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Abstract 

Soil texture was examined in four crop fields with areas of 10 to 45 ha located in northern and central Poland. In 
each field, from 21 to 60 soil samples were collected using stratified sampling. The content (%) of soil particles, 
i.e., sand, silt and clay, was then evaluated using laboratory methods. The apparent electrical conductivity (ECa) 
was measured and used as ancillary data for the interpolation of soil texture. The obtained data were used to 
compare selected spatial interpolation methods according to the accuracy of prediction. The examined methods 
were evaluated based on the results of cross-validation tests. Two methods of validation were used: leave-one-
out cross-validation and validation based on a test set of points, with approximately 30% randomly selected. 
The smallest root mean square error (RMSE) for the prediction of sand, silt and clay was observed for ordinary 
cokriging in which ECa was used as a covariate. The other three methods, i.e., inverse distance weighting, radial 
basis functioning and ordinary kriging, had very similar RMSE values, which were approximately 10% higher 
compared to ordinary cokriging. 
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1. Introduction

Accurate prediction of soil texture (ST) is very im-
portant in precision farming because soil texture has 
a great influence on soil productivity (Buckman and 
Brady, 1971; Mzuku et al., 2005; He et al., 2013; 
Gozdowski et al., 2014) and several other properties 
that influence agricultural potential (Buckman and 
Brady, 1971; White, 1997; Dec and  Dörner 2014). 
Therefore, ST is considered a main factor for delin-
eating management zones in precision farming. There 
are several methods for determining ST (Bieganowski 
and Ryżak, 2011). The simplest method is known as 
the “feel method,” which is based on soil manipulation 
by hand; therefore, the results are dependant on the 
specific skills of the researcher. More reliable meth-
ods of soil texture classification are based on particle 
size analysis, i.e., relative amounts of sand, silt and 
clay. However, these methods are time consuming, 
and the estimation of ST with high spatial resolution 
is not commonly performed at farm level. Proximal 
sensing methods for ST prediction based on satellite 
imagery or soil electrical conductivity are promising 
but still not accurate (Mulder et al., 2011; Rodríguez-
Pérez et al., 2011). Correlations between information 
from multispectral images and soil fractions (e.g., 
sand content) are quite strong, but the mean error of 
prediction is still too high (approximately 15%) (Mas-
selli et al., 2008). Usefulness of apparent electrical 
conductivity (ECa) for ST estimation is limited by a 
high error of prediction of several percentage points 
(Rodríguez-Pérez et al. 2011), but ECa can be treated 
as ancillary data in ST mapping. Because of these lim-
itations, the spatial interpolation of sand, silt and clay 
determined with direct laboratory methods is required 
to create a map of ST for an entire farm field.
The results of spatial interpolation of any soil prop-
erty can vary by a high degree depending on the 
method of interpolation (Robinson and Metternicht, 

2006; González et al. 2014). Therefore, only spatial 
interpolation methods producing the highest accura-
cy of prediction are desirable among the wide range 
of interpolation techniques available. Selecting the 
most efficient and accurate interpolation method for 
predicting soil properties has been the subject of nu-
merous studies (e.g., Kravchenko and Bullock, 1999; 
Robinson and Metternicht, 2006; Zhu and Lin 2010), 
which evaluated the efficacy of techniques in measur-
ing soil properties such as nutrient content (mainly K 
and P), organic matter content and pH; however, few 
of the techniques were actually related to soil texture 
interpolation (e.g., Meul and Van Meirvenne, 2003; 
Karydas et al., 2009; Ließ et al., 2012). Moreover, not 
all surveys were conducted at the farm-field scale, as 
certain surveys conducted at a regional scale where 
local spatial variability is omitted.
The purpose of this study is to evaluate the ST predic-
tion accuracy of selected spatial interpolation meth-
ods at the farm-field scale, and the main criteria by 
which prediction accuracy is estimated are the results 
of cross-validation analysis.

2. Materials and Methods

2.1. Research site and soil sampling

Four farm fields were examined for the years 2009-
2011. Two of the fields (D2 and D5) were located in 
northern Poland, and two others (O3a and O5c) were 
located in central Poland. Characteristics of field loca-
tions and soil types are presented in Table 1.
Undisturbed soil samples were collected, and one 
composite “point” soil sample consisted of three 100 
cm3 cylinders that were collected at a depth of 15-
20 cm and then subjected to chemical and physical 
analyses, including ST analysis. A stratified sam-
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pling design was used, and the sampling locations 
for this study were designed using soil map infor-
mation from maps at a scale of 1:5000 and aerial 
photographs from archives. The sampling points 
were established in areas that were typical for the 
surrounding area. The sampling points are named 
‘centroids’ because they represent the geographical 
centre of the sampling transects. The percentage of 
sand (0.05-2.00 mm), silt (0.002-0.05 mm) and clay 
(<0.002 mm) content was measured using the aero-
metric method of Casagrande that was modified by 
Prószyński (PN-R-4033).
The apparent electrical conductivity (mS/m) was 
treated as a covariate and was measured using an 
EM 38 (Geonics®) in horizontal (ECaH) or vertical 
(ECaV) dipole mode at a depth of approximately 0.75 
m or 1.5 m, respectively.

2.2. Statistical analysis

The spatial dependence of the attributes was evaluat-
ed on the basis of variogram parameters for spherical 
function and Moran’s I autocorrelation coefficient. 
The interpolation method accuracy was evaluated on 
the basis of the root mean square error (RMSE) for 
cross-validation using the following two methods:
1) Leave-one-out cross-validation (LOOCV), in 
which each single observation from the sample was 
treated as the validation point and the remaining 
points were treated as the training set;
2) Validation based on a test set of points, with ap-
proximately 30% randomly selected and the remain-
ing 70% treated as a training set (Figure 1).
Four interpolation methods were evaluated: 
1) Inverse distance weighting (IDW), where the 
power parameter was optimised to obtain the small-
est prediction error;
2) Radial basis function (RBF), where the complete-
ly regularised spline was the basis function;

3) Ordinary kriging (OK), where the spherical func-
tion was used for theoretical variogram modelling; 
and
4) Ordinary cokriging (OCK), where the spherical 
variogram was used and ECaH and ECaV (measured 
using horizontal and vertical modes) were treated as 
covariates.
Non-spatial statistical analyses were conducted using 
Statistica 10 (StatSoft, 2011) software, and spatial statis-
tics and maps were prepared in ArcGIS 9.3 (ESRI 2009). 
The significance level for all analyses was set at 0.05.

3. Results

The prevailing ST class for two examined fields lo-
cated in northern Poland was sandy loam and the 
two fields located in central Poland was loamy sand 
(Table 1). The largest spatial variability of ST frac-
tions (sand, silt and clay) was observed in the field 
D5 where even neighbouring soil samples often had 
significantly different contents in the ST fractions. 
For that reason, field spatial Moran’s I autocorrela-
tion coefficient for field D5 was close to zero for all 
three soil fractions (Table 2). Other types of spatial 
variability in ST fractions were observed for fields D2 
and O3a, where strong spatial autocorrelation for sand 
and silt content was observed. The spatial autocorrela-
tion was positive, which means that for neighbouring 
sampling points, these two ST fractions were related. 
The exception were some very close sampling points 
for field O3a which had very big differences between 
silt content, which is presented on experimental var-
iogram (Figure 2). Only the clay content had a weak 
spatial dependence, likely because relatively small 
clay content was found. 
Stronger positive spatial autocorrelation allows better 
prediction efficiency of soil properties during spatial 
interpolation procedures.
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Name of the field D2 D5 O3a O5c 
Location Northern Poland – Pomerania Central Poland – Mazovia 

Lowland
Area 21.9 ha 45.0 ha 10.5 ha 10.4 ha 
Geographic coordinates 54°31'13"N, 

17°18'33"E 
54°32'18"N, 
17°17'55"E 

52°4'54"N, 
21°8'32"E 

52°4'44"N, 
21°8'9"E 

Altitude (a.s.l.) 48-61 m 62-70 m 89-91 m 102-105 m 
Date of soil sample 
collection 

September 
2009

March 2011 November 
2009

October 2009 

Predominant soil type 
(WRB 1998*) 

Dystric
Cambisols 

Dystric
Cambisols 

Dystric
Arenosols,
Phaeozems 

Albeluvisols
and Luvisols 

Prevailing soil texture Sandy loam Sandy loam Loamy sand Loamy sand 
Range of 
content (%) 

Sand 59-83 56-81 66-89 74-90 
Silt 13-32 15-36 9-29 9-22 
Clay 3-11 4-12 0-5 0-6 

Number of sampling 
points

58 60 22 21 

Number of soil samples 
in training and test sets 

40/18 42/18 15/7 14/7 

Table 1. Characteristics of the examined fields

* Approximate WRB equivalent of soil type relating to the Polish classification from 1989 and based on Charzyński (2006) and 

the authors’ own elaboration

In Tables 3 and 4, values of the RMSE, which is an 
indicator of the prediction accuracy of spatial inter-
polation, are presented. For field D5, RMSE values 
were much higher compared to the other three fields 
because of a lack of spatial dependence. The range of 
ST fractions affected RMSE values, as shown by the 
sand content; the highest range was characterised by 
the lowest RMSE and the clay content followed the op-
posite trend. Comparisons of RMSE values for the four 
examined interpolation methods using the two valida-
tion methods produced similar results. For almost all 
the fields and each of the ST fractions, the smallest 
RMSE was achieved by using ordinary cokriging in 
which the ECaH and ECaV were treated as covariates 
(Figure 3 presents predicted silt content on the basis 

of LOOCV). For the LOOCV method, the prediction 
accuracy expressed as RMSE was approximately 0.3-
0.5% lower for sand and clay, it means that the RMSE 
was relatively c.a. 10% lower. In the case of soil clay 
content, the RMSE was approximately 0.1% lower for 
cokriging in comparison with the other three interpo-
lation methods. Validation results based on a test set 
of points where approximately 30% of the points were 
randomly selected from all of the sampling points 
were quite similar to the results based on LOOCV, 
and the relative RMSE value was approximately 10% 
lower in comparison to the other interpolation meth-
ods. This result indicates that the ancillary informa-
tion of soil electrical conductivity (ECaH and ECaV) is 
useful for predictions for all of the ST fractions.
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Figure 1. Maps of four examined fields (D2, D5, O3a and O5c) with sampling points divided into training and 
test sets and isohypses superimposed on 1 m of elevation. 



Journal of Soil Science and Plant Nutrition, 2015, 15 (3), 639-650

644       Gozdowski et al.

 D2 D5 O3a O5c 
 Sand (%) 
Nugget effect 11.7 17.5 18.0 2.9 
Partial sill 30.0 8.2 13.3 17.7 
Range (m) 592 212 209 283 
Moran’s I 0.61* -0.06 0.58* 0.39* 
 Silt (%) 
Nugget effect 6.6 8.2 12.2 4.1 
Partial sill 20.7 8.6 10.4 11.2 
Range (m) 560 191 195 308 
Moran’s I 0.64* 0.07 0.48* 0.26 
 Clay (%) 
Nugget effect 2.6 0.9 0.0 2.9 
Partial sill 0.9 3.3 2.5 0.0 
Range (m) 699 41 136 352 
Moran’s I 0.27* -0.12 0.29 -0.07 

Table 2. Parameters of variogram (spherical function) and spatial autocorrelation (Moran’s I) for soil fractions.

*P <0.05

Differences in terms of RMSE values for the other three 
interpolation techniques, IDW, RBF and OK, were 
very small. Because there were similar RMSE values 
for all the examined interpolation techniques, indicat-
ing that the best interpolation method that did not use 
covariates, was difficult. RBF was slightly more accu-

te for sand content predictions compared to IDW and 
OK, while IDW was slightly more accurate for clay 
content estimations. However, the relative differences 
between the RMSE values for these three methods 
were not higher than 6%, with the average ranging from 
3-4% and a lack of consistency found for all fields.
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Figure 2. Experimental and theoretical variograms (spherical function) for silt content (%) in examined fields 
(D2, D5, O3a and O5c)
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 Field Mean 
 D2 D5 O3a O5c 
 Sand
IDW  4.09 5.31 4.28 3.53 4.30 
RBF 4.10 5.51 3.76 3.38 4.19 
Ordinary
kriging

4.11 5.37 4.30 3.27 4.26 

Cokriging  4.00 4.96 3.80 2.78 3.88 
 Silt 
IDW 3.30 4.21 3.89 3.23 3.66 
RBF 3.31 4.27 3.78 3.07 3.61 
Ordinary
kriging

3.24 4.23 4.48 2.97 3.73 

Cokriging  3.30 4.38 3.53 2.43 3.41 
 Clay 
IDW 1.45 2.19 1.38 1.82 1.71 
RBF 1.52 2.32 1.36 1.89 1.77 
Ordinary
kriging 

1.58 2.22 1.38 1.80 1.74 

Cokriging  1.52 1.91 1.40 1.78 1.65 

Table 3. Root mean square errors for cross-validation of ST based on the leave-one-out of method in four exam-
ined fields

 Field Mean 
 D2 D5 O3a O5c 
 Sand 
IDW  4.32 5.12 4.29 3.55 4.32 
RBF 4.04 5.41 3.85 3.30 4.15 
Ordinary kriging  4.06 5.45 4.22 3.23 4.24 
Cokriging  4.07 5.46 4.27 1.68 3.87 
 Silt 
IDW 3.74 3.90 3.59 3.15 3.59 
RBF 3.61 4.00 3.15 2.86 3.40 
Ordinary kriging  3.53 4.02 3.00 2.93 3.37 
Cokriging  3.55 4.00 3.05 2.20 3.20 
 Clay 
IDW 1.26 2.23 1.82 1.99 1.83 
RBF 1.25 2.30 2.10 2.09 1.94 
Ordinary kriging 1.43 2.24 1.79 2.14 1.90 
Cokriging  1.42 2.19 1.74 1.71 1.76 

Table 4. Root mean square errors for cross-validation of ST fractions based on a test set of points, with approxi-
mately 30% randomly selected.
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Figure 3. Maps of predicted silt (%) content based on the ordinary cokriging method for four examined fields (D2, 
D5, O3a and O5c), with sampling points presenting measured silt content. 
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4. Discussion

At least a dozen spatial interpolation methods are com-
monly used for spatial prediction of attributes in envi-
ronmental studies. The most frequently used are the in-
verse distance weighting, ordinary kriging and ordinary 
cokriging (Li and Heap, 2011). Measures for assessing 
the performance of the spatial interpolation methods 
are based on prediction errors such as the RMSE. A re-
view presented by Li and Heap (2011) that compared 
spatial interpolation methods revealed that for agri-
culture and soil science, methods that showed the best 
performance were ordinary kriging, regression kriging, 
kriging with an external drift and ordinary cokriging. 
In general, geostatistical methods (e.g., kriging) were 
more frequently recommended than non-geostatistical 
methods (e.g., IDW). 
In our study, the interpolation method that produced the 
smallest RMSE was ordinary cokriging when ECaH and 
ECaV were treated as covariates. This finding is con-
sistent with Delin et al. (2002), who found that ECa 
as a covariate had a strong effect on the accuracy of 
the spatial interpolation of clay content. In our study, 
prediction accuracy expressed by the RMSE was ap-
proximately 10% more accurate for sand, clay and silt 
when using cokriging compared to the other interpola-
tion techniques. However, in the study by Delin and 
Söderström (2002), the RMSE when using cokriging 
was much higher for clay, at approximately 50%, and 
as the authors indicated, fields with smaller differences 
in the fraction content have a less significant correla-
tion between EC and clay, which is exactly what was 
found in our study. Moreover, 3 of the fields (D2, D5 
and O5c) in the present study are characterised by a 
subsoil that is finer (i.e., containing more clay) than the 
plough layer. There is also great variability within the 
fields, especially within the fields D2 and O5c, where 
the subsoil varies from sand to loam. Only the O3a 
field has a relatively uniform texture in the soil pro-

file. In our study, the ECa was measured in 75 or 150 
cm of the soil layer, the soil texture was systematically 
determined only in upper layer, and the subsoil was 
verified by soil-agricultural maps and evaluated with 
field methods consisting of several augerings. This was 
likely another cause of the smaller effect of ECa as a 
covariate affecting the accuracy of spatial interpolation 
of clay and other fractions.
In a similar study on interpolation methods, Karydas et 
al. (2009) compared three spatial interpolation methods 
(i.e., OK, IDW and RBF) for their ability to predict var-
ious soil properties (e.g., clay content) at a farm-field 
scale. The prediction efficiencies of the methods were 
all very similar, and the smallest RMSE was observed 
with RBF, but the relative difference between the re-
maining two methods based on the ratio of RMSE val-
ues was less than 5%. This result indicates that all three 
methods have virtually the same level of prediction 
accuracy, and only small differences were observed 
between the various spatial interpolation methods for 
mapping soil properties.
Results from many studies confirm that ancillary vari-
ables are important sources of information and provide 
more accurate predictions of soil properties at the farm-
field scale (Triantafilis et al., 2001; López-Granados et 
al., 2005; Wetterlind et al., 2008; Goovaerts and Kerry, 
2010; Akumu, 2015). In recent years, these ancillary 
variables have been collected using on-the-go sensors 
or remote sensing methods and can then be used in 
geostatistical models for such interpolations methods 
as regression kriging and ordinary cokriging. Interpola-
tion of soil properties without ancillary variables leads 
to higher errors of prediction.

5. Conclusions  

Differences in prediction accuracy of soil texture 
values between interpolation techniques (inverse 
distance weight, radial basis function and ordinary 
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kriging) that do not use ancillary data were very small; 
therefore, selection of the best interpolator from the 
above methods was impossible. All soil texture frac-
tions were predicted with similar accuracy using these 
three interpolation methods, but our results show that 
ordinary cokriging produced a higher level of predic-
tion accuracy for all soil texture fractions compared 
to the inverse distance weight, radial basis function 
and ordinary kriging interpolation methods. Ancillary 
data such as apparent electrical conductivity of soil 
decreased the root mean square standard error values 
for all soil particles content mapped at the farm field 
scale, and such data should be used if they are avail-
able. It means that strongly correlated variable which 
can be measured at high spatial resolution significant-
ly improve spatial prediction of soil texture when it 
is used as covariate in cokriging interpolation. It is 
very important because it is possible to limit number 
of laboratory analyses of soil samples for soil texture.
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