taking best response actions to this
state. This mapping goes from the convex and compact set A ⊂ Rn into itself and is proved
to have a closed graph with non-empty, convex values. The only step where one should be
careful is on the proof for non-emptiness of Γ(a) in which a measurable selection argument
is needed. This is a consequence of the assumption on measurability of the mapping that
defines the game. The proof presented herein makes use of Lemma 3.2 stated below. As
Rath mentions in his paper, the assumptions on continuity and measurability of the payoff
functions are both hidden in the definition of the function u that represents a game.

3 Point-Rationalizability
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Recall that we are interested in situations where players act in ignorance of the actions
taken by their opponents. Thus, they must rely on forecasts or subjective priors over the
possible outcomes. We assume that agents are rational not only in the sense that they act
by maximizing their payoff, but also considering that the subjective priors that they form
do not contradict any information that they may have.

The two main assumptions on player’s behavior that justify Rationalizable Strategies
as a solution concept can be summed up to two basic principles: rationality of agents
and common knowledge (structural and of rationality of agents) Pearce (1984); Bernheim
(1984); Tan and da Costa Werlang (1988). The implications of these assumptions can be
exhausted, as is done in Pearce (1984) and Guesnerie (1992), by considering sequential and
independent reasoning by the agents, where they rule out certain outcomes of the system
as impossible.

Since agents are rational, they only use strategies that are best responses to some fore-
cast over the possible strategy profiles that can actually be played by the others. Hence,
the assumption of rationality implies that strategies that are not best responses will never
be played. Following the assumption of common knowledge, each agent knows that all
other agents are rational. They can then reach the same conclusion: that only best re-
sponses can be played; and taking that into account, each agent may discover that some
of his (remaining) strategies are no longer best responses and so he will eliminate them.
Then rationality implies that forecasts will be restricted to strategy profiles that are not
eliminated. Since all agents are rational and know this second conclusion, they can con-
tinue this process of elimination of strategies. This generates a sequence of elimination of
non-best-responses that under suitable hypothesis will converge in a sense to be formalized
to some (hopefully strict) subset of the original strategy profile set. Guesnerie names this
procedure the eductive process and we will use this terminology.

Following the terminology of Bernheim we will make a difference between Rationaliz-
ability, understood as forecasts being general probability measures on the sets of outcomes,
and Point-Rationalizability, understood as forecasts being points or dirac probability mea-
sures on the sets of outcomes. We will continue now by giving a formal definition of
the concept of Point-Rationalizability for the case of games with a continuum of agents.
Further-on we will address the issue of standard Rationalizability.

3.1 Point-Rationalizable Strategies

The first and natural attempt is to go directly from the finite player case into the
continuous case. In this approach, players have forecasts over the set of strategies of each
of their opponents. These forecasts are in the form of points in these sets and are so
represented by functions from I into S.

Consider the following line of reasoning. Given the strategy profile set SI , all players
know that each player will only play a strategy that is a best response to some strategy
profile s ∈ SI . For each player then we may define the best response mapping Br(i, · ) :

11



SI ⇒ S:

Br(i, s) := argmax {π(i, y, s) : y ∈ S} . (3.1)

The mapping Br(i, · ) gives the optimal set for player i ∈ I facing a strategy profile s.
We use the function π(i, · , · ) that associates strategy profiles to payoffs in a general way.
As we said before, rationality of players implies that they will only use strategies that are
optimal to some forecast. So players can discard for each player i ∈ I strategies that are
outside the sets

Br
(
i, SI

)
≡
⋃
s∈SI

Br(i, s) ,

so strategy profiles can be actually secluded into the set:

SI1 ≡

s ∈ SI :
s is a (measurable) selec-
tion of the correspondence
i ⇒ Br

(
i, SI

)
 .

That is, players will not play a strategy that is not a best response to some strategy profile.
This is captured by selections of the mapping i ⇒ Br

(
i, SI

)
. Taking this into account,

agents can deduce, at a step t of this process, that strategy profiles must actually be in
the set SIt ,

SIt ≡

s ∈ SI :
s is a (measurable) selec-
tion of the correspondence
i ⇒ Br

(
i, SIt−1

)
 .

This exercise motivates the definition of a recursive process of elimination of non best
responses. For this, denoting by P(X) the set of subsets of a certain set X, we define
the mapping Pr : P

(
SI
)
→ P

(
SI
)

that to each subset H ⊆ SI associates the set Pr(H)
defined by:

Pr(H) :=

s ∈ SI :
s is a (measurable) selec-
tion of the correspondence
i ⇒ Br(i,H)

 . (3.2)

This definition is analogous to the one given by Pearce and by Bernheim 11. In the
context of a continuum of players, however, the set Pr(H) could well be empty if we do
not make appropriate assumptions about the payoff function π. A sufficient condition for
non-emptiness of Pr(H) is non-emptyness of the sets Br(i,H) λ-almost-everywhere in I
along with measurability of the correspondence i ⇒ Br(i,H). The mapping Pr represents
strategy profiles that are obtained as the reactions of players to strategy profiles contained

11See Definition 1 in Pearce (1984) and Section 3(b) in Bernheim (1984).
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in the set H ⊆ SI . It has to be kept in mind that strategies of different players in a strategy
profile in Pr(H) can be the reactions to (possibly) different strategy profiles in H.

The line of reasoning developed above implies that a strategy profile that is point
rationalizable should never be eliminated during the process generated by the iterations
of Pr. Let us note Prt

(
SI
)
≡ Pr

(
Prt−1

(
SI
))

and Pr0
(
SI
)
≡ SI . The set Prt

(
SI
)

is
the one obtained in the tth step of the process of elimination of non-best-response strategy
profiles. It is direct to see that Pr1

(
SI
)
≡ SI1 and Prt

(
SI
)
≡ SIt . Note that the process{

Prt
(
SI
)}+∞

t=0
gives a nested family of subsets of SI and so a point that is never eliminated

should be in the intersection of all of them. This means that the set of point-rationalizable
strategies, from now on denoted PS, must satisfy:

PS ⊆
+∞⋂
t=0

Prt
(
SI
)
. (3.3)

However, it is not enough to ask for this property, since rationality of players implies that
a strategy should only be played if it is justified by a rationalizable strategy profile. The
point-rationalizable set must have the best response property : each strategy that partic-
ipates in a strategy profile in PS must be a best response to some (possibly different)
strategy profile in PS.We capture this second feature by asking condition (3.4),

PS ⊆ Pr(PS) . (3.4)

Note that condition (3.4) implies (3.3), since a set that satisfies (3.4) would never be
eliminated. The ideal situation would be that the result of the eductive process gave the
set of point-rationalizable strategies. This would be the case only if Pr

(⋂+∞
t=0 Pr

t
(
SI
))

=⋂+∞
t=0 Pr

t
(
SI
)
, which as we mentioned in the introduction is not necessarily true in all

generality, we give an example in the next subsection.
Nevertheless, with the concepts displayed so far, we are able to give a definition for the

Point-Rationalizable Strategy Profiles set.

Definition 3.1. The set of Point-Rationalizable Strategy Profiles is the maximal subset
H ⊆ SI that satisfies condition (3.4) and we note it PS.
For each player, i ∈ I, there will be a set of Point-Rationalizable Strategies, namely the
union, over all the Point-Rationalizable Strategy Profiles in PS, of the best response set of
the considered player. That is, the set of Point-Rationalizable Strategies for player i ∈ I
is,

PS(i) :=
⋃
s∈PS

Br(i, s)

A well known result for the case of games with a finite number of players is that all Nash
Equilibria of the game are elements of the Point-Rationalizable Strategies set Bernheim
(1984). The same is true for our definition, since if s∗ is a Nash Equilibrium, then it is a
selection taken from i ⇒ Br(i, s∗) and so it satisfies {s∗} ⊆ Pr({s∗}) which implies the
property.

13



We now turn to a different approach to Rationalizability. In the context that interests
us, players form expectations not on the space of strategy profiles, but on the set of states
of the game. Thus Rationalizability should also be stated in terms of forecasts on this set
of states. This is what we present in the next subsection.

3.2 Point-Rationalizable States

We turn to the particular class of games with a continuum of players where payoffs
depend explicitly on the average of the actions of all the players, which we call the state
of the game. In this framework it is natural to model agents as having forecasts on the set
of states, rather than on the set of strategy profiles, since the relevant information that
agents need to take a decision is the value of the state a 12.

In what follows, we will define Point-Rationalizability on the set of states. So now
instead of using the correspondence Br(i, · ) defined in (3.1), we use the mapping B(i, · ) :
A ⇒ S that gives the optimal strategy set given a state of the system,

B(i, a) := argmax {u(i, y, a) : y ∈ S} .

There are two main differences between this approach an the one presented in the previous
subsection. First, here we use the specific function u that defines a game with an aggregate
state instead of the general function π as in (3.1), and second, the mapping B(i, · ) goes
from A ⊂ Rn, instead of SI , to S ⊂ Rn. It is direct to see, however, that for a given
strategy profile s, in the context of a game u, Br(i, s) ≡ B

(
i,
∫

s
)
. For each i ∈ I and a

set X ⊆ A, consider the image through B(i, · ) of the set X

B(i,X) :=
⋃
a∈X

B(i, a) .

Let us now look at the process of elimination of non reachable or non generated states.
Suppose that initially agents’ common knowledge about the actual state of the model is
a subset X ⊆ A. Then, in a first order basis, an agent can assume that any of the states
a ∈ X can be the actual state, but point expectations are actually constrained by X, so
the possible actions of a player i ∈ I are constrained to the set B(i,X). Since all players
know this, each one of them can discard all strategy profiles s ∈ SI that are not selections
of the set valued mapping i ⇒ B(i,X). Then, if the players know that forecasts are
restricted to X ⊆ A, they will know that the actual outcome has to be a state associated
through the aggregation operator to some measurable selection of that mapping.

Therefore, given X ⊆ A consider the set of all the measurable selections taken from
the correspondence i ⇒ B(i,X) that to each agent i ∈ I associates the set B(i,X).
Then, take all the possible images through the aggregation mapping of such functions. We

12See as well Guesnerie (2002) for a discussion on this matter.
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define then the mapping P̃ r : P(A) → P(A) that to each set X ⊆ A associates the set
P̃ r(X) ⊆ A defined by:

P̃ r(X) :=

a ∈ A : a = A(s),
s is a measurable selec-
tion of the correspondence
i ⇒ B(i,X)

 . (3.5)

Our assumptions on the aggregation operator A allow us to re-write definition (3.5) as the
integral of a set valued mapping 13:

P̃ r(X) ≡
∫
I

B(i,X) di.

Before continuing, we state a relevant property associated to the mapping B.

Lemma 3.2. In a game u, for a non-empty closed set X ⊆ A the correspondence i ⇒ B(i,X)
is measurable and has non-empty compact values.

The proof is relegated to the Appendix. Lemma 3.2 above and Theorem 2 in Aumann
(1965) assure that P̃ r(X) is non empty and closed whenever X is non empty and closed.
With this set to set mapping we can define a set of point rationalizable states.

As we did in the previous subsection, consider the process given by iterations of P̃ r.
That is,

P̃ r
0
(A) := A

P̃ r
t+1

(A) := P̃ r
(
P̃ r

t
(A)
)

for t ≥ 1.

Observe that P̃ r
t+1

(A) ⊆ P̃ r
t
(A), this is not necessarily true for any subset X ⊆ A. The

set of Point-Rationalizable States, PA, must then satisfy:

PA ⊆
∞⋂
t=0

P̃ r
t
(A) . (3.6)

The right hand side of (3.6) represents the iterative elimination of non reachable states.
At each step of this process, players only keep in mind the states that could be reached
following rational actions based on point expectations given by the set of the previous
step. If a state is not reached by actions following forecasts constrained at a certain step

of the process, then it is not rationalizable. Since the family of sets
{
P̃ r

t
(A)
}+∞

t=0
is a

13The integral of a correspondence F : I ⇒ Rn is calculated, following Aumann (1965), as the set of
integrals of all the integrable selections of F . This is,∫

I

F (i) di ≡
{∫

I

f(i) di : f is an integrable selection of F
}

where
∫
fdi :=

(∫
f1(i) di, . . . ,

∫
fn(i) di

)
.
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nested (decreasing) family of closed subsets of Rn, the infinite intersection in expression
(3.6) turns out to be the exact Painlevé-Kuratowski limit of the sequence of sets.

The second condition that the set of Point-Rationalizable States must satisfy is:

PA ⊆ P̃ r(PA) . (3.7)

Condition (3.7) stands for the fact that Point-Rationalizable States should be justified by
Point-Rationalizable States. This means that if a state is Point-Rationalizable, it should
rise as the consequences of players taking actions as reactions to point forecasts in the set
of Point-Rationalizable States. Analogously to the case where point forecasts are taken
over strategy profiles, it is direct to see that condition (3.7) implies (3.6). That is, if

a set X ⊆ A satisfies condition (3.7) then X ⊆
⋂∞
t=0 P̃ r

t
(A). So we define the set of

Point-Rationalizable States as follows:

Definition 3.3. The set of Point-Rationalizable States is the maximal subset X ⊆ A that
satisfies condition (3.7) and we note it PA.

Remark 3.4. Note that for the case of forecasts over the set of states, defining player-specific
rationalizable states set makes no sense. This approach calls for different mathematical
tools since now we are dealing with a set in a finite dimensional space as opposed to
Definition 3.1. Moreover, the exercise of obtaining Point-Rationalizable States gives clear
insights on properties of the Point-Rationalizable Strategy Profiles set, particularly for
strongly rational equilibria, as can be seen in Proposition 3.11 below.

Remark 3.5. Conditions (3.4) and (3.7) are related to the definition of Tight Sets Closed
Under Rational Behavior (Tight CURB Sets) given in Basu and Weibull (1991). Indeed
Basu and Weibull make the observation that the set of rationalizable strategy profiles in
a finite game with compact strategy sets and continuous payoff functions, is in fact the
maximal tight curb set, which is analogous to our definitions of Point-Rationalizability.

We know give an answer to the question of whether we can obtain the same conclusion
as in Bernheim’s Proposition 3.2 in our context. Our main result, Theorem 3.6, states
that under the hypothesis of Rath’s setting we have that the set of Point-Rationalizable
States, is actually the one obtained from the eductive process, and so we obtain a first
characterization of this set.

Theorem 3.6. Let us write P′A :=
⋂∞
t=0 P̃ r

t
(A). The set of Point-Rationalizable States of

a game u can be calculated as

PA ≡ P′A

≡
∞⋂
t=0

P̃ r
t
(A)

Proof.
We will show that:

P̃ r(P′A) ≡ P′A
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Let us begin by showing that P̃ r(P′A) ⊆ P′A. Indeed, if a ∈ P̃ r(P′A) then, by the
definition of P̃ r, there exists a measurable selection s : I → S of i ⇒ B(i,P′A), such that

a =
∫
I
s. Since P′A ⊆ P̃ r

t
(A) ∀ t ≥ 0, we have that B(i,P′A) ⊆ B

(
i, P̃ r

t
(A)
)
∀ t ≥ 0 ∀

i ∈ I. So s is a selection of i ⇒ B
(
i, P̃ r

t
(A)
)

and then a ∈ P̃ rt+1
(A) ∀ t ≥ 0, which

means that a ∈ P′A.
Now we show that P′A ⊆ P̃ r(P′A). For this inclusion, consider the following sequence

F t : I ⇒ S, t ≥ 0, of set valued mappings:

F 0(i) := S ∀ i ∈ I

∀ i ∈ I F t(i) := B
(
i, P̃ r

t−1
(A)
)

t ≥ 1

As we said before, we have that

P̃ r
t
(A) ≡

∫
I

F t(i) di.

Since u(i) ∈ US×A, then ∀ i ∈ I the mapping B(i, · ) : A ⇒ S is u.s.c. and, as a
consequence, the set B(i,X) is compact for any compact subset X ⊆ A Berge (1997).
Since A ≡

∫
I
F 0, Aumann (1965) gives that A is non empty and compact14. From Lemma

3.2 we get that F 1 is measurable and compact valued and by induction over t, we get

that for all t ≥ 1, P̃ r
t−1

(A) is non empty, convex and compact, and F t is measurable and
compact valued.

Consider then the set valued mapping F : I ⇒ S defined as the point-wise lim sup of
the sequence F t, noted p-lim supt F

t, obtained as:

F (i) :=
(
p-lim supt F

t
)
(i) ≡ lim sup

t
F t(i)

where the right hand side is the set of all cluster points of sequences {yt}t∈N such that
yt ∈ F t(i). From Rockafellar and Wets15 we get that F is measurable and compact valued.

So now let us take a point a ∈ P′A. That is, a ∈
∫
I
F t for all t ≥ 0. This gives a

sequence of measurable selections {st}t∈N, such that a =
∫
I
st. From the Lemma proved in

Aumann (1976) we get that a ∈
∫
I
F , since for each i ∈ I the cluster points of {st(i)}t∈N

belong to F (i) and a is the trivial limit of the constant sequence
∫

st.
Now it suffices to check that F (i) ⊆ B(i,P′A), since then we would have

a ∈
∫
I

Fdi ⊆
∫
I

B(i,P′A) di ≡ P̃ r(P′A) .

This comes from the upper semi continuity of B(i, · ). Take y ∈ F (i). From the definition
of F , y is a cluster point of a sequence {yt}t∈N such that yt ∈ F t(i). That is, there

14We have already noted that in fact A ≡ co {S} and so in particular it is also convex, which is of no
relevance in this proof, but is the key property in Corollary 3.7.

15See Rockafellar and Wets (1998) Ch. 4 and 5 and Theorem 14.20 .
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is a sequence of elements of A,
{
ak
}
k∈N such that ak ∈ P̃ r

tk−1
(A), ytk ∈ B

(
i, ak

)
and

limk y
tk = y. Through a subsequence of

{
ak
}
k∈N we get that the limit of {ytk}k∈N must

belong to B(i,P′A), since all cluster points of
{
ak
}
k∈N are in P′A, being the intersection of

a nested family of compact sets.
�

The previous theorem gives a characterization of Point-Rationalizable States that is
analogous to the one given for Point-Rationalizable Strategies in Bernheim, in the case
of finite player games with compact strategy sets and continuous utility functions. The
difficulty of Theorem 3.6 is to identify the adequate convergence concept for the eductive
process. In the case of finite player games there is no such a question, since in that case the
technique is simply to take a convergent subsequence of points (in the finite dimensional
strategy profile set) from the sequence of sets that participate in the eductive procedure
and using (semi) continuity arguments of the best response mappings obtain the result 16.
However, in our setting these arguments fail to prevail. From the proof of the Theorem, we
see that the set of Point-Rationalizable States is obtained as the integral of the point-wise
upper limit of a sequence of set valued mappings. So the relevant improvement in the proof
(besides measurability requirements) is to give the adequate limit concept.

To see that the Theorem is not vacuous consider the following example.

Example 2. Consider the game where I ≡ [0, 1], S ≡ [0, 1] and u(i) ≡ u : [0, 1]2 → R for
all i ∈ I, such that it generates the following best reply correspondence, depicted in Figure
2a:

B(a) =

{
a∗ if a ≤ ā,
{0, ā(1− α) + aα} if a > ā,

where a∗, ā and α are in ]0, 1[ and a∗ < ā. It is clear that this game does not satisfy the
hypothesis of Theorem 3.6 since no continuous utility function may give rise to such a best
response correspondence.

The only equilibrium of the game is a∗.
Since all the players have the same best reply correspondence, the process of elimination

of non-generated-states is obtained by:

P̃ r(X) ≡ co {B(X)}

The image through the best reply correspondence of the state set is

B(A) ≡ {0, a∗} ∪ ]ā, ā(1− α) + α ] ,

then P̃ r(A) ≡ co {B(A)} ≡ [0, ā(1− α) + α].
Then the second iteration is obtained by

P̃ r
2
(A) ≡ co

{
B
(
P̃ r(A)

)}
≡ co {B([0, ā(1− α) + α])}

≡ co {{0, a∗} ∪ ]ā, ā(1− α) + α(ā(1− α) + α) ]}
≡
[
0, ā
(
1− α2

)
+ α2

]
.

16See the proof of Proposition 3.1 in Bernheim (1984).
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(b) The elimination of non-generated-states
with P̃ r(X) ≡ co {B(X)} and the Point-
Rationalizable State set.

Figure 2: Example 2: The set of Point-Rationalizable States is not the set P′A.

We see from the form of the best reply correspondence that on each iteration of P̃ r we get
an interval of the form [0, at] where the sequence {at}+∞t=0 satisfies:

at+1 = ā(1− α) + atα,

which gives, for t ≥ 1,

at = ā
(
1− αt

)
+ αt,

with a0 = 1, and so the sequence is decreasing and converges to ā (see Figure 2b). This
allows for us to see that P′A ≡ [0, ā]. However,

P̃ r(P′A) ≡ co {B(P′A)} ≡ co {B([0, ā])} ≡ co {{a∗}} ≡ {a∗}
 P′A.

and so P′A is not equal to PA, which is in fact equal to the set of equilibria: the singleton
{a∗}.

Theorem 2.1 implies that if the set of Point-Rationalizable Strategies (or States for
what it matters) is well defined, then it is not empty, since as we already said, all the
equilibria belong to this set. From Theorem 3.6 we get as a Corollary that in the games
that we are considering, the set of Point-Rationalizable States is well behaved.

Corollary 3.7. The set of Point-Rationalizable States of a game u is well defined, non-
empty, convex and compact.

19



Proof.
From Theorem 3.6, PA is the intersection of a nested family of non-empty compact

convex sets. From Theorem 2.1 we get that there is point a∗ ∈ A such that a∗ ∈ P̃ rt(A)
∀ t. These two facts lead us to conclude that this intersection is compact, convex and non
empty.

�

The properties stated in this Corollary are not trivial. In games with finite number
of players we can find examples where the outcome of the iterative elimination of non-
best-replies is an empty set. The same can be true in our context when we withdraw the
continuity hypothesis of utility functions, we present below an example of a game with
non-continuous payoffs:

Example 3 (Based on Dufwenberg and Stegeman (2002)). Consider the game where I ≡
[0, 1], S ≡ [0, 1] and u(i) ≡ u : [0, 1]2 → R for all i ∈ I, such that:

u(y, a) =

{
1− y if 0 < a

2
≤ y,

y if not.

Then, the best reply correspondence is the same for all players:

B(a) =

{
1 if a = 0,
a
2

if a > 0.

The mapping Γ turns out to be equal to the best reply correspondence:

Γ(a) =

{
1 if a = 0,
a
2

if a > 0.

This mapping has no fixed point and so in this game there is no equilibrium.
Let us study the Point-Rationalizable States set. The image through the best reply

correspondence of the state set is B(A) ≡ {1} ∪ ]0, 1/2], then

P̃ r(A) ≡ co {B(A)} ≡ ]0, 1] ,

the second iteration gives

P̃ r
2
(A) ≡ co

{
B
(
P̃ r(A)

)}
≡ co {B( ]0, 1])} ≡ ]0, 1/2]

and the third

P̃ r
3
(A) ≡ co

{
B
(
P̃ r

2
(A)
)}
≡ co {B( ]0, 1/2])} ≡ ]0, 1/4] , . . . , etc..

Then the set P′A ≡ ∅ and so PA ≡ ∅, that is, in this example there is no set X ⊆ A that
satisfies X ⊆ P̃ r(X).
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Figure 3: The best reply correspondence B : [0, 1] ⇒ [0, 1].

Although Theorem 3.6 and Corollary 3.7 assure that the eductive procedure achieves
a non-empty Point-Rationalizable set of states, we see from Examples 2 and 3 that even
in cases where the eductive procedure fails, in the sense that it does not deliver the Point-
Rationalizable set, we may still identify a set as the correct Point-Rationalizable State set
following our Definition 3.3 (in Example 2 the set PA is the singleton that contains the
equilibrium and in Example 3 it is the empty set). Even more, the eductive procedure can
(obviously) help to locate such set even in the case of failure and emptiness. The original
motivation to introduce rationalizability in economic contexts is the plausibility of the Ra-
tional Expectations Hypothesis. In consequence we allow an empty (Point-)Rationalizable
set, under the definition of rationalizability, interpreting such as a pessimistic answer to
the possibility of the coordination of expectations.

Another property stated in Corollary 3.7 and an important consequence of Theorem
3.6, is the convexity of the Point-Rationalizable States set, since in the case where we
have multiple equilibria in the set of states, we know that the convex hull of this set of
equilibria is also contained in the set of Point-Rationalizable States. This inclusion may
be strict since if we have multiple equilibria in the set of strategies, even with uniqueness
in the set of states, we may have multiple Point-Rationalizable States 17. Convexity of the
Point-Rationalizable States set is a relevant property since it has not been obtained (to
our knowledge) for any other concept related to Rationalizability.

3.3 Point-Rationalizable Strategies vs. Point-Rationalizable States

It is straightforward to ask how the concepts that we just defined are related. To
address this issue, note that for the class of non-atomic games that we are considering,

17See Proposition 3.11.
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the iterations of the strategy-elimination and state-elimination mappings (Pr and P̃ r) are
equivalent in the following sense. Consider the set to set mappings Ā and B̄ defined below.
Let Ā : P

(
SI
)
→ P(A) be defined by:

Ā(H) :=

a ∈ A :
a =

∫
I

s(i) di and s is a mea-

surable function in H


≡ A(H)

and let B̄ : P(A)→ P
(
SI
)

be:

B̄(X) :=

{
s ∈ SI :

s is a measurable selection of
i ⇒ B(i,X)

}
.

These mappings satisfy

X1 ⊆ X2 ⊆ A =⇒ B̄(X1) ⊆ B̄(X2)

H1 ⊆ H2 ⊆ SI =⇒ Ā(H1) ⊆ Ā(H2) .
(3.8)

Then, in the context of a game u, the mappings Pr and P̃ r satisfy:

Pr(H) ≡ B̄
(
Ā(H)

)
P̃ r(X) ≡ Ā

(
B̄(X)

) (3.9)

In particular, we get,

P̃ r
0
(A) ≡ A ≡ co {S} ≡ Ā

(
SI
)

which implies by induction that:

P̃ r
t
(A) ≡ Ā

(
Prt
(
SI
))

Prt
(
SI
)
≡ B̄

(
P̃ r

t−1
(A)
)

Theorem 3.8. In a game u we have:

PS ≡ B̄(PA) and PA ≡ Ā(PS) .

Proof.
Note that from (3.9) we have

Pr
(
B̄(PA)

)
≡ B̄

(
P̃ r(PA)

)
≡ B̄(PA)

P̃ r
(
Ā(PS)

)
≡ Ā(Pr(PS)) ≡ Ā(PS)
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That is, the sets B̄(PA) ⊆ SI and Ā(PS) ⊆ A satisfy conditions (3.4) and (4.1) respectively,
which implies that B̄(PA) ⊆ PS and Ā(PS) ⊆ PA. Then

PS ≡ Pr(PS) ≡ B̄
(
Ā(PS)

)
⊆ B̄(PA) ⊆ PS.

The second equality comes from (3.9) while the first inclusion comes from (3.8) and the
previous observation. The proof for the second statement is analogous.

�

We see from Theorem 3.8 that in the context that we are considering, the set of Point-
Rationalizable Strategies is paired with the set of Point-Rationalizable States. This implies
that in the models that interest us, it is equivalent to study Point-Rationalizability in terms
of strategies or states, an intuition claimed by Guesnerie and, of course, present in Example
1.

Theorems 3.8 and 3.6 together imply that the set of Point-Rationalizable Strategies PS
can be actually computed, in this setting, as the limit of the strategy elimination process
governed by Pr (see condition (3.3)) answering a question that remained unanswered. In
consequence, we have that in a game u we can obtain the sets of Point-Rationalizable
States and Strategies through the eductive process in the respective set (A or SI).

Corollary 3.9. Let us write P′S :=
⋂∞
t=0 Pr

t
(
SI
)
. The set of Point-Rationalizable Strategy

Profiles of a game u can be calculated as

PS ≡ P′S

≡
∞⋂
t=0

Prt
(
SI
)

3.4 Strongly Point Rational Equilibrium

As we have already said, Guesnerie defines the concept of (local) Strongly Rational
Equilibrium as an equilibrium that is the only Rationalizable State of an economic system.
A particular feature of the work therein developed is that although the definition of Ra-
tionalizability is stressed in terms of strategy profiles, that is, on the profile of individual
production quantities, the study of the (local) stability of the (unique) equilibrium can be
developed in terms of aggregate production or even prices (see note 12). In our context,
Strong Rationality would be defined in terms of the aggregate variable a ∈ A.

Our purpose in this section then is to explore the relation between strategy profiles and
aggregate states when we are interested in Strong Rationality and Point-Rationalizability.

Definition 3.10. An equilibrium state a∗ ∈ A is a Strongly Point Rational Equilibrium if
PA = {a∗}.
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Note that if a state a∗ satisfies PA = {a∗}, then it is the unique equilibrium of the
system since (i) all equilibria are in PA and (ii) P̃ r({a∗}) ≡ {a∗} implies that a∗ is the
unique value obtained from the integral of the best response mapping i ⇒ B(i, a∗) and
so is an equilibrium. Analogously if PS ≡ {s∗}, then s∗ is the unique Nash Equilibrium
of the game, since all Nash Equilibria are in PS and Pr({s∗}) ≡ {s∗} implies that s∗ is
the (unique) measurable selection of i ⇒ Br(i, s∗) and so it is a Nash Equilibrium. In
particular this says that Br(i, s∗) is λ-a.e. single valued and hence can be associated to the
concept of strict Nash Equilibrium.18

Proposition 3.11. If s∗ is a Nash Equilibrium of u and
∫
I
s∗ = a∗, then:

a∗ is Strongly Point Rational =⇒ PS ≡

s ∈ SI :
s is a measur-
able selection of
i ⇒ B(i, a∗)


PS ≡ {s∗} =⇒ a∗ is Strongly Point Rational

In particular, if B(i, · ) is single valued at a∗ λ-a.e. on I, then,

a∗ is Strongly Point Rational ⇐⇒ PS ≡ {s∗}

Proof.
By the definition of PA and PS and the property of PA stated in Theorem 3.8 we have,

B̄(PA) ≡ PS (3.10)

Suppose that PS ≡ {s∗}. Then, a∗ is an equilibrium, so it satisfies a∗ ∈ PA which in turn
implies that PA 6= ∅. Property (3.10) gives

PS ≡ {s∗} =⇒ P̃ r(PA) ≡ {a∗}

and by the definition of PA,

PA ≡ P̃ r(PA) .

For the proof in the opposite sense, analogously we get:

Ā(PS) ≡ PA (3.11)

Since s∗ is a Nash Equilibrium, PS 6= ∅ and then from (3.11) we get:

PA = {a∗} =⇒ Pr(PS) ≡

s ∈ SI :
s is a measur-
able selection of
i ⇒ B(i, a∗)


And from the definition of PS,

PS ≡ Pr(PS)

�
18A situation in which any unilateral deviation incurs in a loss.
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Proposition 3.11 shows that it is possible to study Eductive Stability of models with
continuum of agents that fit our framework using the set of states as well as the set of
strategies. Moreover, it can be even desirable to use the former approach since (local)
uniqueness and stability are more pertinent in terms of the state of the system rather than
in terms of strategy profiles, as is discussed in the previous section. For instance, the
study of Strategic Complementarities in coordination games or Strategic Substituability
in general models as well, can be undertaken by looking at states of the system rather
than strategy profiles (see the books by Cooper (1999) and Chamley (2004). See as well
Guesnerie (2005) and Guesnerie and Jara-Moroni (2007)).

4 Rationalizability vs Point-Rationalizability

Rationalizability differs from Point-Rationalizability on the way we address forecasts. For
Rationalizability, forecasts are no longer points in the corresponding sets but probability
distributions whose supports are contained in these sets. Then, when a player has a
subjective probability forecast over what may occur with the rest of the economic system,
he maximizes his expected utility with respect to such a probability distribution to make a
decision. Rationality implies that players should not give positive weight in their forecasts
to strategies that are not best response to some rationally generated forecast.

Rationalizable Strategy Profiles, for instance, should be obtained from a similar exercise
as done in Subsection 3.1, but considering forecasts as probability measures over the set
of strategies of the opponents. Loosely speaking, each player should consider a profile
of probability measures (his subjective forecasts over each of his opponents’ play) and
maximize some expected utility, expectation taken over an induced probability measure
over the set of strategy profiles.

A difficulty in a context with continuum of players, relates with the continuity or
measurability properties that must be attributed to subjective beliefs, as a function of
the player’s name. There is no straightforward solution in any case. However, in our
framework it is possible to bypass this difficulty. Using the intuition just described for
the strategy profiles case, we will reformulate the processes of elimination of strategies
and states described by equations (3.2) and (3.5) by considering procedures where players
eliminate strategies that are not best response to any possible (subjective probability)
forecast (profile) over a given set of states or strategy profiles.

We present first, in the next Subsection, the concept of Rationalizable States, where
forecasts and the process of elimination are taken over the set of states A. Then, in Sub-
section 4.4 we will make use of Schmeidler’s original framework of games with continuum
of players, to formalize the idea of Rationalizable Strategy Profiles in that context.

4.1 Forecasts over the set of states
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Before we enter into context we need to introduce some concepts and some notation.
For a Borel set X ⊆ Rn we denote by P(X) the set of probability measures on the Borel
subsets of X. Equivalently this is the set of probability measures on the Borel sets of
Rn whose support is in X. We will endow the set P(X) with the weak* topology w∗ =
σ(P(X) , Cb(X)) 19. For a Borel subset Z of X in Rn, P(Z) can be considered to be a
subset of P(X) and the weak* topology on P(Z) is the relativization of the weak* topology
on P(X) to P(Z). The set X can be topologically identified with a subspace of P(X) by
the embedding x 7→ δx. An important property that we will use is that X is compact if
and only if P(X) is compact (and metrizable, since we use the norm in Rn) 20.

As we said before, in the setting of Rath there is a simple way to get through the
inconvenience of defining an induced probability measure over the set of strategy profiles,
using the presence of the state variable of the game over which players have an infinitesimal
influence.

We consider then games with an aggregate state. In this setting, we again consider
players as having forecasts over the set of states rather than over each of the individual
strategy sets. That is, forecasts are probability measures over the set of states rather than
profiles of probabilities over the set of strategies. We define then for each player the set
valued mapping that gives the actions that maximize expected utility given a probability
measure µ over the set of states A, µ ∈ P(A), B(i, · ) : P(A) ⇒ S:

B(i, µ) : = argmaxy∈S Eµ [u(i, y, a)]

≡ argmaxy∈S

∫
A
u(i, y, a) dµ(a) .

As it has been along all this document, we can describe then, using B(i, · ), the
process of elimination of unreasonable states, considering that players could now use
probability forecasts over the set of states. If it is common knowledge that the actual
state is restricted to a subset X ⊆ A then players will use strategies only in the set
B(i,P(X)) := ∪µ∈P(X)B(i, µ). This is, each player i ∈ I will behave optimally with respect
to some subjective belief about the outcome of the game, whose support is contained in
X. This means that rational strategy profiles have to be selections of the correspondence
i ⇒ B(i,P(X)) that maps the set of players on their set of optimal responses with respect
to any possible forecast over X. The state of the game will then be the integral of one of
these selections. This process is described with the mapping R̃ : B(A)→ P(A):

R̃(X) :=

{∫
I

s(i) di :
s ∈ SI , s is a measurable selec-
tion of i ⇒ B(i,P(X))

}
.

≡
∫
I

B(i,P(X)) di

The set R̃(X) gives the set of states that are obtained as consequence of optimal behavior
when common knowledge about the outcome of the game is represented by X. As we

19Recall that Cb(X) is the space of real valued bounded continuous functions on X.
20See Aliprantis and Border (1999) for detailed treatments of these and other results.
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said before, the difference between P̃ r and R̃ is that the second process considers expected
utility maximizers. For a given Borel set X ⊆ A, X can be embedded into P(X). This
means that B(i,X) ⊆ B(i,P(X)) and so we have that P̃ r(X) ⊆ R̃(X).

Proposition 4.1. In a game u, if X ⊆ A is nonempty and closed, then R̃(X) is nonempty,
convex and closed.

For the proof we will make use of the following Lemma whose proof is relegated to the
appendix.

Lemma 4.2. Let Y and X be compact subsets of Rn. Given a function u ∈ Cb(Y ×X),
the function U : Y ×P(X)→ R, which to each (y, µ) ∈ Y ×P(X) associates the expectation

U(y, µ) ≡
∫
X

u(y, x) dµ(x) ,

is continuous when P(X) is endowed with the weak* topology.

Proof of Proposition 4.1.
From our assumptions, u(i) belongs to Cb(S ×A), and S and A are compact sets in Rn,

so Lemma 4.2, along with Berges’ Theorem, imply that for each i ∈ I the correspondence
B(i, · ) : P(A) ⇒ S is upper semi continuous. Since X is closed, it is compact, which
gives that P(X) is a compact subset of P(A) and so the set B(i,P(X)) is closed for every
i ∈ I. From Theorem 4 in Aumann (1965) we get that

∫
I
B(i,P(X)) di is closed.

On the other hand, Lemma 3.2 states that the correspondence i ⇒ B(i,X) is mea-
surable, which means that it has a measurable selection s. Since B(i,X) ⊆ B(i,P(X)), s
is also a selection of i ⇒ B(i,P(X)). This implies that

∫
I
B(i,P(X)) di is nonempty.

Convexity comes from the fact that R̃(X) is obtained as an integral of a set valued
mapping.

�

The previous Proposition allows us to define the Eductive Process in this case. As
usual then we consider the iterative elimination of non generated states, but now allowing
for probability forecasts of players. The iterative process begins with the whole set of
outcomes, in this case A.

R̃0(A) := A

Then, on each iteration, the states that are not reached by the process R̃ are eliminated:

R̃t+1(A) := R̃
(
R̃t(A)

)
.

Recall that since we start the process at A, what we get is a nested family of sets that,
following Proposition 4.1, are nonempty convex and closed. The Eductive Process gives
then the set,

R′A :=
∞⋂
t=0

R̃t(A) .
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Theorem 4.3. In a game u, the set R′A is non empty, convex and closed.

Proof.
R′A is the intersections of closed convex sets, so it is convex and closed. Theorem 2.1

assures that R′A is nonempty, since equilibria belong to every set R̃t(A).
�

As it was the case before, the assumptions of rationality and common knowledge of ra-
tionality imply that players must take into account that all their opponents construct their
subjective forecasts rationally. This is formalized by asking that the set of Rationalizable
States must be a subset of R′A (analogously to (3.6)), in the sense that states that are
eliminated can not rise with positive probability and hence are not rationalizable. On the
other hand, if a state is rationalizable then it must be an outcome associated to optimal
reactions to forecasts with support in the set of Rationalizable States, this means that the
set of Rationalizable States must satisfy an analogous condition to (3.7). This is, the set
of Rationalizable States RA must satisfy

RA ⊆ R̃(RA) . (4.1)

Note that if a set satisfies condition (4.1), then it is a subset of the set R′A.

Definition 4.4. The set of Rationalizable States is the maximal subset X ⊆ A that
satisfies:

X ⊆ R̃(X)

and we note it RA.

As we have already said, from the definition of the set of Rationalizable States, we have
RA ⊆ R′A. The following Theorem, analogous of Theorem 3.6, shows that these two sets
are actually the same.

Theorem 4.5. The set of Rationalizable States of a game u can be calculated as

RA ≡ R′A

Although there are some aspects in which attention must be put. The proof of Theorem
4.5 follows the proof of Theorem 3.6 and is therefore relegated to the appendix.

We get directly that,

Proposition 4.6. In a game u we have:

PA ⊆ RA

In Proposition 4.6 it is not possible to obtain the equality in a general context. We give
a sufficient condition in our setting to have it.
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Proposition 4.7. If in a game u, we have ∀ µ ∈ P(A):

Eµ [u(i, y, a)] ≡ u(i, y,Eµ [a])

then

PA ≡ RA

Proposition 4.7 says that if the utility functions are affine in the state variable, then we
have that the Point-Rationalizable States set is equal to the set of Rationalizable States.
Below we will see that we do have a general setting where the set of Rationalizable Strate-
gies is well defined and in which we can get a result of equivalence between Point and
standard Rationalizability in the strategy sets, improving the statement of Proposition
4.6. We address this issue in Subsection 4.4.

Proof.
If Eµ [u(i, y, a)] ≡ u(i, y,Eµ [a]) then

B(i, µ) ≡ B(i,Eµ [a]) ,

which implies that

B(i,P(X)) ≡
⋃

µ∈P(X)

B(i,Eµ [a]) .

For a convex set X ⊆ A we have Eµ [a] ∈ X, ∀ µ ∈ P(X).

This implies that under the hypothesis of the Proposition if X is convex,⋃
µ∈P(X)

B(i,Eµ [a]) ⊆
⋃
a∈X

B(i, a)

and consequently

B(i,X) ⊆ B(i,P(X)) ≡
⋃

µ∈P(X)

B(i,Eµ [a]) ⊆
⋃
a∈X

B(i, a) ≡ B(i,X) .

This is, B(i,P(X)) ≡ B(i,X) and so R̃(X) ≡ P̃ r(X).

Noting that A is convex, we get R̃(A) ≡ P̃ r(A) which are as well convex. By induction

we get that P̃ r
t
(A) ≡ R̃t(A) ∀ t which gives (using the previous notation)

R′A ≡
∞⋂
t=0

R̃t(A) ≡
∞⋂
t=0

P̃ r
t
(A) ≡ P′A (4.2)
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where these intersections give closed convex sets.

Finally we get,
R̃(R′A) ≡ R̃(P′A) ≡ P̃ r(P′A) ≡ P′A ≡ R′A

which implies that R′A ≡ RA. The first inequality comes from (4.2), the second one is true
because P′A is convex, the third one comes from Theorem 3.6 which states that P′A ≡ PA
and the last one comes again from (4.2).

We conclude that RA ≡ R′A ≡ P′A ≡ PA.
�

4.2 More of Example 1

Let us now illustrate our results and definitions with the example that motivates this
presentation. In this example the strategy set was R+. Without loss of generality we can
assume it to be a compact interval S ≡ [0, qmax], where qmax could be the quantity that
makes the price equal to 0 : qmax := inf {P−1(0)}.

Now we identify the state set. As we have already said, we could choose the state set
to be the set of aggregate production quantities or the set of prices. This depends on the
aggregation operator that we are considering.

• Let us consider first A to be the operator that gives aggregate production quantities.
This is, A : SI → R+

A(s) ≡
∫
I

s(i) di.

The set A is the interval

A ≡
{
q ∈ R : ∃ s ∈ SI , q =

∫
I

s(i) di

}
≡ co {[0, qmax]}
≡ [0, qmax] .

The payoff function u(i, · , · ) : [0, qmax]× [0, qmax]→ R is then:

u(i, s(i) , Q) ≡ P (Q) s(i)− ci(s(i)) .

If we assume P and ci to be continuous and that the measurability requirement over
the function i → ci( · ) is met (for instance if all the producers have the same cost
function), Theorem 3.6 holds and so we can compute the Point-Rationalizable State
set using the eductive procedure described by the right hand side of (3.6). We get as
well the result of Corollary 3.7 and we know then that this set is a compact interval.
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• Now suppose that we use a variation, as in footnote 10, of the aggregation operator.
In the same setting we will consider the state set to be the set of prices. This is,
A : SI → R+

A(s) ≡ P

(∫
I

s(i) di

)
.

This is not the aggregation operator for which we obtained the results. However, we
will see below that they still hold. The set of states A will be identified with the set:

A ≡ {p ∈ R : ∃ q ∈ [0, qmax] , p = P (q)}
≡ P ([0, qmax])

≡ [0, pmax] .

We see that since P is a continuous function that goes from one-dimensional aggregate-
production set R+ to the set of prices [0, pmax] ⊂ R, this set turns out to be convex.

The utility function is now u(i, · , · ) : [0, qmax]× [0, pmax]→ R:

u(i, s(i) , p) ≡ ps(i)− ci(s(i)) .

Continuity of P implies that Theorem 3.6 still holds and so we can compute the
Point-Rationalizable State set using the eductive procedure described by the right
hand side of (3.6) using A instead of the integral. Since the strategy and state sets
are unidimensional21 we get the result of Corollary 3.7 and we know then that this
set is a compact interval.

Furthermore, in this second approach to the example we have that the payoff function
is affine in the state variable and so Proposition 4.7 holds and we then see that what
we are actually calculating is in fact the set of Rationalizable States (Rationalizable
Prices).

The equivalence between Rationalizable and Point-Rationalizable sets for the case of prices
is obtained directly from Proposition 4.7. The question remains on whether this holds for
the first approach. Clearly the payoff function is not necessarily affine on production
quantities and so we can not apply this Proposition directly. However, without making
any further assumptions we do have that the set of Rationalizable and Point-Rationalizable
States in the “ aggregate production quantities” approach are the same. For this, note that
we have already argued that the set of Point-Rationalizable States is an interval inR. Then,
since the model presents strategic substitutes the limits of this interval are actually the
largest and smallest Rationalizable States Guesnerie and Jara-Moroni (2007). This implies
that the whole interval is the set of Rationalizable States.

21Otherwise we would have it if we had used only the integral and so aggregate production instead of
prices.
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4.3 Forecasts over the set of strategies

When we consider forecasts over the sets of strategies, players should have a prior over
each of the other player’s individual actions. A forecasts in this case then would be a profile
of probability measures with support in the set of strategies S. The question is not trivial
since what we would have in this case is a continuum of random variables indexed by the
set of players and it is not clear how payoff should depend on this profile of probability
measures. However, in the setting of the original paper by Schmeidler (1973) this technical
issue can be overtaken since in this setting payoffs depend on the profiles of probability
measures that represent mixed strategies, which are the same mathematical objects as
forecasts. We will give first a loose description of how the eductive process should work
when agents use forecasts over the set of strategies, to continue with a formal description
for the case where S is a finite pure strategy set.

Given a set of strategy profiles H ⊆ SI , consider the set of strategies that a player i ∈ I
may use in strategy profiles in H and denote it H(i):

H(i) := { y ∈ S : y = s(i) , and s ∈ H} .

Ideally we would like to have forecasts on this set, and use the set P(H(i)). Since we do
not know whether H(i) is a Borel set, we may use for instance the closure of H(i), cl{H(i)}
and consider then P(cl{H(i)}).

We will say that a (measurable) mapping m : I → P(S) is a forecast profile over H
if m(i) has support on cl{H(i)} λ-a.e.. The question is, how should rational forecasts be
generated?

If originally any strategy can be used, when thinking about possible actions taken
by their rivals players should consider any possible forecast profile in the set of actions.
This should generate for each player a set of best-replies-to-forecasts. The issue is still
on how players use their forecasts to generate this set, but suppose we have this. Once
all the players have done this exercise, we will have a correspondence that maps players
to the set of strategies that represents all the possible strategy profiles that could be
played reacting optimally to some forecast (where different players could be using different
forecasts, recall that this is an issue of forecasting the forecasts of the others). This
correspondence would be the result of a first iteration and should be the point of depart
for the second iteration. Forecasts now should be profiles of probability measures where
the support of each probability should be in the closure of the set associated to each player
by this correspondence.

We define the mapping of best-reply-to-forecasts as the set of strategies that maximize
some “expected” utility given a forecast profile on S, Br(i, · ) : P(S)I ⇒ S:

Br(i,m) := argmaxy∈S EP(m) [π(i, y, s)] .

We use the notation EP(m) to represent that the payoff that is being maximized is an
expected payoff where the expectation comes from the fact that players are using non-
degenerate forecasts over the set of strategies. We note P(m) to indicate that the profile
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m induces in some sense a probability measure over the set of strategy profiles. We do not
give an answer here on to how this is done.

Given a measurable set valued mapping F : I ⇒ S, we can obtain, for each agent
i ∈ I, the set of best-replies to forecasts over this mapping as:

Br(i, F ) :=

{
y ∈ S :

y ∈ Br(i,m), m is a fore-
cast profile over F

}
. (4.3)

Finally, we can define the process of elimination of non best-reply-to-forecasts, described in
the previous paragraphs, with the mapping R that takes a set valued mapping F : I ⇒ S
and returns a subset R(F ) ⊆ SI ,

R(F ) :=

s ∈ SI :
s is a measur-
able selection of
i ⇒ Br(i, F )

 . (4.4)

The process22 described by equation (4.4) considers that strategy profiles that are “kept”
are those that can be constructed from best replies of agents taking decisions considering
any of the possible forecast profiles over F . Of course, as was the case before, on a same
strategy profile s of R(F ) the strategies of two different agents can be best-responses to
two different forecast profiles over F .

Definition 4.8. The set of Rationalizable Strategy Profiles is the maximal subset H ⊆ SI

that satisfies:
H ⊆ R(H)

and we note it RS.
For each player, i ∈ I, there will be a set of Rationalizable Strategies, namely the union,
over all the rationalizable strategy profiles in RS, of the best response set of the considered
player. That is, the set of Rationalizable Strategies for player i ∈ I is,

RS(i) := Br(i,RS)

So now that we have presented the main ideas of rationalizability in terms of strategies,
let’s turn to a setting where the best-reply-to-forecast mapping has a concrete sense.

4.4 Games with a continuum of players and finite strategy set

In Schmeidler’s formulation of a game with a continuum of players, payoff functions
π(i, · , · ) are defined on the product set ∆×∆I , where

{
e1, · · · , eL

}
⊆ RL is a finite set of

pure strategies that we identify with the canonical base of RL and ∆ ≡ co
{{
e1, · · · , eL

}}
22The set R(F ) can itself be regarded as a set valued mapping from I to S. This has to be taken in

account to have the set of Rationalizable Strategies well defined.
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is the set of mixed strategies, the convex hull of
{
e1, · · · , eL

}
and the simplex in RL. The

functions π(i, · , · ) : ∆×∆I → R take in this setting the form:

π(i, y,m) := y · h(i)(m) (4.5)

where h(i) : ∆I → RL is an auxiliary vector utility function whose coordinate l gives
the utility of player i when he chooses action el, m is a (mixed) strategy profile and
y ∈ ∆ is a (mixed) strategy of player i. If payoffs of players depend on the integral of the
(mixed) strategy profile m,

∫
I
m, then we can say that Schmeidler’s setting is ours with

S ≡ A ≡ ∆. In this case the functions h(i) can be regarded as depending only on the
values of the integrals (as in our setting)23. As quoted by Schmeidler himself, the central
result of his paper is the existence and purification theorem, Theorem 4.9 below, where
the main assumption is precisely this last one. We state this theorem in the context of our
framework.

Theorem 4.9 (Schmeidler, 1973). If the following conditions are satisfied:

1. The functions h(i) depend only on the integral of the mixed strategy profile m,

2. The functions ĥ(i) : ∆→ RL such that h(i)(m) ≡ ĥ(i)
(∫

m
)
, are continuous,

3. For all m ∈ ∆I and all l, k ∈ {1, . . . , L} the set{
i ∈ I : h(i)l(m) > h(i)k(m)

}
is measurable,

then there exists a Pure Strategy Nash Equilibrium of the game π.

This theorem motivates that we look at Schmeidler’s formulation from a slightly dif-
ferent point of view. As we have already said, one possibility is to consider this setting in
the context of a game u where the set of strategies, S, is S ≡ ∆. The implicit properties
imposed on payoff functions in this definition imply the hypothesis of Theorem 4.9 and so
we know that the results stated so far are true for the set of mixed strategies. However,
if we keep focusing on the set of pure strategies, we can benefit from the structure of
Schmeidler’s formulation to have a well defined best-reply-to-forecast mapping. The pay-
off functions depend on the integral of the mixed strategy profile, in particular when we
consider only pure strategies they also depend on the integral of pure strategy profiles. We
can make then a difference between (Point-)Rationalizability in pure or mixed strategies.
At this point we have to introduce some more notation: we will represent by a subscript
on the corresponding set or operator whether we are considering pure or mixed strategies
24. In Schmeidler’s formulation we have Sp ≡

{
e1, · · · , eL

}
and Sm ≡ ∆. We continue to

23See Rath (1992) for a discussion on this matter.
24For instance, the pointwise eductive procedure Pr can be defined on pure strategies:

Prp(H) ≡
{
s ∈ SI

p :
s is a measurable selection of the
correspondence i ⇒ Brp(i,H)

}
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consider the game where S ≡ A ≡ ∆ and so A is the same as the mixed strategy set ∆
which in turn is equal to the set of probability measures over the set of pure strategies
P(Sp), and so we get:

S ≡ Sm ≡ A ≡ ∆ ≡ P
({
e1, · · · , eL

})
≡ P(Sp) .

If Sp is a finite pure strategy set, then any forecast in the form of a probability distribution
over a subset Y ⊆ Sp can be considered as a point in P(Y ) ≡ co {Y } ⊆ ∆ ≡ co {Sp}. So a
forecast profile would be a function m : I → co {Y }. Since mixed strategies are the same
mathematical objects as probability forecasts over the set of actions of each player, in the
current setting we get to identify the expected utility EP(m) [π(i, y, s)] mentioned above,
with the following expression:

EP(m) [π(i, y, s)] ≡ y · h(i)(m)

≡ u

(
i, y,

∫
m

)
(4.6)

Where now EP( · ) [π(i, · , s)] : Sp×∆I → R is a function that depends on the pure strategy

y ∈ Sp and we interpret the profile of probability distributions m ∈ ∆I ≡ P(S)I as a
forecast, under the hypothesis that h(i) depends on m through the integral.

In this setting then we get that the set of forecast profiles on a mapping F : I ⇒ Sp
can be described by the mapping co {F} : I ⇒ ∆ defined as co {F}(i) := co {F (i)}. With
this, we can now consider six different rationalizable sets:

1. The set of Point-Rationalizable Pure Strategies PSp

2. The set of Point-Rationalizable Mixed Strategies PSm

3. The set of Rationalizable Pure Strategies RSp

4. The set of Rationalizable Mixed Strategies RSm

5. The set of Point-Rationalizable States PA

6. The set of Rationalizable States RA

Where the first three have been proved to be well defined and can be obtained from the
eductive processes defined by optimal strategies and forecasts on the corresponding sets.
The last two have been discussed with more detail in Subsections 3.2 and 4.1.

Theorem 4.10. In a game u where S ≡ ∆ we have,

∀ t, Prtp
(
SIp
)
≡ Rt

p

(
SIp
)
.

where H ⊆ SI
p and Brp(i, · ) : SI

p ⇒ Sp is defined by:

Brp(i, s) ≡ argmax {π(i, y, s) : y ∈ Sp}
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Proof.
From the relation in (4.6) we can see that to look at all forecast profiles is equivalent

to look at all the integrals of such profiles. Moreover, we see that in equation (4.3), and
considering F to be the constant mapping F (i) ≡ Sp, the set of forecast profiles over
F is the set valued mapping co {F} as defined above. That is, to obtain Brp

(
i, SIp

)
we

are interested in the integral of F while the calculus of Brp(i, F ) considers the integral
of co {F}. From Aumann (1965) the integral of the convex hull mapping is equal to the
integral of the mapping itself and so we have:∫

I

F (i) di ≡
∫
I

co {F}(i) di.

So no matter whether we are considering point or standard forecasts we obtain the same
set of states. In consequence we get that the set of maximizers is the same:

Brp
(
i, SIp

)
≡ Brp(i, F )

Thus we take measurable selections from the same mapping and so,

Prp
(
SIp
)
≡ Rp

(
SIp
)
.

By induction over t we get that

Prtp
(
SIp
)
≡ Rt

p

(
SIp
)
.

�

Corollary 4.11. In a game u where S ≡ ∆ we have,

RSp ≡ PSp

Corollary 4.11 says that in the setting where payoff functions depend on the integral of
the mixed strategy profile, and we consider S to be the set of mixed strategies associated
to a finite pure strategy set, then we get that Point-Rationalizability is equivalent to
Rationalizability in terms of pure strategy profiles.

In this context we identify the set PS with PSm and so from Theorem 3.8 we know
that PA ≡ Ā(PSm). What can we say about the relation between PA and the (Point-
)Rationalizable sets in pure strategies? An answer is given in Corollary 4.12.

Corollary 4.12. In a game u where S ≡ ∆ we have,

(i) PA ≡ Ā(PSm) and PSm ≡ B̄(PA)

≡
{
m ∈ SIm :

m is a measurable selection of
i ⇒ Bm(i,PA)

}
;

(ii) PA ≡ Ā
(
PSp

)
and PSp ≡

{
s ∈ SIp :

s is a measurable selection of
i ⇒ Bp(i,PA)

}
.
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Proof.
Item (i) is the exact same result of Theorem 3.8.
Now note that the best response mappings Bp(i, · ) : A ⇒ Sp and Bm(i, · ) : A ⇒ Sm

satisfy for X ⊆ A:

∪a∈XBp(i, a) ⊆ ∪a∈XBm(i, a) ≡ ∪a∈X co {Bp(i, a)} ⊆ co {∪a∈XBp(i, a)} ,

and so we get

P̃ rp(X) ≡
∫
I

Bp(i,X) di ⊆
∫
I

Bm(i,X) di ⊆
∫
I

co {Bp(i,X)} di ≡ P̃ rp(X) ,

where the integral in the middle is P̃ rm(X). Point (ii) of the Corollary is then consequence
of Theorem 3.8.

�

This is, in a game u with S ≡ ∆ ≡ Sm we have that the set of Rationalizable Pure
Strategies is equal to the set of Point-Rationalizable Pure Strategies, and these sets are
paired with the set of Point-Rationalizable States which in turn is paired with the set of
Point-Rationalizable Mixed Strategies.

Finally let’s note that the hypothesis of Theorem 4.9 are implied by the assumptions
on u when we consider the set S to be the set of mixed strategies of a finite strategy set
game. Moreover, since we want to deal with rationalizability in terms of pure strategies, it
is not enough to identify S with the finite set of pure strategies, since in that case we would
not be asking that the utility functions depended on the mixed strategy profiles through
their integral which is crucial for our results.

5 Comments and Conclusions

In this work we have formally introduced the concept of Rationalizability for models
that use a continuum of agents. We have proposed a definition for Point-Rationalizable
Strategies in the context of general games with a continuum of players, considering the
original characterization for games with finite set of players, compact strategy sets and
continuous utility functions; as the maximal subset of the strategy profiles set that satisfies
being a fixed point of the process of elimination of non-best response strategies. When
such models have the particularity that payoffs depend on other players’ actions through
an aggregate variable that cannot be unilaterally affected, we have defined as well the set
of Point-Rationalizable States. This last setting is an important generalization of several
models that explore Rational Expectations in economics such as models of currency attacks,
stag hunts, standard markets, macroeconomic dynamics and global games.

We have given sufficient conditions that allow the (Point-)Rationalizable sets to be well
defined and characterized. As in the case of finite player games, continuity properties of
the payoff functions are crucial to assure the convergence of the process of elimination
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of non-best replies (the eductive process) to the rationalizable set. For the continuum of
players case, an additional measurability assumption must be made on the mapping that
associates players to their payoff functions to be able to have existence of equilibrium.
It turns out that this same assumption is sufficient to assure the integrability of the set
valued mapping that is used in the eductive process and, in consequence, to obtain the
constructive characterization of the different rationalizbale sets introduced throughout the
document.

The set of Point-Rationalizable Strategies is paired with the set of Point-Rationalizable
States. We have shown that the set of Point-rationalizable States can be obtained, as
in the case of finite player games with (Point-)Rationalizable Strategies, by eliminating
unreasonable states. Moreover, this set is non-empty, convex and compact.

We have seen as well that for the most important application of Rationalizability in
economic models, namely Strong Rationality, it is equivalent in terms of properties and
more desirable in terms of tractability to use the state approach rather than the strategy
profile approach.

To incorporate standard Rationalizability to our framework, we have formally defined
Rationalizable States. We give a similar characterization for this set and we give a sufficient
(but not at all general) condition on payoff functions, in order to have equivalence between
standard and point Rationalizability.

In the particular case where the strategy sets are finite and payoff functions depend
on the integral of the mixed strategy profile, we were able to formally define Rationaliz-
able strategies and we have extended an equivalence result to Rationalizability vs. Point-
Rationalizability in terms of pure strategy profiles, which in turn implies that in this setting
the three concepts: Rationalizable Pure Strategies, Point-Rationalizable Pure Strategies
and Point-Rationalizable States; give the same outcomes.

We have defined a key concept in a unified exploratory framework that encompasses
a variety of economic models. With this, we have a general framework on which we can
study general properties of equilibria such as (local) eductive stability of equilibria and
applications to models with continuum of agents that feature strategic complementarities
or substitutes (Cooper (1999), Chamley (2004), Guesnerie (2005), Guesnerie and Jara-
Moroni (2007)).
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A Relegated proofs

Proof of Lemma 3.2.
We show first that the mapping G : I ⇒ A×S, that associates with each agent i ∈ I

the graph of the best response mapping B(i, · ), G(i) := gphB(i, · ), is measurable.
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Take a closed set C ⊆ A× S. We need to prove that the set

G−1(C) ≡ {i ∈ I : C ∩ gphB(i, · ) 6= ∅}

is measurable. Consider the subset U ⊆ US×A defined by:

U := { g ∈ US×A : ∃ (a, s) ∈ C such that g(s, a) ≥ g(y, a) ∀ y ∈ S}

note that u−1(U) ≡ G−1(C) and so, from the measurability assumption over u, it suffices
to prove that U is closed. That is, we have to show that for any sequence {gν}ν∈N ⊂ U ,
such that gν → g∗ uniformly g∗ ∈ U .

Since the functions gν are finite and continuous in S×A, from Weierstrass’ Theorem g∗

is continuous and so it belongs to US×A. Moreover, gν converges continuously to g∗, that
is, for any convergent sequence(aν , sν) with limit (a∗, s∗), the sequence gν(sν , aν) converges
to g∗(s∗, a∗). Indeed, consider any ε > 0. By the continuity of g∗ there exists ν̄1 ∈ N such
that ∀ ν > ν̄1,

2|g∗(sν , aν)− g∗(s∗, a∗)| < ε

2
.

From the uniform convergence of gν we get that there exists ν̄2 ∈ N such that,

|gν(s, a)− g∗(s, a)| < ε

2
for all ν ≥ ν̄2 and ∀ (s, a) ∈ S ×A,

in particular this is true for all the elements of the sequence of points. We get then that ∀
ν ≥ max {ν̄1, ν̄2},

|gν(sν , aν)− g∗(s∗, a∗)| ≤ |gν(sν , aν)− g∗(sν , aν)|
+ |g∗(sν , aν)− g∗(s∗, a∗)| < ε.

We have to show then that there exists a point (a, s) ∈ C such that g∗(s, a) ≥ g∗(y, a)
∀ y ∈ S. Since gν ∈ U , we have for each ν ∈ N, points (aν , sν) ∈ C such that gν(sν , aν) ≥
gν(y, aν) ∀ y ∈ S. Let(a∗, s∗) ∈ C be the limit of a convergent subsequence of {(aν , sν)}ν∈N,
which without loss of generality we can take to be the same sequence. We see that (a∗, s∗)
is the point we are looking for since for a fixed y ∈ S, continuous convergence implies that
in the limit

g∗(s∗, a∗) ≥ g∗(y, a∗) .

We conclude then that g∗ ∈ U . Thus, U is closed and since u is a measurable mapping,
u−1(U) is measurable.

With this in mind, consider a closed set X ⊆ A and the mapping i ⇒ B(i,X).
Applying Theorem 14.13 in Rockafellar and Wets (1998) to the constant mapping i ⇒ X
along with G above, we get that the correspondence i ⇒ B(i,X) is measurable and has
closed values (hence compact since S is compact).

�
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With Lemma 3.2 we can now prove Theorem 2.1.

Proof of Theorem 2.1:
Consider the correspondence Γ : A ⇒ A defined by

Γ(a) :=

∫
I

B(i, a) di.

Note that a fixed point of Γ defines an equilibrium of the game u. Lemma 3.2 implies
that for all a ∈ A, Γ(a) 6= ∅. By definition, for all a ∈ A, Γ(a) is convex. Under our
assumptions, the correspondences B(i, · ) : A ⇒ S are u.s.c. and from Aumann (1976) so
is Γ. This last assertion implies as well that Γ(a) is compact ∀ a ∈ A. Applying Kakutani’s
fixed point Theorem we get that there exists a∗ ∈ A such that a∗ ∈ Γ(a∗).

�

Proof of Lemma 4.2.
We write U as the composition of two functions:

(y, µ) ∈ Y × P(X) → (u(y, · ) , µ) ∈ Cb(X)× P(X)

and (f, µ) ∈ Cb(X)× P(X) →
∫
X

f(x) dµ(x)

If we endow Cb(X) with the sup norm topology and P(X) with the weak* topology, from
Corollary 15.7 in Aliprantis and Border (1999) we get that (f, µ) →

∫
fdµ is continuous

on Cb(X)× P(X).
Therefore, the result will follow from the continuity of the function

(y, µ)→ F(y, µ) =(u(y, · ) , µ) .

Note first that this function is defined component to component by functions that depend
each only on one variable, this is F(y, µ) = (F1(y) ,F2(µ)), and second that F2 is the
identity. Thus, we only need to prove that F1 : Y → Cb(X) is continuous for the sup norm
topology in Cb(X).

Let yν → y and take ε > 0.
Since Y × X is compact and u is in Cb(Y ×X), this function is as well uniformly

continuous. Thus, ∃ δ > 0 (that depends only on ε) such that

‖ (y, x)−(y′, x′)‖ < δ =⇒ |u(y, x)− u(y′, x′)| < ε

3

Since X is compact ∃ {x1, . . . , xN} ⊂ X such that X ⊆ ∪Ni=1B(xi, δ). This is, for any
x ∈ X there exists xi in the previous set such that x ∈ B(xi, δ).

Finally, since yν → y, there exist for each xi numbers ν̄i such that

‖ (yν , xi)−(y, xi)‖ < δ
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for all ν ≥ ν̄i.
All together gives, for ν ≥ max {ν̄i : i ∈ {1, . . . , N}} and x ∈ X:

|u(yν , x)− u(y, x)| < |u(yν , x)− u(yν , xi)|+|u(yν , xi)− u(y, xi)|
+|u(y, xi)− u(y, x)|

<
ε

3
+
ε

3
+
ε

3
= ε.

We conclude that u(yν , · ) converges to u(y, · ) for the sup norm topology, which completes
the proof.

�

We use this Lemma to prove Theorem 4.5:

Proof of Theorem 4.5.
We will show that:

R̃(R′A) ≡ R′A
Theorem 4.3 assures that R̃(R′A) is correctly defined.

Suppose that a ∈ R̃(R′A). By the definition of R̃, there exists a measurable selec-
tion s : I → S of i ⇒ B(i,P(R′A)), such that a =

∫
I
s. Since R′A is a Borel set and

R′A ⊆ R̃t(A), which are as well Borel sets ∀ t ≥ 0, we have that P(R′A) ⊆ P
(
R̃t(A)

)
are

well defined and, ∀ t ≥ 0, ∀ i ∈ I, B(i,P(P′A)) ⊆ B
(
i,P
(
R̃t(A)

))
. So s is a selection of

i ⇒ B
(
i,P
(
R̃t(A)

))
and then a ∈ R̃t+1(A) ∀ t ≥ 0, which means that a ∈ R′A. This

proves that R̃(R′A) ⊆ R′A.

For the other inclusion, we consider again a sequence of set valued mappings F t :
I ⇒ S, t ≥ 0, whose p-lim sup limit will be again very helpful. Consider then ∀ i ∈ I,

F 0(i) := S

F t(i) := B
(
i,P
(
R̃t−1(A)

))
t ≥ 1

We have now ∀ t ≥ 0,

R̃t(A) ≡
∫
I

F t(i) di.

We know that A ≡
∫
I
F 0 is non empty and compact. From Proposition 4.1 we get that so

are the sets R̃t(A) for all t ≥ 1.
From Lemma 4.2, we get that ∀ i ∈ I the mapping B(i, · ) : P(A) ⇒ S is u.s.c.

and, as a consequence, the set B(i,P(X)) is compact for any compact subset X ⊆ A. So
the correspondences F t are compact valued. From the proof of Theorem 3.6 we get that
they all have a measurable selection, since for a closed set X, B(i,X) ⊆ B(i,P(X)) and
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from Lemma 3.2 the mappings i ⇒ B(i,X) are measurable and hence have a measurable
selection.

Consider then the set valued mapping F : I ⇒ S defined as the point-wise lim sup of
the sequence F t:

F (i) :=
(
p-lim supt F

t
)
(i) ≡ lim sup

t
F t(i) .

So now let us take a point a ∈ R′A. That is, a ∈
∫
I
F t for all t ≥ 0. This gives a sequence

of measurable selections {st}t∈N, such that a =
∫
I
st. From the Lemma proved in Aumann

(1976) we get that a ∈
∫
I
F , since for each i ∈ I the cluster points of {st(i)}t∈N belong to

F (i) and a is the trivial limit of the constant sequence
∫

st.
To show that F (i) ⊆ B(i,P(R′A)), we use that the weak* topology in P(A) is metrizable

and the upper semi continuity of B(i, · ) : P(A) ⇒ S to give an argument that follows
the one at the end of the proof of Theorem 3.6.

�
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