MultiOutputClassifier#
- class sklearn.multioutput.MultiOutputClassifier(estimator, *, n_jobs=None)[source]#
Multi target classification.
This strategy consists of fitting one classifier per target. This is a simple strategy for extending classifiers that do not natively support multi-target classification.
- Parameters:
- estimatorestimator object
An estimator object implementing fit and predict. A predict_proba method will be exposed only if
estimator
implements it.- n_jobsint or None, optional (default=None)
The number of jobs to run in parallel.
fit
,predict
andpartial_fit
(if supported by the passed estimator) will be parallelized for each target.When individual estimators are fast to train or predict, using
n_jobs > 1
can result in slower performance due to the parallelism overhead.None
means1
unless in ajoblib.parallel_backend
context.-1
means using all available processes / threads. See Glossary for more details.Changed in version 0.20:
n_jobs
default changed from1
toNone
.
- Attributes:
- classes_ndarray of shape (n_classes,)
Class labels.
- estimators_list of
n_output
estimators Estimators used for predictions.
- n_features_in_int
Number of features seen during fit. Only defined if the underlying
estimator
exposes such an attribute when fit.Added in version 0.24.
- feature_names_in_ndarray of shape (
n_features_in_
,) Names of features seen during fit. Only defined if the underlying estimators expose such an attribute when fit.
Added in version 1.0.
See also
ClassifierChain
A multi-label model that arranges binary classifiers into a chain.
MultiOutputRegressor
Fits one regressor per target variable.
Examples
>>> import numpy as np >>> from sklearn.datasets import make_multilabel_classification >>> from sklearn.multioutput import MultiOutputClassifier >>> from sklearn.linear_model import LogisticRegression >>> X, y = make_multilabel_classification(n_classes=3, random_state=0) >>> clf = MultiOutputClassifier(LogisticRegression()).fit(X, y) >>> clf.predict(X[-2:]) array([[1, 1, 1], [1, 0, 1]])
- fit(X, Y, sample_weight=None, **fit_params)[source]#
Fit the model to data matrix X and targets Y.
- Parameters:
- X{array-like, sparse matrix} of shape (n_samples, n_features)
The input data.
- Yarray-like of shape (n_samples, n_classes)
The target values.
- sample_weightarray-like of shape (n_samples,), default=None
Sample weights. If
None
, then samples are equally weighted. Only supported if the underlying classifier supports sample weights.- **fit_paramsdict of string -> object
Parameters passed to the
estimator.fit
method of each step.Added in version 0.23.
- Returns:
- selfobject
Returns a fitted instance.
- get_metadata_routing()[source]#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
Added in version 1.3.
- Returns:
- routingMetadataRouter
A
MetadataRouter
encapsulating routing information.
- get_params(deep=True)[source]#
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- partial_fit(X, y, classes=None, sample_weight=None, **partial_fit_params)[source]#
Incrementally fit a separate model for each class output.
- Parameters:
- X{array-like, sparse matrix} of shape (n_samples, n_features)
The input data.
- y{array-like, sparse matrix} of shape (n_samples, n_outputs)
Multi-output targets.
- classeslist of ndarray of shape (n_outputs,), default=None
Each array is unique classes for one output in str/int. Can be obtained via
[np.unique(y[:, i]) for i in range(y.shape[1])]
, wherey
is the target matrix of the entire dataset. This argument is required for the first call to partial_fit and can be omitted in the subsequent calls. Note thaty
doesn’t need to contain all labels inclasses
.- sample_weightarray-like of shape (n_samples,), default=None
Sample weights. If
None
, then samples are equally weighted. Only supported if the underlying regressor supports sample weights.- **partial_fit_paramsdict of str -> object
Parameters passed to the
estimator.partial_fit
method of each sub-estimator.Only available if
enable_metadata_routing=True
. See the User Guide.Added in version 1.3.
- Returns:
- selfobject
Returns a fitted instance.
- predict(X)[source]#
Predict multi-output variable using model for each target variable.
- Parameters:
- X{array-like, sparse matrix} of shape (n_samples, n_features)
The input data.
- Returns:
- y{array-like, sparse matrix} of shape (n_samples, n_outputs)
Multi-output targets predicted across multiple predictors. Note: Separate models are generated for each predictor.
- predict_proba(X)[source]#
Return prediction probabilities for each class of each output.
This method will raise a
ValueError
if any of the estimators do not havepredict_proba
.- Parameters:
- Xarray-like of shape (n_samples, n_features)
The input data.
- Returns:
- parray of shape (n_samples, n_classes), or a list of n_outputs such arrays if n_outputs > 1.
The class probabilities of the input samples. The order of the classes corresponds to that in the attribute classes_.
Changed in version 0.19: This function now returns a list of arrays where the length of the list is
n_outputs
, and each array is (n_samples
,n_classes
) for that particular output.
- score(X, y)[source]#
Return the mean accuracy on the given test data and labels.
- Parameters:
- Xarray-like of shape (n_samples, n_features)
Test samples.
- yarray-like of shape (n_samples, n_outputs)
True values for X.
- Returns:
- scoresfloat
Mean accuracy of predicted target versus true target.
- set_fit_request(*, sample_weight: bool | None | str = '$UNCHANGED$') MultiOutputClassifier [source]#
Configure whether metadata should be requested to be passed to the
fit
method.Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True
(seesklearn.set_config
). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
- Parameters:
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_weight
parameter infit
.
- Returns:
- selfobject
The updated object.
- set_params(**params)[source]#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.
- set_partial_fit_request(*, classes: bool | None | str = '$UNCHANGED$', sample_weight: bool | None | str = '$UNCHANGED$') MultiOutputClassifier [source]#
Configure whether metadata should be requested to be passed to the
partial_fit
method.Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True
(seesklearn.set_config
). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed topartial_fit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it topartial_fit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
- Parameters:
- classesstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
classes
parameter inpartial_fit
.- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_weight
parameter inpartial_fit
.
- Returns:
- selfobject
The updated object.