Amorfnost
Za čvrstu supstancu kažemo da je amorfna ako njene čestice nisu uređene kao kod kristala. Primjeri amorfnih tijela su staklo, gelovi, tanki filmovi i nanostrukturni materijali. Amorfne supstance imaju određenu uređenost čestica samo na kraćim rastojanjima, ali ne postoji uređenost u cijelom prostoru. Kod kristalnih supstanci postoji pravilnost u prostoru u rasporedu čestica, i jačine veza između čestica su jednake, zbog toga pri zagrijavanju kristala veze između čestica se raskidaju naglo na određenoj temperaturi, i kristali imaju tačno određenu temperaturu topljenja. S druge strane kod amorfnih supstanci rastojanja između čestica nisu jednake u svim dijelovima, zbog toga nisu jednake ni privlačne sile između pojedinih čestica, i zbog toga pri zagrijavanju amorfnih supstanci ne postoji nagli prelaz iz čvrstog u tečno stanje na određenoj temperaturi, već pri zagrijavanju prvo omekšavaju, a zatim se tope u određenom temperaturnom intervalu. Čestice kod amorfnih supstanci su raspoređene haotično i u čvrstom stanju, s tim što je pokretljivost čestica u tečnom stanju je znatno veća. Zbog toga se stakla nekad nazivaju prehlađenim tečnostima.
Ako je veličina kristala mala onda je teško napraviti razliku između amorfnih tijela i kristala. I amorfna tijela imaju neku uređenost čestica na malim rastojanjima atomskih veličina zbog prirode hemijskih veza. Takođe u veoma malim kristalima veliki broj molekula je raspoređeno uglavnom na površini ili blizu površine, zato što efekti dejstva površine vrše distorziju pozicije čestica što smanjuje uređenost čestica. Čak i pri najnaprednijim tehnikama određivanja strukture, kao što je difrakcija X zracima i prenos elektronskim mikroskopom, postoji teškoća pri određivanju da li se radi o kristalnom ili amorfnom tijelu na dužinama koje su atomskog reda.
Amorfne faze su vazni dijelovi tankih filmova, koji su čvrsti slojevi debljine nekoliko nanometara do nekoliko desetina mikrometara koji su naneseni na supstrat. Za opisivanje mikrostrukture keramike i tankih filmova su razvijeni strukturni modeli zona kao funkcije homologne temperature Tk koja predstavlja odnos temperature taloženja i temperature topljenja. Prema ovim modelima potreban (ali ne i dovoljan uslov) za pojavljivanje amorfne faze je da Tk mora biti manje od 0.3 tj. da temperatura taloženja mora biti niza od 30% temperature topljenja. Za veće vrijednosti, površinska difuzija izdvojenih atomskih vrsta bi omogućila formiranje kristala sa visokom uređenoscu atoma.
Što se tiče specifične primjene, amorfni metalni slojevi su igrali važnu ulogu u diskusiji o navodnoj superprovodljivosti amorfnih metala. Danas se optički pokrivači koji se prave od TiO2, SiO2, Ta2O5 itd. i njihove kombinacije se većinom sastoje od amorfnih faza ovih komponenata. Tanki amorfni filmovi se takođe primjenjuju za razdvajanje gasa kod slojeva membrana. Uglavnom su napravljeni od tankog sloja slojeva SiO2 koji su debeli nekoliko nm koji služe kao izolator iznad provodnog kanala MOSFET-a. Takođe, hidrogenizovani amorfni silicijum tj. a-Si:H ima tehničku primjenu u solarnim ćelijama na bazi tankih filmova. Kod a-Si:H nedostatak uređenosti između atoma silicijuma se javlja zbog prisustva vodonika u vidu nekoliko procenata.
Pojavljivanje amorfnih faza je takodje vazno u proučavanju rasta tankih filmova. Rast polikristalnih filmova često počinje amorfnim slojem, čija debljina može biti samo nekoliko nm. Najbolje ispitan primjer je tanki polikristalni silicijumski film gdje je početni amorfni sloj posmatran u mnogim ispitivanjima. Komadi polikristala su identifikovani pomoću transmisionog elektronskog mikroskopa i uočeno je da rastu iz amorfnog sloja nakon što amorfni sloj dostigne određenu debljinu, čija precizna vrijednost zavisi od temperature izdvajanja, pritiska i raznih drugih parametara. Ovaj fenomen je interpretiran u okviru Ostvladovih pravila o stanjima koje predviđa formiranje manje stabilnih faza koje tokom vremena kondenzacija prelaze u stabilnije oblike. Eksperimentalna proučavanja ovog fenomena zahtijevaju određeno stanje površine supstrata i njegovu gustinu nakon koje se stvara tanki film.
- R. Zallen (1998). The Physics of Amorphous Solids. Wiley Interscience.
- S.R. Elliot (1990). The Physics of Amorphous Materials (2nd izd.). Longman.
- N. Cusack (1987). The Physics of Structurally Disordered Matter: An Introduction. IOP Publishing.
- N.H. March, R.A. Street, M.P. Tosi, Eds., (1985). Amorphous Solids and the Liquid State. Springer.
- D.A. Adler, B.B. Schwartz, M.C. Steele, Eds. (1985). Physical Properties of Amorphous Materials. Springer.
- A. Inoue, K. Hasimoto, Eds. (1985). Amorphous and Nanocrystalline Materials. Springer.